首页 > 最新文献

Statistics in Biosciences最新文献

英文 中文
Efficacy-Driven Dose Finding with Toxicity Control in Phase I Oncology Studies 在I期肿瘤研究中,疗效驱动的剂量发现和毒性控制
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2021-10-23 DOI: 10.1007/s12561-021-09327-1
Qingyang Liu, J. Geng, F. Fleischer, Q. Deng
{"title":"Efficacy-Driven Dose Finding with Toxicity Control in Phase I Oncology Studies","authors":"Qingyang Liu, J. Geng, F. Fleischer, Q. Deng","doi":"10.1007/s12561-021-09327-1","DOIUrl":"https://doi.org/10.1007/s12561-021-09327-1","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"14 1","pages":"413 - 431"},"PeriodicalIF":1.0,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47633278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous Learning the Dimension and Parameter of a Statistical Model with Big Data 利用大数据同时学习统计模型的维数和参数
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2021-10-15 DOI: 10.1007/s12561-021-09324-4
Long Wang, Fangzheng Xie, Yanxun Xu
{"title":"Simultaneous Learning the Dimension and Parameter of a Statistical Model with Big Data","authors":"Long Wang, Fangzheng Xie, Yanxun Xu","doi":"10.1007/s12561-021-09324-4","DOIUrl":"https://doi.org/10.1007/s12561-021-09324-4","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47383406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Weighted Sample Framework to Incorporate External Calculators for Risk Modeling 将外部计算器纳入风险建模的加权样本框架
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2021-10-08 DOI: 10.1007/s12561-021-09325-3
D. Ghosh, M. Sabel
{"title":"A Weighted Sample Framework to Incorporate External Calculators for Risk Modeling","authors":"D. Ghosh, M. Sabel","doi":"10.1007/s12561-021-09325-3","DOIUrl":"https://doi.org/10.1007/s12561-021-09325-3","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"14 1","pages":"363 - 379"},"PeriodicalIF":1.0,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49257052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Natural History Data in One- and Two-Arm Hierarchical Bayesian Studies of Rare Disease Progression 利用自然史数据进行罕见病进展的单臂和双臂层次贝叶斯研究
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2021-10-01 DOI: 10.1007/s12561-021-09323-5
A. Monseur, B. Carlin, B. Boulanger, A. Seferian, L. Servais, Chris Freitag, L. Thielemans, Teresa Elena Virginie Ulrike Andrea Adele James J. Basil Gidaro Gargaun Chê Schara Gangfuß D’Amico Dowling , T. Gidaro, E. Gargaun, V. Chê, U. Schara, A. Gangfuss, A. D’Amico, J. Dowling, B. Darras, A. Daron, Arturo E. Hernandez, C. de Lattre, J. Arnal, Michèle Mayer, J. Cuisset, C. Vuillerot, S. Fontaine, R. Bellance, V. Biancalana, A. Buj-Bello, J. Hogrel, H. Landy, K. Amburgey, B. Andres, E. Bertini, R. Cardaş, S. Denis, Dominique Duchêne, V. Latournerie, Nacera Reguiba, E. Tsuchiya, C. Wallgren‐Pettersson
{"title":"Leveraging Natural History Data in One- and Two-Arm Hierarchical Bayesian Studies of Rare Disease Progression","authors":"A. Monseur, B. Carlin, B. Boulanger, A. Seferian, L. Servais, Chris Freitag, L. Thielemans, Teresa Elena Virginie Ulrike Andrea Adele James J. Basil Gidaro Gargaun Chê Schara Gangfuß D’Amico Dowling , T. Gidaro, E. Gargaun, V. Chê, U. Schara, A. Gangfuss, A. D’Amico, J. Dowling, B. Darras, A. Daron, Arturo E. Hernandez, C. de Lattre, J. Arnal, Michèle Mayer, J. Cuisset, C. Vuillerot, S. Fontaine, R. Bellance, V. Biancalana, A. Buj-Bello, J. Hogrel, H. Landy, K. Amburgey, B. Andres, E. Bertini, R. Cardaş, S. Denis, Dominique Duchêne, V. Latournerie, Nacera Reguiba, E. Tsuchiya, C. Wallgren‐Pettersson","doi":"10.1007/s12561-021-09323-5","DOIUrl":"https://doi.org/10.1007/s12561-021-09323-5","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"14 1","pages":"237 - 258"},"PeriodicalIF":1.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42161032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials 在优势试验的贝叶斯设计中利用历史数据的灵活条件借用方法
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2021-09-18 DOI: 10.1007/s12561-021-09321-7
Weiying Yuan, Ming-Hui Chen, J. Zhong
{"title":"Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials","authors":"Weiying Yuan, Ming-Hui Chen, J. Zhong","doi":"10.1007/s12561-021-09321-7","DOIUrl":"https://doi.org/10.1007/s12561-021-09321-7","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"14 1","pages":"197 - 215"},"PeriodicalIF":1.0,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46761465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bayesian Analysis of Multivariate Matched Proportions with Sparse Response 具有稀疏响应的多元匹配比例的贝叶斯分析
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2021-08-09 DOI: 10.1007/s12561-023-09368-8
M. Meyer, Hao Cheng, K. Knutson
{"title":"Bayesian Analysis of Multivariate Matched Proportions with Sparse Response","authors":"M. Meyer, Hao Cheng, K. Knutson","doi":"10.1007/s12561-023-09368-8","DOIUrl":"https://doi.org/10.1007/s12561-023-09368-8","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"15 1","pages":"490 - 509"},"PeriodicalIF":1.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48568588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint Microbial and Metabolomic Network Estimation with the Censored Gaussian Graphical Model. 用删节高斯图模型估计微生物和代谢组学联合网络。
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2021-07-01 DOI: 10.1007/s12561-020-09294-z
Jing Ma

