Pub Date : 2023-01-28DOI: 10.14710/ijred.2023.49814
C. Diyoke, M. O. Egwuagu, T. Onah, K. Ugwu, Eberechukwu Chukwunyelum Dim
The Nigerian Universities rely on weak and unreliable fossil-based electric grids with diesel engine generators (DEG) as a backup. However, there is a potential to light up the campuses using power systems derived from primary renewable power systems (RPS) like wind turbine (WT) and solar photovoltaic (PV), that can be on or off-grid to improve the energy mix and duration reliably. This study presents the comparative analysis of the optimal hybrid grid and off-grid systems (OGS & OOGS) for serving the demand load of university buildings in four climatic regions of Nigeria. HOMER Pro is used to design and select the systems based on minimal net present cost (NPC) and cost of electricity (COE). The impact of a minimal renewable fraction of 95% on the optimal system architecture (OSA) and COE is studied for both grid and off-grid modes. Also, sensitivity analysis of the impact of key variables on performance for the sites is carried out. It is found that the OGS in the four regions is PV/Converter (Conv), while for the OOGS, it is PV/WT/DEG/battery (BB)/Conv except in Port Harcourt (PH), where it is PV/DEG/BB/Conv. The COE for the OGS in the Savana and monsoon climes of Enugu and PH are 10 and 19% more than that in the warm-semi arid climate zones of Maiduguri and Kano, which is approximately 0.09 $/kWh. The COE ($/kWh) for the OOGS is 0.21 in Maiduguri, 0.245 in Kano, 0.275 in Enugu and 0.338 in PH. An obligatory 95% RF changes the architecture and increases COE in all the locations except Maiduguri, with a slightly improved COE but higher NPC like other locations. It is established that the suggested hybrid system is beneficial and feasible for supplying more reliable and clean energy to educational buildings in different Nigerian locations.
{"title":"Comparison of the Grid and Off-Grid Hybrid Power Systems for Application in University Buildings in Nigeria","authors":"C. Diyoke, M. O. Egwuagu, T. Onah, K. Ugwu, Eberechukwu Chukwunyelum Dim","doi":"10.14710/ijred.2023.49814","DOIUrl":"https://doi.org/10.14710/ijred.2023.49814","url":null,"abstract":"The Nigerian Universities rely on weak and unreliable fossil-based electric grids with diesel engine generators (DEG) as a backup. However, there is a potential to light up the campuses using power systems derived from primary renewable power systems (RPS) like wind turbine (WT) and solar photovoltaic (PV), that can be on or off-grid to improve the energy mix and duration reliably. This study presents the comparative analysis of the optimal hybrid grid and off-grid systems (OGS & OOGS) for serving the demand load of university buildings in four climatic regions of Nigeria. HOMER Pro is used to design and select the systems based on minimal net present cost (NPC) and cost of electricity (COE). The impact of a minimal renewable fraction of 95% on the optimal system architecture (OSA) and COE is studied for both grid and off-grid modes. Also, sensitivity analysis of the impact of key variables on performance for the sites is carried out. It is found that the OGS in the four regions is PV/Converter (Conv), while for the OOGS, it is PV/WT/DEG/battery (BB)/Conv except in Port Harcourt (PH), where it is PV/DEG/BB/Conv. The COE for the OGS in the Savana and monsoon climes of Enugu and PH are 10 and 19% more than that in the warm-semi arid climate zones of Maiduguri and Kano, which is approximately 0.09 $/kWh. The COE ($/kWh) for the OOGS is 0.21 in Maiduguri, 0.245 in Kano, 0.275 in Enugu and 0.338 in PH. An obligatory 95% RF changes the architecture and increases COE in all the locations except Maiduguri, with a slightly improved COE but higher NPC like other locations. It is established that the suggested hybrid system is beneficial and feasible for supplying more reliable and clean energy to educational buildings in different Nigerian locations.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47861020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-18DOI: 10.14710/ijred.2023.50065
Teku Kalyani, Lankapalli Sathya Vara Prasad, Aditya Kolakoti
The present study focuses on oil extraction and biodiesel production from naturally grown green Spirogyra algae. Solvent oil extraction and oil expeller techniques were used to extract the Spirogyra algae oil (SALO), and the oil yields were compared to identify the most productive method. Using chicken eggshell waste (CESW) heterogeneous catalyst (HC) was prepared for the production of Spirogyra algae oil biodiesel (SALOBD). Furthermore, Box–Behnken (BB) assisted response surface method (RSM), an optimisation technique, was used in this study to achieve maximum algae biodiesel yield. From the 29 experimental trails, 96.18 % SALOBD was achieved at molar ratio (10:1), heterogeneous catalyst (0.6 wt.%), temperature (48 oC), and time (180 minutes). The predicted values of R2 (97.51%) and Adj. R2 (95.02 %) is found to be encouraging and fits well with the experimental values. The output results show that HC was identified as the significant process constraint followed by the time. The fatty acid composition (FAC) analysis by Gas Chromatography (GCMS) reveals the presence of 29.3 % unsaturated composition and 68.39 wt. % of the saturated composition. Finally, the important fuel properties of SALOBD were identified in accordance with ASTM D6751. The results obtained using chicken eggshell waste (CESW) for the production of biodiesel were recommended as a diesel fuel replacement to resist energy and environmental calamities.
