首页 > 最新文献

Advanced Optical Technologies最新文献

英文 中文
Three-dimensional femtosecond laser inscription of type a-based high-efficiency first-order waveguide Bragg gratings 基于a型高效一阶波导布拉格光栅的三维飞秒激光刻字
IF 1.8 Q3 Physics and Astronomy Pub Date : 2023-07-25 DOI: 10.3389/aot.2023.1237679
R. Laberdesque, Laura Loi, T. Guérineau, Alain Abou Khalil, S. Danto, T. Cardinal, L. Canioni, Y. Petit
A novel type of waveguide Bragg grating (WBG) is demonstrated based on femtosecond laser-induced Type A refractive index modifications, namely based of the photochemistry of silver species in a specialty ortho-phosphate glass matrix. First-order WBGs are reported in the near-infrared and down to 736 nm in the visible. Relative transmission measurements with a 500 µm long WBGs lead to narrow-bandwidth attenuations (sub-nm spectral FWHM) from 2.29 dB to 6.25 dB for periods from 240 nm to 280 nm, respectively. The corresponding estimated backward coupling coefficients show high values from 1.66 mm-1 up to 2.69 mm-1. Additionally, we report on a true 3D helix-shaped WBG that shows an even stronger relative attenuation of 10.3 dB for a 500 µm long WBG, equivalently corresponding to a backward coupling coefficient of 3.7 mm-1. These novel results pave the way for new silver-based laser-inscribed integrated photonic devices, among which the combination of Bragg gratings to form active/passive optical resonators, but also the direct inscription of WBG at the glass interface for enhanced sensing applications.
基于飞秒激光诱导的A型折射率变化,即基于特殊正磷酸盐玻璃基体中银的光化学性质,提出了一种新型波导布拉格光栅(WBG)。一阶wbg在近红外波段有报道,在可见光波段低至736nm。500µm长wbg的相对传输测量结果显示,在240 ~ 280 nm的周期内,窄带宽衰减(亚nm频谱FWHM)分别为2.29 ~ 6.25 dB。反演后向耦合系数在1.66 mm-1 ~ 2.69 mm-1范围内具有较高的数值。此外,我们报道了一个真正的3D螺旋形WBG,它显示出更强的相对衰减,对于500µm长的WBG,相对衰减为10.3 dB,相当于向后耦合系数为3.7 mm-1。这些新颖的结果为新的银基激光刻蚀集成光子器件铺平了道路,其中布拉格光栅组合形成有源/无源光学谐振器,以及在玻璃界面上直接刻蚀WBG以增强传感应用。
{"title":"Three-dimensional femtosecond laser inscription of type a-based high-efficiency first-order waveguide Bragg gratings","authors":"R. Laberdesque, Laura Loi, T. Guérineau, Alain Abou Khalil, S. Danto, T. Cardinal, L. Canioni, Y. Petit","doi":"10.3389/aot.2023.1237679","DOIUrl":"https://doi.org/10.3389/aot.2023.1237679","url":null,"abstract":"A novel type of waveguide Bragg grating (WBG) is demonstrated based on femtosecond laser-induced Type A refractive index modifications, namely based of the photochemistry of silver species in a specialty ortho-phosphate glass matrix. First-order WBGs are reported in the near-infrared and down to 736 nm in the visible. Relative transmission measurements with a 500 µm long WBGs lead to narrow-bandwidth attenuations (sub-nm spectral FWHM) from 2.29 dB to 6.25 dB for periods from 240 nm to 280 nm, respectively. The corresponding estimated backward coupling coefficients show high values from 1.66 mm-1 up to 2.69 mm-1. Additionally, we report on a true 3D helix-shaped WBG that shows an even stronger relative attenuation of 10.3 dB for a 500 µm long WBG, equivalently corresponding to a backward coupling coefficient of 3.7 mm-1. These novel results pave the way for new silver-based laser-inscribed integrated photonic devices, among which the combination of Bragg gratings to form active/passive optical resonators, but also the direct inscription of WBG at the glass interface for enhanced sensing applications.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47961548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast laser volume nanostructuring; a limitless perspective 超快激光体积纳米结构;无限的视角
IF 1.8 Q3 Physics and Astronomy Pub Date : 2023-07-11 DOI: 10.3389/aot.2023.1237524
R. Stoian
Ultrafast lasers are now unanimously recognized as processing tools capable of providing utmost precision. This becomes key in the context of material processing as precise feature scales can render a range of new characteristics to the processed materials. These features redesign their properties optically, mechanically, electrically, or from a chemical point of view. Precision is often accompanied by an increase in resolution. The advances in optical beam engineering and irradiation strategies, alongside with controlled material responses, have put in sight the opportunity to reach record small feature sizes, below 100 nm. Is there an intrinsic limit to optical fabrication? What are the new opportunities provided by laser processing on these scales? How one can make light adapt to matter and at the same time control the matter’s response under light on the smallest scales? In this article I intend to provide a brief overview into the latest developments in ultrafast laser volume nanostructuring, fundamentals and applications alike, stressing out the prospective roadmap and the new potential emerging from super-resolved ultrafast smart laser processing technologies.
