首页 > 最新文献

Statistics in Biosciences最新文献

英文 中文
Simultaneous Learning the Dimension and Parameter of a Statistical Model with Big Data 利用大数据同时学习统计模型的维数和参数
IF 1 Q2 Mathematics Pub Date : 2021-10-15 DOI: 10.1007/s12561-021-09324-4
Long Wang, Fangzheng Xie, Yanxun Xu
{"title":"Simultaneous Learning the Dimension and Parameter of a Statistical Model with Big Data","authors":"Long Wang, Fangzheng Xie, Yanxun Xu","doi":"10.1007/s12561-021-09324-4","DOIUrl":"https://doi.org/10.1007/s12561-021-09324-4","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47383406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Weighted Sample Framework to Incorporate External Calculators for Risk Modeling 将外部计算器纳入风险建模的加权样本框架
IF 1 Q2 Mathematics Pub Date : 2021-10-08 DOI: 10.1007/s12561-021-09325-3
D. Ghosh, M. Sabel
{"title":"A Weighted Sample Framework to Incorporate External Calculators for Risk Modeling","authors":"D. Ghosh, M. Sabel","doi":"10.1007/s12561-021-09325-3","DOIUrl":"https://doi.org/10.1007/s12561-021-09325-3","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49257052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Natural History Data in One- and Two-Arm Hierarchical Bayesian Studies of Rare Disease Progression 利用自然史数据进行罕见病进展的单臂和双臂层次贝叶斯研究
IF 1 Q2 Mathematics Pub Date : 2021-10-01 DOI: 10.1007/s12561-021-09323-5
A. Monseur, B. Carlin, B. Boulanger, A. Seferian, L. Servais, Chris Freitag, L. Thielemans, Teresa Elena Virginie Ulrike Andrea Adele James J. Basil Gidaro Gargaun Chê Schara Gangfuß D’Amico Dowling , T. Gidaro, E. Gargaun, V. Chê, U. Schara, A. Gangfuss, A. D’Amico, J. Dowling, B. Darras, A. Daron, Arturo E. Hernandez, C. de Lattre, J. Arnal, Michèle Mayer, J. Cuisset, C. Vuillerot, S. Fontaine, R. Bellance, V. Biancalana, A. Buj-Bello, J. Hogrel, H. Landy, K. Amburgey, B. Andres, E. Bertini, R. Cardaş, S. Denis, Dominique Duchêne, V. Latournerie, Nacera Reguiba, E. Tsuchiya, C. Wallgren‐Pettersson
{"title":"Leveraging Natural History Data in One- and Two-Arm Hierarchical Bayesian Studies of Rare Disease Progression","authors":"A. Monseur, B. Carlin, B. Boulanger, A. Seferian, L. Servais, Chris Freitag, L. Thielemans, Teresa Elena Virginie Ulrike Andrea Adele James J. Basil Gidaro Gargaun Chê Schara Gangfuß D’Amico Dowling , T. Gidaro, E. Gargaun, V. Chê, U. Schara, A. Gangfuss, A. D’Amico, J. Dowling, B. Darras, A. Daron, Arturo E. Hernandez, C. de Lattre, J. Arnal, Michèle Mayer, J. Cuisset, C. Vuillerot, S. Fontaine, R. Bellance, V. Biancalana, A. Buj-Bello, J. Hogrel, H. Landy, K. Amburgey, B. Andres, E. Bertini, R. Cardaş, S. Denis, Dominique Duchêne, V. Latournerie, Nacera Reguiba, E. Tsuchiya, C. Wallgren‐Pettersson","doi":"10.1007/s12561-021-09323-5","DOIUrl":"https://doi.org/10.1007/s12561-021-09323-5","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42161032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials 在优势试验的贝叶斯设计中利用历史数据的灵活条件借用方法
IF 1 Q2 Mathematics Pub Date : 2021-09-18 DOI: 10.1007/s12561-021-09321-7
Weiying Yuan, Ming-Hui Chen, J. Zhong
{"title":"Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials","authors":"Weiying Yuan, Ming-Hui Chen, J. Zhong","doi":"10.1007/s12561-021-09321-7","DOIUrl":"https://doi.org/10.1007/s12561-021-09321-7","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46761465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bayesian Analysis of Multivariate Matched Proportions with Sparse Response 具有稀疏响应的多元匹配比例的贝叶斯分析
IF 1 Q2 Mathematics Pub Date : 2021-08-09 DOI: 10.1007/s12561-023-09368-8
M. Meyer, Hao Cheng, K. Knutson
{"title":"Bayesian Analysis of Multivariate Matched Proportions with Sparse Response","authors":"M. Meyer, Hao Cheng, K. Knutson","doi":"10.1007/s12561-023-09368-8","DOIUrl":"https://doi.org/10.1007/s12561-023-09368-8","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48568588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing for mediation effect with application to human microbiome data. 应用人类微生物组数据测试中介效应。
IF 1 Q2 Mathematics Pub Date : 2021-07-01 Epub Date: 2019-07-27 DOI: 10.1007/s12561-019-09253-3
Haixiang Zhang, Jun Chen, Zhigang Li, Lei Liu