{"title":"Biodiesel Production from a Naturally Grown Green Algae Spirogyra Using Heterogeneous Catalyst: An Approach to RSM Optimization Technique","authors":"Teku Kalyani, Lankapalli Sathya Vara Prasad, Aditya Kolakoti","doi":"10.14710/ijred.2023.50065","DOIUrl":"https://doi.org/10.14710/ijred.2023.50065","url":null,"abstract":"The present study focuses on oil extraction and biodiesel production from naturally grown green Spirogyra algae. Solvent oil extraction and oil expeller techniques were used to extract the Spirogyra algae oil (SALO), and the oil yields were compared to identify the most productive method. Using chicken eggshell waste (CESW) heterogeneous catalyst (HC) was prepared for the production of Spirogyra algae oil biodiesel (SALOBD). Furthermore, Box–Behnken (BB) assisted response surface method (RSM), an optimisation technique, was used in this study to achieve maximum algae biodiesel yield. From the 29 experimental trails, 96.18 % SALOBD was achieved at molar ratio (10:1), heterogeneous catalyst (0.6 wt.%), temperature (48 oC), and time (180 minutes). The predicted values of R2 (97.51%) and Adj. R2 (95.02 %) is found to be encouraging and fits well with the experimental values. The output results show that HC was identified as the significant process constraint followed by the time. The fatty acid composition (FAC) analysis by Gas Chromatography (GCMS) reveals the presence of 29.3 % unsaturated composition and 68.39 wt. % of the saturated composition. Finally, the important fuel properties of SALOBD were identified in accordance with ASTM D6751. The results obtained using chicken eggshell waste (CESW) for the production of biodiesel were recommended as a diesel fuel replacement to resist energy and environmental calamities.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44706028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-16DOI: 10.14710/ijred.2023.44018
M. Emetere, O. Dania, S. Afolalu
Despite the notable inventions in solar energy, it is still too high for standalone users from developing countries. For example, it cost $2200 to provide power for a two-bedroom apartment while the average citizen lives below the country’s poverty line of $381.75 per year. The use of fossil fuel generators remains cheaper, except there is an affordable energy option for the average populace. The objective of this study is to investigate the wind energy potential for domestic or standalone use in Nigeria. It is proposed that the domestic wind turbine will be relatively cheap for adoption. Hence, there is the need to wholistic examine the prospects of wind energy generation in Nigeria. Though previous studies had been carried out, none has been wholistic as presented in this research work. Forty years wind speed and wind direction dataset, i.e., 1980-2020, was obtained from the Modern-Era Retrospective analysis for Research and Applications (MERRA). The analysis of the wind energy potential across the research locations was considered using five sampling techniques, i.e., considering the general statistics of the forty years dataset; considering ten years in an evenly distributed pattern and accruable wind energy across the nation. It was observed that the early wet season (MAM) is the most unstable among the seasons. Also, sudden multi-directionality of the wind vectorization within forty years was observed. This event is ascribed to evidence of climate change to wind energy generation. Wind energy generation prospect was seen to be generally sustainable and reliable with SON, MAM, DJF and JJA having energy distribution of 325-950 kWh, 539-1700 kWh, 161-650 kWh and 761-3650 kWh respectively. Despite the variation of energy generation over the years within all seasons over Nigeria, it was found that it is predictable and can be optimized using various technological solutions.
