首页 > 最新文献

Advanced Optical Technologies最新文献

英文 中文
Frontmatter
IF 1.8 Q3 Physics and Astronomy Pub Date : 2021-02-01 DOI: 10.1515/aot-2021-frontmatter1
{"title":"Frontmatter","authors":"","doi":"10.1515/aot-2021-frontmatter1","DOIUrl":"https://doi.org/10.1515/aot-2021-frontmatter1","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2021-frontmatter1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43993625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffractive optics 衍射光学
IF 1.8 Q3 Physics and Astronomy Pub Date : 2021-02-01 DOI: 10.1515/aot-2021-0007
R. Voelkel
{"title":"Diffractive optics","authors":"R. Voelkel","doi":"10.1515/aot-2021-0007","DOIUrl":"https://doi.org/10.1515/aot-2021-0007","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2021-0007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47765138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional materials for lean processing of waferscale optics 用于晶圆级光学器件精益加工的多功能材料
IF 1.8 Q3 Physics and Astronomy Pub Date : 2021-02-01 DOI: 10.1515/aot-2021-0001
R. Houbertz, Verena Hartinger, J. Klein, M. Herder, G. Grützner, P. Dannberg
Abstract The continuous miniaturization of components and devices along with the increasing need of sustainability in production requires materials which can fulfill the manifold requests concerning their functionality. From an industrial point of view emphasis is on cost reduction either for the materials, the processes, or for both, along with a facilitation of processing and a general reduction of resource consumption in manufacturing. Multifunctional nanoscale materials have been widely investigated due to their tunable material properties and their ability to fulfill the increasingly growing demands in miniaturization, ease of processes, low-cost manufacturing, scalability, reliability, and finally sustainability. A material class which fulfills these requirements and is suited for integrated or waferscale optics are inorganic–organic hybrid polymers such as ORMOCER®s [ORMOCER® is registered by the Fraunhofer Gesellschaft für Angewandte Forschung e.V. and commercialized by microresist technology GmbH under license since 2003]. The combination of chemically designed multifunctional low-cost materials with tunable optical properties is very attractive for (integrated) optical and waferscale applications via a variety of different nano- and microstructuring techniques to fabricate micro- and nano-optical components, typically within less than a handful of process steps. The influence of photoinitiator and cross-linking conditions onto the optical properties of an acrylate-based inorganic–organic hybrid polymer will be discussed, and its suitability for being applied in waferscale optics is demonstrated and discussed for miniaturized multi- and single channel imaging optics.
元件和设备的不断小型化以及生产对可持续性的需求日益增加,要求材料能够满足其功能方面的多种要求。从工业的角度来看,重点是降低材料、工艺或两者的成本,同时促进加工和减少制造中的资源消耗。多功能纳米材料由于其可调节的材料特性以及能够满足日益增长的小型化、易于加工、低成本制造、可扩展性、可靠性和可持续性等方面的需求而受到广泛的研究。满足这些要求并适用于集成或晶圆级光学器件的一类材料是无机-有机杂化聚合物,如ORMOCER®s [ORMOCER®由Fraunhofer Gesellschaft f r Angewandte Forschung e.V.注册,并由microresist technology GmbH在2003年获得许可后商业化]。化学设计的多功能低成本材料与可调光学特性的结合对于(集成)光学和晶圆级应用非常有吸引力,通过各种不同的纳米和微结构技术来制造微纳米光学元件,通常只需不到几个工艺步骤。讨论了光引发剂和交联条件对丙烯酸酯基无机-有机杂化聚合物光学性能的影响,论证了其在晶圆级光学中的适用性,并讨论了其在小型化多通道和单通道成像光学中的应用。
{"title":"Multifunctional materials for lean processing of waferscale optics","authors":"R. Houbertz, Verena Hartinger, J. Klein, M. Herder, G. Grützner, P. Dannberg","doi":"10.1515/aot-2021-0001","DOIUrl":"https://doi.org/10.1515/aot-2021-0001","url":null,"abstract":"Abstract The continuous miniaturization of components and devices along with the increasing need of sustainability in production requires materials which can fulfill the manifold requests concerning their functionality. From an industrial point of view emphasis is on cost reduction either for the materials, the processes, or for both, along with a facilitation of processing and a general reduction of resource consumption in manufacturing. Multifunctional nanoscale materials have been widely investigated due to their tunable material properties and their ability to fulfill the increasingly growing demands in miniaturization, ease of processes, low-cost manufacturing, scalability, reliability, and finally sustainability. A material class which fulfills these requirements and is suited for integrated or waferscale optics are inorganic–organic hybrid polymers such as ORMOCER®s [ORMOCER® is registered by the Fraunhofer Gesellschaft für Angewandte Forschung e.V. and commercialized by microresist technology GmbH under license since 2003]. The combination of chemically designed multifunctional low-cost materials with tunable optical properties is very attractive for (integrated) optical and waferscale applications via a variety of different nano- and microstructuring techniques to fabricate micro- and nano-optical components, typically within less than a handful of process steps. The influence of photoinitiator and cross-linking conditions onto the optical properties of an acrylate-based inorganic–organic hybrid polymer will be discussed, and its suitability for being applied in waferscale optics is demonstrated and discussed for miniaturized multi- and single channel imaging optics.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2021-0001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43851084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