Joint analysis of microbiome and metabolomic data represents an imperative objective as the field moves beyond basic microbiome association studies and turns towards mechanistic and translational investigations. We present a censored Gaussian graphical model framework, where the metabolomic data are treated as continuous and the microbiome data as censored at zero, to identify direct interactions (defined as conditional dependence relationships) between microbial species and metabolites. Simulated examples show that our method metaMint performs favorably compared to the existing ones. metaMint also provides interpretable microbe-metabolite interactions when applied to a bacterial vaginosis data set. R implementation of metaMint is available on GitHub.

微生物组和代谢组数据的联合分析代表了一个迫切的目标,因为该领域超越了基本的微生物组关联研究,转向了机制和转化研究。我们提出了一个截除高斯图形模型框架,其中代谢组数据被视为连续的,微生物组数据被截除为零,以确定微生物物种和代谢物之间的直接相互作用(定义为条件依赖关系)。仿真示例表明,与现有方法相比,我们的方法metaMint具有更好的性能。当应用于细菌性阴道病数据集时,metaMint还提供了可解释的微生物-代谢物相互作用。在GitHub上可以找到metaMint的R实现。
{"title":"Joint Microbial and Metabolomic Network Estimation with the Censored Gaussian Graphical Model.","authors":"Jing Ma","doi":"10.1007/s12561-020-09294-z","DOIUrl":"https://doi.org/10.1007/s12561-020-09294-z","url":null,"abstract":"<p><p>Joint analysis of microbiome and metabolomic data represents an imperative objective as the field moves beyond basic microbiome association studies and turns towards mechanistic and translational investigations. We present a censored Gaussian graphical model framework, where the metabolomic data are treated as continuous and the microbiome data as censored at zero, to identify direct interactions (defined as conditional dependence relationships) between microbial species and metabolites. Simulated examples show that our method metaMint performs favorably compared to the existing ones. metaMint also provides interpretable microbe-metabolite interactions when applied to a bacterial vaginosis data set. R implementation of metaMint is available on GitHub.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"13 2","pages":"351-372"},"PeriodicalIF":1.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12561-020-09294-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10743117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Estimating Heterogeneous Treatment Effect on Multivariate Responses Using Random Forests 利用随机森林估计异质处理对多变量响应的影响
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2021-05-15 DOI: 10.1007/S12561-021-09310-W
Boyi Guo, H. Holscher, L. Auvil, M. Welge, C. Bushell, J. Novotny, D. Baer, N. Burd, Naiman A. Khan, Ruoqing Zhu
{"title":"Estimating Heterogeneous Treatment Effect on Multivariate Responses Using Random Forests","authors":"Boyi Guo, H. Holscher, L. Auvil, M. Welge, C. Bushell, J. Novotny, D. Baer, N. Burd, Naiman A. Khan, Ruoqing Zhu","doi":"10.1007/S12561-021-09310-W","DOIUrl":"https://doi.org/10.1007/S12561-021-09310-W","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"1 1","pages":"1-17"},"PeriodicalIF":1.0,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/S12561-021-09310-W","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49077447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Bayesian Joint Modeling of Single-Cell Expression Data and Bulk Spatial Transcriptomic Data 单细胞表达数据和海量空间转录组数据的贝叶斯联合建模