{"title":"Domestic Wind Energy Planning for Deprived Communities in the Tropics: A Case Study of Nigeria","authors":"M. Emetere, O. Dania, S. Afolalu","doi":"10.14710/ijred.2023.44018","DOIUrl":"https://doi.org/10.14710/ijred.2023.44018","url":null,"abstract":"Despite the notable inventions in solar energy, it is still too high for standalone users from developing countries. For example, it cost $2200 to provide power for a two-bedroom apartment while the average citizen lives below the country’s poverty line of $381.75 per year. The use of fossil fuel generators remains cheaper, except there is an affordable energy option for the average populace. The objective of this study is to investigate the wind energy potential for domestic or standalone use in Nigeria. It is proposed that the domestic wind turbine will be relatively cheap for adoption. Hence, there is the need to wholistic examine the prospects of wind energy generation in Nigeria. Though previous studies had been carried out, none has been wholistic as presented in this research work. Forty years wind speed and wind direction dataset, i.e., 1980-2020, was obtained from the Modern-Era Retrospective analysis for Research and Applications (MERRA). The analysis of the wind energy potential across the research locations was considered using five sampling techniques, i.e., considering the general statistics of the forty years dataset; considering ten years in an evenly distributed pattern and accruable wind energy across the nation. It was observed that the early wet season (MAM) is the most unstable among the seasons. Also, sudden multi-directionality of the wind vectorization within forty years was observed. This event is ascribed to evidence of climate change to wind energy generation. Wind energy generation prospect was seen to be generally sustainable and reliable with SON, MAM, DJF and JJA having energy distribution of 325-950 kWh, 539-1700 kWh, 161-650 kWh and 761-3650 kWh respectively. Despite the variation of energy generation over the years within all seasons over Nigeria, it was found that it is predictable and can be optimized using various technological solutions. ","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41650789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-16DOI: 10.14710/ijred.2023.44872
Glenn Paula P Constantino, Justine Mae C. Dolot, K. Pamintuan
The prevalence of non-renewable energy has always been a problem for the environment that needs a long-term solution. Plant-Microbial Fuel Cells (PMFCs) are promising bioelectrochemical systems that can utilize plant rhizodeposition to generate clean electricity on-site, without harming the plants, paving the way for simultaneous agriculture and power generation. However, one of the biggest hurdles in large-scale PMFC application is the diffused nature of power generation without a clear path to consolidate or amplify the small power of individual cells. In this study, stacking configurations of 3D-printed PMFCs are investigated to determine the amplification potential of bioelectricity. The PMFCs designed in this study are made of 3D-printed electrodes, printed from 1.75 mm Proto-pasta (ProtoPlant, USA) conductive PLA filament, and a terracotta membrane acting as the separator. Six cells were constructed with the electrodes designed to tightly fit with the ceramic separator when assembled. An agriculturally important plant (S. Melongena) was utilized as the model plant for testing purposes. Stacking of cells in series had resulted in severe voltage loss while stacking of cells in parallel preserved the voltage and current of the cells. Cumulative stacking verified the increasing voltage losses as more cells are connected in series, while voltage and current were generally supported well as more cells were connected in parallel. Combination stacks were also investigated, but while 2 sets of 3 cells in parallel stacked in series generated proportionately larger power and power density compared to individual cells, the drop in current density suggests that pure parallel stacks are still more attractive for scaling up, at least for the proposed stake design in this study. The results of this study indicated that the scale up of PMFC technology is possible in field applications to continuously generate electricity while growing edible plants.
不可再生能源的普及一直是环境问题,需要长期解决。植物微生物燃料电池(PMFC)是一种很有前途的生物电化学系统,它可以利用植物根系沉积在现场产生清洁电力,而不会伤害植物,为农业和发电同时进行铺平道路。然而,大规模PMFC应用中最大的障碍之一是发电的分散性,没有明确的途径来巩固或放大单个电池的小功率。在本研究中,研究了3D打印的PMFC的堆叠配置,以确定生物电的放大电势。本研究中设计的PMFC由3D打印电极和用作隔膜的陶土膜制成,3D打印电极由1.75 mm Proto pasta(ProtoPlant,USA)导电PLA细丝打印而成。六个电池的电极设计成在组装时与陶瓷隔板紧密配合。一种农业上重要的植物(S.Melongena)被用作试验目的的模型植物。串联电池的堆叠导致了严重的电压损失,而并联电池的堆叠保持了电池的电压和电流。累积堆叠验证了随着更多电池串联连接,电压损失增加,而随着更多电池并联连接,电压和电流通常得到很好的支持。也对组合电池组进行了研究,但与单个电池组相比,2组3个并联串联电池组产生的功率和功率密度按比例更大,电流密度的下降表明,纯并联电池组对扩大规模仍然更有吸引力,至少对本研究中提出的桩柱设计来说是如此。这项研究的结果表明,在种植可食用植物的同时,扩大PMFC技术在现场应用中的规模是可能的。