Mediation analysis has been commonly used to study the effect of an exposure on an outcome through a mediator. In this paper, we are interested in exploring the mediation mechanism of microbiome, whose special features make the analysis challenging. We consider the isometric logratio transformation of the relative abundance as the mediator variable. Then, we present a de-biased Lasso estimate for the mediator of interest and derive its standard error estimator, which can be used to develop a test procedure for the interested mediation effect. Extensive simulation studies are conducted to assess the performance of our method. We apply the proposed approach to test the mediation effect of human gut microbiome between the dietary fiber intake and body mass index.

中介分析通常用于研究暴露于某一因素对结果的影响。在本文中,我们有兴趣探索微生物组的中介机制,因为微生物组的特殊性使分析具有挑战性。我们将相对丰度的等距对数变换视为中介变量。然后,我们提出了对相关中介变量的去偏 Lasso 估计,并推导出其标准误差估计值,可用于开发相关中介效应的检验程序。我们进行了广泛的模拟研究,以评估我们方法的性能。我们将所提出的方法用于检验人类肠道微生物组在膳食纤维摄入量和体重指数之间的中介效应。
{"title":"Testing for mediation effect with application to human microbiome data.","authors":"Haixiang Zhang, Jun Chen, Zhigang Li, Lei Liu","doi":"10.1007/s12561-019-09253-3","DOIUrl":"10.1007/s12561-019-09253-3","url":null,"abstract":"<p><p>Mediation analysis has been commonly used to study the effect of an exposure on an outcome through a mediator. In this paper, we are interested in exploring the mediation mechanism of microbiome, whose special features make the analysis challenging. We consider the isometric logratio transformation of the relative abundance as the mediator variable. Then, we present a de-biased Lasso estimate for the mediator of interest and derive its standard error estimator, which can be used to develop a test procedure for the interested mediation effect. Extensive simulation studies are conducted to assess the performance of our method. We apply the proposed approach to test the mediation effect of human gut microbiome between the dietary fiber intake and body mass index.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177450/pdf/nihms-1578730.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38998807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint Microbial and Metabolomic Network Estimation with the Censored Gaussian Graphical Model. 用删节高斯图模型估计微生物和代谢组学联合网络。
IF 1 Q2 Mathematics Pub Date : 2021-07-01 DOI: 10.1007/s12561-020-09294-z
Jing Ma

Joint analysis of microbiome and metabolomic data represents an imperative objective as the field moves beyond basic microbiome association studies and turns towards mechanistic and translational investigations. We present a censored Gaussian graphical model framework, where the metabolomic data are treated as continuous and the microbiome data as censored at zero, to identify direct interactions (defined as conditional dependence relationships) between microbial species and metabolites. Simulated examples show that our method metaMint performs favorably compared to the existing ones. metaMint also provides interpretable microbe-metabolite interactions when applied to a bacterial vaginosis data set. R implementation of metaMint is available on GitHub.

微生物组和代谢组数据的联合分析代表了一个迫切的目标,因为该领域超越了基本的微生物组关联研究,转向了机制和转化研究。我们提出了一个截除高斯图形模型框架,其中代谢组数据被视为连续的,微生物组数据被截除为零,以确定微生物物种和代谢物之间的直接相互作用(定义为条件依赖关系)。仿真示例表明,与现有方法相比,我们的方法metaMint具有更好的性能。当应用于细菌性阴道病数据集时,metaMint还提供了可解释的微生物-代谢物相互作用。在GitHub上可以找到metaMint的R实现。
{"title":"Joint Microbial and Metabolomic Network Estimation with the Censored Gaussian Graphical Model.","authors":"Jing Ma","doi":"10.1007/s12561-020-09294-z","DOIUrl":"https://doi.org/10.1007/s12561-020-09294-z","url":null,"abstract":"<p><p>Joint analysis of microbiome and metabolomic data represents an imperative objective as the field moves beyond basic microbiome association studies and turns towards mechanistic and translational investigations. We present a censored Gaussian graphical model framework, where the metabolomic data are treated as continuous and the microbiome data as censored at zero, to identify direct interactions (defined as conditional dependence relationships) between microbial species and metabolites. Simulated examples show that our method metaMint performs favorably compared to the existing ones. metaMint also provides interpretable microbe-metabolite interactions when applied to a bacterial vaginosis data set. R implementation of metaMint is available on GitHub.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12561-020-09294-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10743117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Distance-Based Analysis with Quantile Regression Models. 基于距离的分位数回归模型分析。
IF 1 Q2 Mathematics Pub Date : 2021-07-01 Epub Date: 2021-03-27 DOI: 10.1007/s12561-021-09306-6
Shaoyu Li, Yanqing Sun, Liyang Diao, Xue Wang