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2021-04-12 DOI: 10.1007/S12561-021-09308-4
Jinge Yu, Qiuyu Wu, Xiangyu Luo
{"title":"Bayesian Joint Modeling of Single-Cell Expression Data and Bulk Spatial Transcriptomic Data","authors":"Jinge Yu, Qiuyu Wu, Xiangyu Luo","doi":"10.1007/S12561-021-09308-4","DOIUrl":"https://doi.org/10.1007/S12561-021-09308-4","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"1 1","pages":"1-15"},"PeriodicalIF":1.0,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/S12561-021-09308-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48166554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A super scalable algorithm for short segment detection. 一种超可扩展的短段检测算法。
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2021-04-01 Epub Date: 2020-04-18 DOI: 10.1007/s12561-020-09278-z
Ning Hao, Yue Selena Niu, Feifei Xiao, Heping Zhang

In many applications such as copy number variant (CNV) detection, the goal is to identify short segments on which the observations have different means or medians from the background. Those segments are usually short and hidden in a long sequence, and hence are very challenging to find. We study a super scalable short segment (4S) detection algorithm in this paper. This nonparametric method clusters the locations where the observations exceed a threshold for segment detection. It is computationally efficient and does not rely on Gaussian noise assumption. Moreover, we develop a framework to assign significance levels for detected segments. We demonstrate the advantages of our proposed method by theoretical, simulation, and real data studies.

在拷贝数变异(CNV)检测等许多应用中,目标是识别观测值与背景值具有不同均值或中位数的短片段。这些片段通常很短,隐藏在很长的序列中,因此很难找到。本文研究了一种超可伸缩短段(4S)检测算法。这种非参数方法将观测值超过分割检测阈值的位置聚类。该方法计算效率高,不依赖于高斯噪声假设。此外,我们还开发了一个框架来为检测到的片段分配显著性水平。我们通过理论、仿真和实际数据研究证明了我们提出的方法的优点。
{"title":"A super scalable algorithm for short segment detection.","authors":"Ning Hao,&nbsp;Yue Selena Niu,&nbsp;Feifei Xiao,&nbsp;Heping Zhang","doi":"10.1007/s12561-020-09278-z","DOIUrl":"https://doi.org/10.1007/s12561-020-09278-z","url":null,"abstract":"<p><p>In many applications such as copy number variant (CNV) detection, the goal is to identify short segments on which the observations have different means or medians from the background. Those segments are usually short and hidden in a long sequence, and hence are very challenging to find. We study a super scalable short segment (4S) detection algorithm in this paper. This nonparametric method clusters the locations where the observations exceed a threshold for segment detection. It is computationally efficient and does not rely on Gaussian noise assumption. Moreover, we develop a framework to assign significance levels for detected segments. We demonstrate the advantages of our proposed method by theoretical, simulation, and real data studies.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"13 1","pages":"18-33"},"PeriodicalIF":1.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12561-020-09278-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25504729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Statistics in Biosciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1