{"title":"Design and Testing of 3D-Printed Stackable Plant-Microbial Fuel Cells for Field Applications","authors":"Glenn Paula P Constantino, Justine Mae C. Dolot, K. Pamintuan","doi":"10.14710/ijred.2023.44872","DOIUrl":"https://doi.org/10.14710/ijred.2023.44872","url":null,"abstract":"The prevalence of non-renewable energy has always been a problem for the environment that needs a long-term solution. Plant-Microbial Fuel Cells (PMFCs) are promising bioelectrochemical systems that can utilize plant rhizodeposition to generate clean electricity on-site, without harming the plants, paving the way for simultaneous agriculture and power generation. However, one of the biggest hurdles in large-scale PMFC application is the diffused nature of power generation without a clear path to consolidate or amplify the small power of individual cells. In this study, stacking configurations of 3D-printed PMFCs are investigated to determine the amplification potential of bioelectricity. The PMFCs designed in this study are made of 3D-printed electrodes, printed from 1.75 mm Proto-pasta (ProtoPlant, USA) conductive PLA filament, and a terracotta membrane acting as the separator. Six cells were constructed with the electrodes designed to tightly fit with the ceramic separator when assembled. An agriculturally important plant (S. Melongena) was utilized as the model plant for testing purposes. Stacking of cells in series had resulted in severe voltage loss while stacking of cells in parallel preserved the voltage and current of the cells. Cumulative stacking verified the increasing voltage losses as more cells are connected in series, while voltage and current were generally supported well as more cells were connected in parallel. Combination stacks were also investigated, but while 2 sets of 3 cells in parallel stacked in series generated proportionately larger power and power density compared to individual cells, the drop in current density suggests that pure parallel stacks are still more attractive for scaling up, at least for the proposed stake design in this study. The results of this study indicated that the scale up of PMFC technology is possible in field applications to continuously generate electricity while growing edible plants.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43145310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-10DOI: 10.14710/ijred.2023.48672
Ilham Tyass, Tajeddine Khalili, Mohamed Rafik, Bellat Abdelouahed, A. Raihani, K. Mansouri
Wind is a dominant source of renewable energy with a high sustainability potential. However, the intermittence and unstable nature of wind source affect the efficiency and reliability of wind energy conversion systems. The prediction of the available wind potential is also heavily flawed by its unstable nature. Thus, evaluating the wind energy trough wind speed prevision, is crucial for adapting energy production to load shifting and user demand rates. This work aims to forecast the wind speed using the statistical Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model and the Deep Neural Network model of Long Short-Term Memory (LSTM). In order to shed light on these methods, a comparative analysis is conducted to select the most appropriate model for wind speed prediction. The errors metrics, mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to evaluate the effectiveness of each model and are used to select the best prediction model. Overall, the obtained results showed that LSTM model, compared to SARIMA, has shown leading performance with an average of absolute percentage error (MAPE) of 14.05%.
{"title":"Wind Speed Prediction Based on Statistical and Deep Learning Models","authors":"Ilham Tyass, Tajeddine Khalili, Mohamed Rafik, Bellat Abdelouahed, A. Raihani, K. Mansouri","doi":"10.14710/ijred.2023.48672","DOIUrl":"https://doi.org/10.14710/ijred.2023.48672","url":null,"abstract":"Wind is a dominant source of renewable energy with a high sustainability potential. However, the intermittence and unstable nature of wind source affect the efficiency and reliability of wind energy conversion systems. The prediction of the available wind potential is also heavily flawed by its unstable nature. Thus, evaluating the wind energy trough wind speed prevision, is crucial for adapting energy production to load shifting and user demand rates. This work aims to forecast the wind speed using the statistical Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model and the Deep Neural Network model of Long Short-Term Memory (LSTM). In order to shed light on these methods, a comparative analysis is conducted to select the most appropriate model for wind speed prediction. The errors metrics, mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to evaluate the effectiveness of each model and are used to select the best prediction model. Overall, the obtained results showed that LSTM model, compared to SARIMA, has shown leading performance with an average of absolute percentage error (MAPE) of 14.05%.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48317991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-08DOI: 10.14710/ijred.2023.50462
Avikash Kaushik Chand, F. M. Nasrekani, K. Mamun, Sumesh Narayan
Research on wave energy converters with Rack and pinion type Power Take-Off (PTO) has been increasing over the last few years. A few control methods are used to optimize the performance of the said Wave Energy Converters (WECs). This paper presents a novel auxiliary vibrating system that can be implemented to improve the power input to a wave energy converter with a rack and pinion type PTO in regular waves. The design of the WEC system includes a floater, a double rack and pinion arrangement, a vibrating system, and a Mechanical Motion Rectifier (MMR) consisting of two one-way bearings that can convert the bidirectional wave motion to a unidirectional rotation of the output shaft. Once the waves move the floater upwards, this compresses the vibrating system which absorbs some of the energy and then the vibrating system helps the floater return to its original position by releasing the stored energy. The