超快激光器现在被一致认为是能够提供最高精度的加工工具。这在材料加工的背景下成为关键,因为精确的特征尺度可以为加工材料呈现一系列新的特征。这些特征从光学、机械、电学或化学的角度重新设计了它们的特性。精度往往伴随着分辨率的提高。光束工程和辐照策略的进步,以及材料响应的控制,使人们有机会达到100纳米以下的小特征尺寸。光学制造有内在的限制吗?这些规模的激光加工提供了哪些新的机会?如何使光适应物质,同时在最小尺度上控制物质对光的反应?在这篇文章中,我打算简要介绍超快激光体积纳米结构的最新发展,基本原理和应用,强调未来的路线图和超分辨超快智能激光加工技术的新潜力。
{"title":"Ultrafast laser volume nanostructuring; a limitless perspective","authors":"R. Stoian","doi":"10.3389/aot.2023.1237524","DOIUrl":"https://doi.org/10.3389/aot.2023.1237524","url":null,"abstract":"Ultrafast lasers are now unanimously recognized as processing tools capable of providing utmost precision. This becomes key in the context of material processing as precise feature scales can render a range of new characteristics to the processed materials. These features redesign their properties optically, mechanically, electrically, or from a chemical point of view. Precision is often accompanied by an increase in resolution. The advances in optical beam engineering and irradiation strategies, alongside with controlled material responses, have put in sight the opportunity to reach record small feature sizes, below 100 nm. Is there an intrinsic limit to optical fabrication? What are the new opportunities provided by laser processing on these scales? How one can make light adapt to matter and at the same time control the matter’s response under light on the smallest scales? In this article I intend to provide a brief overview into the latest developments in ultrafast laser volume nanostructuring, fundamentals and applications alike, stressing out the prospective roadmap and the new potential emerging from super-resolved ultrafast smart laser processing technologies.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48909714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Making impact 生产的影响
IF 1.8 Q3 Physics and Astronomy Pub Date : 2022-11-07 DOI: 10.1515/aot-2022-0035
A. Thoss
{"title":"Making impact","authors":"A. Thoss","doi":"10.1515/aot-2022-0035","DOIUrl":"https://doi.org/10.1515/aot-2022-0035","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42505661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel procedure for the identification of a starting point for the CMP 确定CMP起始点的新程序
IF 1.8 Q3 Physics and Astronomy Pub Date : 2022-10-21 DOI: 10.1515/aot-2022-0022
C. Trum, Sebastian Sitzberger, R. Rascher
Abstract In the field of precision optics, more and more glass materials that are difficult to machine are being used because of their interesting optical properties. At the same time, the geometries are getting more demanding and the tolerances to be achieved are tighter. The establishment of an efficient process chain is therefore becoming an ever-greater challenge. Particularly in the field of CMP, knowledge of the machining properties of pads and slurries are required to design efficient processes. This knowledge has to be gained through time-consuming in-house tests, as the manufacturers of the consumables are usually only able to provide basic data. In addition, the boundary conditions under which the data were collected are often incomplete defined and thus not comparable. The novel methodical procedure presented here for the initial design of CMP processes is based on a standardized procedure for carrying out the tests. From the resulting database, a starting point for the design of own processes can be identified quickly and unerringly. This article describes the structure of the procedure as well as the necessary background. In addition, the visualization and the procedure for selecting start parameters are discussed using an example application.