Non-standard structured, multivariate data are emerging in many research areas, including genetics and genomics, ecology, and social science. Suitably defined pairwise distance measures are commonly used in distance-based analysis to study the association between the variables. In this work, we consider a linear quantile regression model for pairwise distances. We investigate the large sample properties of an estimator of the unknown coefficients and propose statistical inference procedures correspondingly. Extensive simulations provide evidence of satisfactory finite sample properties of the proposed method. Finally, we applied the method to a microbiome association study to illustrate its utility.

非标准结构化、多变量数据正在许多研究领域出现,包括遗传学和基因组学、生态学和社会科学。在基于距离的分析中,通常使用适当定义的两两距离度量来研究变量之间的关联。在这项工作中,我们考虑了两两距离的线性分位数回归模型。我们研究了未知系数估计量的大样本性质,并提出了相应的统计推断程序。大量的仿真证明了该方法具有令人满意的有限样本特性。最后,我们将该方法应用于微生物组关联研究,以说明其实用性。
{"title":"Distance-Based Analysis with Quantile Regression Models.","authors":"Shaoyu Li,&nbsp;Yanqing Sun,&nbsp;Liyang Diao,&nbsp;Xue Wang","doi":"10.1007/s12561-021-09306-6","DOIUrl":"https://doi.org/10.1007/s12561-021-09306-6","url":null,"abstract":"<p><p>Non-standard structured, multivariate data are emerging in many research areas, including genetics and genomics, ecology, and social science. Suitably defined pairwise distance measures are commonly used in distance-based analysis to study the association between the variables. In this work, we consider a linear quantile regression model for pairwise distances. We investigate the large sample properties of an estimator of the unknown coefficients and propose statistical inference procedures correspondingly. Extensive simulations provide evidence of satisfactory finite sample properties of the proposed method. Finally, we applied the method to a microbiome association study to illustrate its utility.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12561-021-09306-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40601803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Heterogeneous Treatment Effect on Multivariate Responses Using Random Forests 利用随机森林估计异质处理对多变量响应的影响
IF 1 Q2 Mathematics Pub Date : 2021-05-15 DOI: 10.1007/S12561-021-09310-W
Boyi Guo, H. Holscher, L. Auvil, M. Welge, C. Bushell, J. Novotny, D. Baer, N. Burd, Naiman A. Khan, Ruoqing Zhu
{"title":"Estimating Heterogeneous Treatment Effect on Multivariate Responses Using Random Forests","authors":"Boyi Guo, H. Holscher, L. Auvil, M. Welge, C. Bushell, J. Novotny, D. Baer, N. Burd, Naiman A. Khan, Ruoqing Zhu","doi":"10.1007/S12561-021-09310-W","DOIUrl":"https://doi.org/10.1007/S12561-021-09310-W","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/S12561-021-09310-W","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49077447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Bayesian Joint Modeling of Single-Cell Expression Data and Bulk Spatial Transcriptomic Data 单细胞表达数据和海量空间转录组数据的贝叶斯联合建模
IF 1 Q2 Mathematics Pub Date : 2021-04-12 DOI: 10.1007/S12561-021-09308-4
Jinge Yu, Qiuyu Wu, Xiangyu Luo
{"title":"Bayesian Joint Modeling of Single-Cell Expression Data and Bulk Spatial Transcriptomic Data","authors":"Jinge Yu, Qiuyu Wu, Xiangyu Luo","doi":"10.1007/S12561-021-09308-4","DOIUrl":"https://doi.org/10.1007/S12561-021-09308-4","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/S12561-021-09308-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48166554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Statistics in Biosciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1