vibrating system also serves as a control method for limiting rack movement, so the impact of the waves is not detrimental to the system. This article aims to approximate the optimized power input to the system and investigate whether the implementation of a novel vibrating system improves the system power input. Allowing the WEC’s natural frequency to reach the wave’s natural frequency is important as it allows for maximum power absorption. The use of vibration systems to tune the WEC’s natural frequency close to the waves’ is novel and serves as the main factor in choosing this research. The WEC was modeled as 2 spring mass damper systems. Then the characteristic equations of the systems were extracted from the equations of motion and solved analytically to obtain the responses. One-factor-at-a-time (OFAT) method together with two different algorithms (Genetic and Multi-Start algorithms) from MATLAB code were used to optimize the response. The optimized power input to the system was then approximated. For system one, the maximum amplitude of the response was seen at a system mass of 500 kg and stiffness in the range of 100
{"title":"Design and Optimization of a Rack and Pinion Type WEC Using an Auxiliary Vibrating System","authors":"Avikash Kaushik Chand, F. M. Nasrekani, K. Mamun, Sumesh Narayan","doi":"10.14710/ijred.2023.50462","DOIUrl":"https://doi.org/10.14710/ijred.2023.50462","url":null,"abstract":"Research on wave energy converters with Rack and pinion type Power Take-Off (PTO) has been increasing over the last few years. A few control methods are used to optimize the performance of the said Wave Energy Converters (WECs). This paper presents a novel auxiliary vibrating system that can be implemented to improve the power input to a wave energy converter with a rack and pinion type PTO in regular waves. The design of the WEC system includes a floater, a double rack and pinion arrangement, a vibrating system, and a Mechanical Motion Rectifier (MMR) consisting of two one-way bearings that can convert the bidirectional wave motion to a unidirectional rotation of the output shaft. Once the waves move the floater upwards, this compresses the vibrating system which absorbs some of the energy and then the vibrating system helps the floater return to its original position by releasing the stored energy. The vibrating system also serves as a control method for limiting rack movement, so the impact of the waves is not detrimental to the system. This article aims to approximate the optimized power input to the system and investigate whether the implementation of a novel vibrating system improves the system power input. Allowing the WEC’s natural frequency to reach the wave’s natural frequency is important as it allows for maximum power absorption. The use of vibration systems to tune the WEC’s natural frequency close to the waves’ is novel and serves as the main factor in choosing this research. The WEC was modeled as 2 spring mass damper systems. Then the characteristic equations of the systems were extracted from the equations of motion and solved analytically to obtain the responses. One-factor-at-a-time (OFAT) method together with two different algorithms (Genetic and Multi-Start algorithms) from MATLAB code were used to optimize the response. The optimized power input to the system was then approximated. For system one, the maximum amplitude of the response was seen at a system mass of 500 kg and stiffness in the range of 100","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44335936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-04DOI: 10.14710/ijred.2023.48388
Werayoot Lahamornchaiyakul, N. Kasayapanand
The objective of this study was to determine the mechanical power efficiency of a novel vertical-axis small water turbine generator for installation in drainage lines. A 3D model was created to evaluate the performance of each design. The system was designed, analysed, and calculated for the most suitable geometries of the water inlet, drainage lines, main structure, and water turbine wheels using computational fluid dynamics software. The diameter of the water turbine wheel in the numerical model was 48 mm. The control volume technique was used in the numerical simulation method, and the k-epsilon turbulence model was employed to find the computational results. For the Computational Fluid Dynamics (CFD), the appropriate mash element for each model section was generated for numerical simulation, which showed that the torque from the water turbine modelling varied depending on the time domains and was related to speed relative to the developed force. The maximum torque and maximum power that a vertical-axis small water turbine for installation in a drainage line could generate at a maximum flow rate of 0.0030 m3/s were 0.55 N.m and 26.84 watts, respectively. Similarly, calculations with mathematical equations, found that the maximum mechanical power value after calculating the rate of loss within the pipe system was 12.95 watts. The forces generated by the speed and pressure of the fluid can then be applied to the structure of the water turbine wheel. The vertical-axis small water turbine for installation in a drainage line was analysed under its self-weight by applying a gravitational acceleration of 9.81 m/s2 in Solidworks Simulation software version 2022. The numerical simulations that resulted from this research could be used to further develop prototypes for small water turbines generating commercial electricity.