摘要在精密光学领域,难以加工的玻璃材料因其独特的光学特性而得到越来越多的应用。同时,对几何形状的要求越来越高,要达到的公差也越来越严格。因此,建立一个高效的流程链正成为一个越来越大的挑战。特别是在CMP领域,需要了解焊盘和浆料的加工特性来设计有效的工艺。这些知识必须通过耗时的内部测试获得,因为消耗品制造商通常只能提供基本数据。此外,收集数据的边界条件往往定义不完整,因此不具有可比性。本文提出的用于CMP工艺初始设计的新颖系统程序是基于执行测试的标准化程序。从结果数据库中,可以快速准确地确定设计自己流程的起点。本文描述了该过程的结构以及必要的背景。此外,还通过一个示例应用程序讨论了可视化和选择启动参数的过程。
{"title":"Novel procedure for the identification of a starting point for the CMP","authors":"C. Trum, Sebastian Sitzberger, R. Rascher","doi":"10.1515/aot-2022-0022","DOIUrl":"https://doi.org/10.1515/aot-2022-0022","url":null,"abstract":"Abstract In the field of precision optics, more and more glass materials that are difficult to machine are being used because of their interesting optical properties. At the same time, the geometries are getting more demanding and the tolerances to be achieved are tighter. The establishment of an efficient process chain is therefore becoming an ever-greater challenge. Particularly in the field of CMP, knowledge of the machining properties of pads and slurries are required to design efficient processes. This knowledge has to be gained through time-consuming in-house tests, as the manufacturers of the consumables are usually only able to provide basic data. In addition, the boundary conditions under which the data were collected are often incomplete defined and thus not comparable. The novel methodical procedure presented here for the initial design of CMP processes is based on a standardized procedure for carrying out the tests. From the resulting database, a starting point for the design of own processes can be identified quickly and unerringly. This article describes the structure of the procedure as well as the necessary background. In addition, the visualization and the procedure for selecting start parameters are discussed using an example application.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43022068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EOS annual meeting EOSAM 2022 EOS年会EOSAM 2022
IF 1.8 Q3 Physics and Astronomy Pub Date : 2022-10-12 DOI: 10.1515/aot-2022-0036
Julia S. Kroisamer, F. Felberer, T. Klein, D. C. Adler, F. Trépanier, C. Eigenwillig, S. Karpf, J. M. Schmitt, R. Huber
{"title":"EOS annual meeting EOSAM 2022","authors":"Julia S. Kroisamer, F. Felberer, T. Klein, D. C. Adler, F. Trépanier, C. Eigenwillig, S. Karpf, J. M. Schmitt, R. Huber","doi":"10.1515/aot-2022-0036","DOIUrl":"https://doi.org/10.1515/aot-2022-0036","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49393669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ellipsometry study of the infrared-active phonon modes in strained SrMnO3 thin films 应变SrMnO3薄膜中红外有源声子模式的椭偏研究
IF 1.8 Q3 Physics and Astronomy Pub Date : 2022-08-18 DOI: 10.1515/aot-2022-0009
P. Marsik, R. de Andrés Prada, Andreana Daniil, C. Bernhard
Abstract We performed infrared and time-domain terahertz spectroscopic ellipsometry measurements of thin films of the perovskite antiferromagnetic insulator SrMnO3 that were grown by pulsed laser deposition (PLD) on LaAlO3, SrLaGaO4, and LSAT substrates which yield an epitaxial strain ranging from −0.3 to 1.7%. Taking these thin films as a representative example, we discuss the strategies for analyzing the ellipsometry spectra and extracting the information about the thin film dielectric response that can be equally applied to a variety of oxide based thin films and heterostructures. In particular, for the room temperature spectra we show that the three infrared-active phonon modes of the cubic perovskite structure of SrMnO3 undergo the expected softening with increasing tensile strain. For the SrMnO3 film on SrLaGaO4, we find that the low-energy (TO1) phonon mode reveals anomalous temperature dependence in the vicinity of the Néel temperature of about 170 K that signifies a strong spin-phonon coupling. For the SrMnO3 film on LSAT, we identify some irreversible changes of the infrared ellipsometry spectra that occur as the sample is heated to elevated temperature up to 560 K. These changes of the ellipsometry spectra have been attributed to a partial oxygen loss of the SrMnO3 thin film since they can be reverted with a post annealing treatment under high oxygen pressure.
通过脉冲激光沉积(PLD)在LaAlO3、SrLaGaO4和LSAT衬底上生长钙钛矿反铁磁绝缘体SrMnO3薄膜,并对薄膜进行了红外和时域太赫兹椭圆偏振测量,其外延应变范围为- 0.3至1.7%。以这些薄膜为例,我们讨论了分析椭偏光谱和提取薄膜介电响应信息的策略,这些策略可以同样适用于各种氧化物基薄膜和异质结构。特别是,对于室温光谱,我们发现SrMnO3的立方钙钛矿结构的三种红外活跃声子模式随着拉伸应变的增加而发生预期的软化。对于SrLaGaO4上的SrMnO3薄膜,我们发现低能(TO1)声子模式在nsamel温度约170 K附近显示出异常的温度依赖性,表明存在强的自旋声子耦合。对于LSAT上的SrMnO3薄膜,我们发现当样品被加热到高达560 K时,红外椭偏光谱发生了一些不可逆的变化。这些椭偏光谱的变化归因于SrMnO3薄膜的部分氧损失,因为它们可以在高氧压下进行后退火处理而恢复。
{"title":"Ellipsometry study of the infrared-active phonon modes in strained SrMnO3 thin films","authors":"P. Marsik, R. de Andrés Prada, Andreana Daniil, C. Bernhard","doi":"10.1515/aot-2022-0009","DOIUrl":"https://doi.org/10.1515/aot-2022-0009","url":null,"abstract":"Abstract We performed infrared and time-domain terahertz spectroscopic ellipsometry measurements of thin films of the perovskite antiferromagnetic insulator SrMnO3 that were grown by pulsed laser deposition (PLD) on LaAlO3, SrLaGaO4, and LSAT substrates which yield an epitaxial strain ranging from −0.3 to 1.7%. Taking these thin films as a representative example, we discuss the strategies for analyzing the ellipsometry spectra and extracting the information about the thin film dielectric response that can be equally applied to a variety of oxide based thin films and heterostructures. In particular, for the room temperature spectra we show that the three infrared-active phonon modes of the cubic perovskite structure of SrMnO3 undergo the expected softening with increasing tensile strain. For the SrMnO3 film on SrLaGaO4, we find that the low-energy (TO1) phonon mode reveals anomalous temperature dependence in the vicinity of the Néel temperature of about 170 K that signifies a strong spin-phonon coupling. For the SrMnO3 film on LSAT, we identify some irreversible changes of the infrared ellipsometry spectra that occur as the sample is heated to elevated temperature up to 560 K. These changes of the ellipsometry spectra have been attributed to a partial oxygen loss of the SrMnO3 thin film since they can be reverted with a post annealing treatment under high oxygen pressure.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48705285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of a global-search method with model selection criteria for the ellipsometric data evaluation of DLC coatings DLC涂层椭圆数据评估的全局搜索方法与模型选择标准的结合
IF 1.8 Q3 Physics and Astronomy Pub Date : 2022-07-18 DOI: 10.1515/aot-2022-0014
K. Dorywalski, O. Lupicka, M. Grundmann, C. Sturm
Abstract A method for the evaluation of experimental data from spectroscopic ellipsometry is proposed which combines the global-search optimization algorithm with statistical model selection criteria. The hybrid genetic-gradient search algorithm (HGGA) is applied to find the optical parameters and thickness of a diamond-like carbon (DLC) coating deposited on SW7M stainless steel. Akaike and Bayesian information criteria are used to evaluate the different dielectric function models. The method is able to find optical model parameters even in case of a limited initial knowledge about the material optical constants. At the same time, the optimal dielectric function model for the description of the material optical properties can be selected unambiguously from the set of candidate models.
摘要提出了一种将全局搜索优化算法与统计模型选择准则相结合的椭圆偏振光谱实验数据评价方法。采用混合遗传梯度搜索算法(HGGA)求解SW7M不锈钢表面类金刚石(DLC)涂层的光学参数和厚度。采用赤池准则和贝叶斯信息准则对不同的介电函数模型进行了评价。该方法能够在材料光学常数初始知识有限的情况下求出光学模型参数。同时,可以从候选模型中明确选择描述材料光学性质的最优介电函数模型。
{"title":"Combination of a global-search method with model selection criteria for the ellipsometric data evaluation of DLC coatings","authors":"K. Dorywalski, O. Lupicka, M. Grundmann, C. Sturm","doi":"10.1515/aot-2022-0014","DOIUrl":"https://doi.org/10.1515/aot-2022-0014","url":null,"abstract":"Abstract A method for the evaluation of experimental data from spectroscopic ellipsometry is proposed which combines the global-search optimization algorithm with statistical model selection criteria. The hybrid genetic-gradient search algorithm (HGGA) is applied to find the optical parameters and thickness of a diamond-like carbon (DLC) coating deposited on SW7M stainless steel. Akaike and Bayesian information criteria are used to evaluate the different dielectric function models. The method is able to find optical model parameters even in case of a limited initial knowledge about the material optical constants. At the same time, the optimal dielectric function model for the description of the material optical properties can be selected unambiguously from the set of candidate models.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45415804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Conference and trade show reports 会议和贸易展览报告