{"title":"The Design and Analysis of a Novel Vertical Axis Small Water Turbine Generator for Installation in Drainage Lines","authors":"Werayoot Lahamornchaiyakul, N. Kasayapanand","doi":"10.14710/ijred.2023.48388","DOIUrl":"https://doi.org/10.14710/ijred.2023.48388","url":null,"abstract":"The objective of this study was to determine the mechanical power efficiency of a novel vertical-axis small water turbine generator for installation in drainage lines. A 3D model was created to evaluate the performance of each design. The system was designed, analysed, and calculated for the most suitable geometries of the water inlet, drainage lines, main structure, and water turbine wheels using computational fluid dynamics software. The diameter of the water turbine wheel in the numerical model was 48 mm. The control volume technique was used in the numerical simulation method, and the k-epsilon turbulence model was employed to find the computational results. For the Computational Fluid Dynamics (CFD), the appropriate mash element for each model section was generated for numerical simulation, which showed that the torque from the water turbine modelling varied depending on the time domains and was related to speed relative to the developed force. The maximum torque and maximum power that a vertical-axis small water turbine for installation in a drainage line could generate at a maximum flow rate of 0.0030 m3/s were 0.55 N.m and 26.84 watts, respectively. Similarly, calculations with mathematical equations, found that the maximum mechanical power value after calculating the rate of loss within the pipe system was 12.95 watts. The forces generated by the speed and pressure of the fluid can then be applied to the structure of the water turbine wheel. The vertical-axis small water turbine for installation in a drainage line was analysed under its self-weight by applying a gravitational acceleration of 9.81 m/s2 in Solidworks Simulation software version 2022. The numerical simulations that resulted from this research could be used to further develop prototypes for small water turbines generating commercial electricity.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46182040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.14710/ijred.2023.48432
Bayu Rudiyanto, Intan Rida Agustina, Zeni Ulma, Dafit Ari Prasetyo, M. Hijriawan, B. Piluharto, T. Prasetyo
Coconut shells and waste cassava peels could be used as the main raw material for biomass briquettes for alternative energy sources in Indonesia. This study aims to analyze the quality of briquettes based on a coconut shell and cassava peel adhesive through proximate analysis with three treatment ratio variations. The ratio of coconut shell to cassava peel used varied from V1 (75%:25%), V2 (70%:30%), and V3 (65%:35%). Based on the result, the charcoal briquettes produced have a density of 0.61 gram/cm³-0.66 gram/cm³, water content of 5.51%-7.85%, ash content of 1.50%-2.86%, combustion rate of 0.021 gram/s-0.026 gram/s, and the calorific value of 6,161 cal/gram-6,266 cal/gram. However, all the treatment variations appropriate the SNI 01-6235-2000, the national standard of Indonesia for the quality of charcoal briquette, which includes the calorific value (>5,000 cal/gram), moisture content (<8%), and ash content (<8%). Briquettes with the best quality were generated by V1 with a density of 0.66 gram/cm³, water content of 5.51%, ash content of 1.50%, combustion rate of 0.026 gram/s, and calorific value of 6,266 cal/gram. Furthermore, briquette material from the coconut shell waste with natural cassava peel adhesive can be feasible as an alternative fuel.