IF 1.8 Q3 Physics and Astronomy Pub Date : 2022-07-14 DOI: 10.1515/aot-2022-0026
{"title":"Conference and trade show reports","authors":"","doi":"10.1515/aot-2022-0026","DOIUrl":"https://doi.org/10.1515/aot-2022-0026","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44196125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ellipsometry and polarimetry – classical measurement techniques with always new developments, concepts, and applications 椭圆偏振测量法和偏振测量法——具有新发展、新概念和新应用的经典测量技术
IF 1.8 Q3 Physics and Astronomy Pub Date : 2022-07-11 DOI: 10.1515/aot-2022-0025
R. Schmidt‐Grund, C. Sturm, A. Hertwig
{"title":"Ellipsometry and polarimetry – classical measurement techniques with always new developments, concepts, and applications","authors":"R. Schmidt‐Grund, C. Sturm, A. Hertwig","doi":"10.1515/aot-2022-0025","DOIUrl":"https://doi.org/10.1515/aot-2022-0025","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47467067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Certain topics in ellipsometric data modeling with splines: a review of recent developments 用样条曲线进行椭偏数据建模的若干主题:对最近发展的回顾
IF 1.8 Q3 Physics and Astronomy Pub Date : 2022-07-04 DOI: 10.1515/aot-2022-0006
D. Likhachev
Abstract Dielectric function representation by a variety of polynomial spline functions provides a consistent and efficient method for accurate modeling of the material optical properties in the context of spectroscopic ellipsometry data interpretation. Splines as an elegant and purely mathematical way for such modeling task were introduced about three decades ago. In the following years the use of splines in the area of ellipsometric data analysis became widely utilized. The goal of this review is to provide a self-contained presentation on the current status of the dielectric function modeling by splines for advanced industrial ellipsometry users but, hopefully, it can be useful for some scholarly users as well. It is also intended to promote more extended recognition of the spline-based modeling among optical metrology professionals. Here, a brief description of different ways, – ordinary polynomials, piecewise polynomials (splines), and B(asis)-spline functions, – is presented to parameterize an arbitrary function which can be used as an analytic representation of the dielectric-function curves. A number of particular polynomial-based models for the optical functions of materials and how they may be used in applications are also discussed. Particular attention is paid to different concepts of the efficient and optimal spline construction.
摘要利用多种多项式样条函数表示介电函数,为椭圆偏振光谱数据解释中材料光学性质的精确建模提供了一种一致而有效的方法。样条作为一种优雅的、纯数学的建模方法,大约在三十年前被引入。在接下来的几年里,样条曲线在椭偏数据分析领域得到了广泛的应用。本综述的目的是为先进的工业椭偏仪用户提供一个完整的样条介电函数建模的现状,但希望它也能对一些学术用户有用。它也旨在促进更广泛的认识基于样条建模的光学计量专业人士。本文简要介绍了普通多项式、分段多项式(样条)和B(asis)样条函数等参数化任意函数的方法,这些函数可以作为电介质函数曲线的解析表示。一些特殊的多项式为基础的模型的光学功能的材料和他们如何可能在应用中使用也进行了讨论。特别注意的是有效和最优样条构造的不同概念。
{"title":"Certain topics in ellipsometric data modeling with splines: a review of recent developments","authors":"D. Likhachev","doi":"10.1515/aot-2022-0006","DOIUrl":"https://doi.org/10.1515/aot-2022-0006","url":null,"abstract":"Abstract Dielectric function representation by a variety of polynomial spline functions provides a consistent and efficient method for accurate modeling of the material optical properties in the context of spectroscopic ellipsometry data interpretation. Splines as an elegant and purely mathematical way for such modeling task were introduced about three decades ago. In the following years the use of splines in the area of ellipsometric data analysis became widely utilized. The goal of this review is to provide a self-contained presentation on the current status of the dielectric function modeling by splines for advanced industrial ellipsometry users but, hopefully, it can be useful for some scholarly users as well. It is also intended to promote more extended recognition of the spline-based modeling among optical metrology professionals. Here, a brief description of different ways, – ordinary polynomials, piecewise polynomials (splines), and B(asis)-spline functions, – is presented to parameterize an arbitrary function which can be used as an analytic representation of the dielectric-function curves. A number of particular polynomial-based models for the optical functions of materials and how they may be used in applications are also discussed. Particular attention is paid to different concepts of the efficient and optimal spline construction.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67327968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Advanced Optical Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1