椰子壳和废弃木薯皮可作为印度尼西亚替代能源生物质压块的主要原料。本研究旨在通过三种处理比例变化的近似分析,分析基于椰子壳和木薯皮胶粘剂的型煤质量。椰子壳和木薯皮的使用比例从V1 (75%:25%), V2(70%:30%)和V3(65%:35%)不等。结果表明,生产的炭型煤密度为0.61 g /cm³~ 0.66 g /cm³,含水量为5.51% ~ 7.85%,灰分含量为1.50% ~ 2.86%,燃烧速率为0.021 g /s ~ 0.026 g /s,发热量为6161 cal/g ~ 6266 cal/g。然而,所有的处理变化都适用于SNI 01-6235-2000,这是印度尼西亚对木炭型煤质量的国家标准,包括热值(>5,000 cal/g),水分含量(<8%)和灰分含量(<8%)。采用V1制得的型煤质量最好,其密度为0.66 g /cm³,含水量为5.51%,灰分含量为1.50%,燃烧速率为0.026 g /s,发热量为6266 cal/g。此外,用天然木薯皮粘合剂从椰子壳废料中提取的型煤材料作为替代燃料是可行的。
{"title":"Utilization of Cassava Peel (Manihot utilissima) Waste as an Adhesive in the Manufacture of Coconut Shell (Cocos nucifera) Charcoal Briquettes","authors":"Bayu Rudiyanto, Intan Rida Agustina, Zeni Ulma, Dafit Ari Prasetyo, M. Hijriawan, B. Piluharto, T. Prasetyo","doi":"10.14710/ijred.2023.48432","DOIUrl":"https://doi.org/10.14710/ijred.2023.48432","url":null,"abstract":"Coconut shells and waste cassava peels could be used as the main raw material for biomass briquettes for alternative energy sources in Indonesia. This study aims to analyze the quality of briquettes based on a coconut shell and cassava peel adhesive through proximate analysis with three treatment ratio variations. The ratio of coconut shell to cassava peel used varied from V1 (75%:25%), V2 (70%:30%), and V3 (65%:35%). Based on the result, the charcoal briquettes produced have a density of 0.61 gram/cm³-0.66 gram/cm³, water content of 5.51%-7.85%, ash content of 1.50%-2.86%, combustion rate of 0.021 gram/s-0.026 gram/s, and the calorific value of 6,161 cal/gram-6,266 cal/gram. However, all the treatment variations appropriate the SNI 01-6235-2000, the national standard of Indonesia for the quality of charcoal briquette, which includes the calorific value (>5,000 cal/gram), moisture content (<8%), and ash content (<8%). Briquettes with the best quality were generated by V1 with a density of 0.66 gram/cm³, water content of 5.51%, ash content of 1.50%, combustion rate of 0.026 gram/s, and calorific value of 6,266 cal/gram. Furthermore, briquette material from the coconut shell waste with natural cassava peel adhesive can be feasible as an alternative fuel.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43579758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.14710/ijred.2023.48102
Z. Arifin, Visang Fardha Sukma Insani, Muhammad Idris, Kartika Raras Hadiyati, Zakie Anugia, Dani Irianto
The utilization of co-firing (coal-biomass) in existing coal-fired power plants (CFPPs) is the fastest and most effective way to increase the renewable energy mix, which has been dominated by pulverized coal (PC) boilers, particularly in the Indonesian context. This study aims to investigate the technical and economic aspects of co-firing by conducting a pilot project of three PC boiler plants and capturing several preliminary figures before being implemented for the entire plants in Indonesia. Various measured variables, such as plant efficiency, furnace exit gas temperature (FEGT), fuel characteristic, generating cost (GC), and flue gas emissions, were identified and compared between coal-firing and 5%-biomass co-firing. The result from three different capacities of CFPP shows that co-firing impacts the efficiency of the plant corresponding to biomass heating value linearly and has an insignificant impact on FEGT. Regarding environmental impact, co-firing has a high potential to reduce SO2 and NOx emissions depending on the sulfur and nitrogen content of biomass. SO2 emission decreases by a maximum of 34% and a minimum of 1.88%. While according to economic evaluation, the average electricity GC increases by about 0.25 USD cent/kWh due to biomass price per unit of energy is higher than coal by 0.64×10-3 USD cent/kcal. The accumulation in the one-year operation of 5%-biomass co-firing with a 70% capacity factor produced 285,676 MWh of green energy, equal to 323,749 tCO2e and 143,474 USD of carbon credit. The biomass prices sensitivity analysis found that the fuel price per unit of energy between biomass and coal was the significant parameter to the GC changes.
{"title":"Techno-Economic Analysis of Co-firing for Pulverized Coal Boilers Power Plant in Indonesia","authors":"Z. Arifin, Visang Fardha Sukma Insani, Muhammad Idris, Kartika Raras Hadiyati, Zakie Anugia, Dani Irianto","doi":"10.14710/ijred.2023.48102","DOIUrl":"https://doi.org/10.14710/ijred.2023.48102","url":null,"abstract":"The utilization of co-firing (coal-biomass) in existing coal-fired power plants (CFPPs) is the fastest and most effective way to increase the renewable energy mix, which has been dominated by pulverized coal (PC) boilers, particularly in the Indonesian context. This study aims to investigate the technical and economic aspects of co-firing by conducting a pilot project of three PC boiler plants and capturing several preliminary figures before being implemented for the entire plants in Indonesia. Various measured variables, such as plant efficiency, furnace exit gas temperature (FEGT), fuel characteristic, generating cost (GC), and flue gas emissions, were identified and compared between coal-firing and 5%-biomass co-firing. The result from three different capacities of CFPP shows that co-firing impacts the efficiency of the plant corresponding to biomass heating value linearly and has an insignificant impact on FEGT. Regarding environmental impact, co-firing has a high potential to reduce SO2 and NOx emissions depending on the sulfur and nitrogen content of biomass. SO2 emission decreases by a maximum of 34% and a minimum of 1.88%. While according to economic evaluation, the average electricity GC increases by about 0.25 USD cent/kWh due to biomass price per unit of energy is higher than coal by 0.64×10-3 USD cent/kcal. The accumulation in the one-year operation of 5%-biomass co-firing with a 70% capacity factor produced 285,676 MWh of green energy, equal to 323,749 tCO2e and 143,474 USD of carbon credit. The biomass prices sensitivity analysis found that the fuel price per unit of energy between biomass and coal was the significant parameter to the GC changes.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44346159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-27DOI: 10.14710/ijred.2023.48487
Ahmad Shafiq Abdul Rahman, Sharifah Aishah Syed Ali, Mohd Rizal Isa, Fazilatulaili Ali, Diyana Kamaruddin, Muhammad Hakiki Baharuddin
This paper investigated the performance of Malaysian power plants from the year 2015 to 2017 using Malmquist Total Factor Productivity (TFP) index, which is based on Data Envelopment Analysis (DEA). This approach offers substantial advantages as compared to other existing methods as it can measure productivity changes over time for a variety of inputs and outputs. Moreover, it comprises two primary components: the technical efficiency change and the technological change indexes that provide clearer insight into the factors that are responsible for shifts in total factor productivity. This study uses a single input, installed generation capacity (MW), and two outputs, average thermal efficiency (%) and average equivalent availability factor (%). These output-input data included ten main power plants: TNB Natural Gas, SESB Natural Gas, SESB Diesel, SEB Natural Gas, SEB Coal, SEB Diesel, IPP Semenanjung Natural Gas, IPP Semenanjung Coal, IPP Sabah Natural Gas, and IPP Sabah Diesel. The results have two significant implications for fossil fuel power plants in Malaysia. First, technological change was the primary factor in boosting the TFP performance of the fossil fuel power plants in Malaysia. Meanwhile, the decline in TFP performance in Malaysian fossil fuel power plants may be attributed, in part, to a lack of innovation in technical components as the results found that the average technical efficiency changes in 2015 – 2016 were at 146% and then dropped significantly to 2% in 2016 – 2017. Second, the average scale efficiency changes rose dramatically from -53% to 3% providing a significant contribution to the improvement of technical efficiency changes. The fossil fuel power plants become efficient as the power plants’ size increases. This indicates that the size of a power plant positively impacts the performance of the TFP.
{"title":"Performance Assessment of Malaysian Fossil Fuel Power Plants: A Data Envelopment Analysis (DEA) Approach","authors":"Ahmad Shafiq Abdul Rahman, Sharifah Aishah Syed Ali, Mohd Rizal Isa, Fazilatulaili Ali, Diyana Kamaruddin, Muhammad Hakiki Baharuddin","doi":"10.14710/ijred.2023.48487","DOIUrl":"https://doi.org/10.14710/ijred.2023.48487","url":null,"abstract":"This paper investigated the performance of Malaysian power plants from the year 2015 to 2017 using Malmquist Total Factor Productivity (TFP) index, which is based on Data Envelopment Analysis (DEA). This approach offers substantial advantages as compared to other existing methods as it can measure productivity changes over time for a variety of inputs and outputs. Moreover, it comprises two primary components: the technical efficiency change and the technological change indexes that provide clearer insight into the factors that are responsible for shifts in total factor productivity. This study uses a single input, installed generation capacity (MW), and two outputs, average thermal efficiency (%) and average equivalent availability factor (%). These output-input data included ten main power plants: TNB Natural Gas, SESB Natural Gas, SESB Diesel, SEB Natural Gas, SEB Coal, SEB Diesel, IPP Semenanjung Natural Gas, IPP Semenanjung Coal, IPP Sabah Natural Gas, and IPP Sabah Diesel. The results have two significant implications for fossil fuel power plants in Malaysia. First, technological change was the primary factor in boosting the TFP performance of the fossil fuel power plants in Malaysia. Meanwhile, the decline in TFP performance in Malaysian fossil fuel power plants may be attributed, in part, to a lack of innovation in technical components as the results found that the average technical efficiency changes in 2015 – 2016 were at 146% and then dropped significantly to 2% in 2016 – 2017. Second, the average scale efficiency changes rose dramatically from -53% to 3% providing a significant contribution to the improvement of technical efficiency changes. The fossil fuel power plants become efficient as the power plants’ size increases. This indicates that the size of a power plant positively impacts the performance of the TFP.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45970774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}