From the publisher Reviewer recognition and publisher’s note 2021 来自出版商审稿人的认可和出版商的注释2021
IF 1.8 Q3 Physics and Astronomy Pub Date : 2021-02-01 DOI: 10.1515/aot-2021-0006
A. Thoss
{"title":"From the publisher Reviewer recognition and publisher’s note 2021","authors":"A. Thoss","doi":"10.1515/aot-2021-0006","DOIUrl":"https://doi.org/10.1515/aot-2021-0006","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2021-0006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44206890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High quality diffractive optical elements (DOEs) using SMILE imprint technique 使用SMILE压印技术的高质量衍射光学元件
IF 1.8 Q3 Physics and Astronomy Pub Date : 2021-01-25 DOI: 10.1515/aot-2020-0053
S. Drieschner, F. Kloiber, M. Hennemeyer, J. Klein, M. Thesen
Abstract Augmented reality (AR) enhancing the existing natural environment by overlaying a virtual world is an emerging and growing market and attracts huge commercial interest into optical devices which can be implemented into head-mounted AR equipment. Diffractive optical elements (DOEs) are considered as the most promising candidate to meet the market’s requirements such as compactness, low-cost, and reliability. Hence, they allow building alternatives to large display headsets for virtual reality (VR) by lightweight glasses. Soft lithography replication offers a pathway to the fabrication of large area DOEs with high aspect ratios, multilevel features, and critical dimensions below the diffractive optical limit down to 50 nm also in the scope of mass manufacturing. In combination with tailored UV-curable photopolymers, the fabrication time can be drastically reduced making it very appealing to industrial applications. Here, we illustrate the key features of high efficiency DOEs and how the SMILE (SUSS MicroTec Imprint Lithography Equipment) technique can be used with advanced imprint photopolymers to obtain high quality binary DOEs meeting the market’s requirements providing a very versatile tool to imprint both nano- and microstructures.
增强现实(AR)是一个新兴的、不断增长的市场,通过叠加虚拟世界来增强现有的自然环境,并吸引了巨大的商业兴趣,光学设备可以实现头戴式AR设备。衍射光学元件(DOEs)被认为是最有前途的候选人,以满足市场的要求,如紧凑,低成本和可靠性。因此,它们允许通过轻量级眼镜构建虚拟现实(VR)的大型显示耳机的替代品。软光刻复制为制造具有高长宽比、多层特征和低于衍射光学极限的临界尺寸(低至50nm)的大面积do提供了一条途径,也适用于大规模生产。结合定制的紫外光固化光聚合物,制造时间可以大大缩短,使其对工业应用非常有吸引力。在这里,我们说明了高效do的主要特点,以及SMILE (SUSS MicroTec压印光刻设备)技术如何与先进的压印光聚合物一起使用,以获得满足市场要求的高质量二元do,为纳米和微结构的压印提供了一种非常通用的工具。
{"title":"High quality diffractive optical elements (DOEs) using SMILE imprint technique","authors":"S. Drieschner, F. Kloiber, M. Hennemeyer, J. Klein, M. Thesen","doi":"10.1515/aot-2020-0053","DOIUrl":"https://doi.org/10.1515/aot-2020-0053","url":null,"abstract":"Abstract Augmented reality (AR) enhancing the existing natural environment by overlaying a virtual world is an emerging and growing market and attracts huge commercial interest into optical devices which can be implemented into head-mounted AR equipment. Diffractive optical elements (DOEs) are considered as the most promising candidate to meet the market’s requirements such as compactness, low-cost, and reliability. Hence, they allow building alternatives to large display headsets for virtual reality (VR) by lightweight glasses. Soft lithography replication offers a pathway to the fabrication of large area DOEs with high aspect ratios, multilevel features, and critical dimensions below the diffractive optical limit down to 50 nm also in the scope of mass manufacturing. In combination with tailored UV-curable photopolymers, the fabrication time can be drastically reduced making it very appealing to industrial applications. Here, we illustrate the key features of high efficiency DOEs and how the SMILE (SUSS MicroTec Imprint Lithography Equipment) technique can be used with advanced imprint photopolymers to obtain high quality binary DOEs meeting the market’s requirements providing a very versatile tool to imprint both nano- and microstructures.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2020-0053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45196335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Stray light analysis and design optimization of geometrical waveguide 几何波导杂散光分析与设计优化
IF 1.8 Q3 Physics and Astronomy Pub Date : 2021-01-05 DOI: 10.1515/aot-2020-0059
Yao Zhou, Jufan Zhang, F. Fang
Abstract Waveguide technology has great prospects of development in optical see-through near-eye displays with larger field of view, lower thickness and lighter weight than other conventional optical technologies. However, the stray light is usually inevitable in current optical design and manufacturing, causing a poor imaging quality. In this paper, the principle and structures of stray light generation are analyzed, and the causes are discussed by non-sequential ray-tracing with mass precision calculation. From the ray-tracing, the suppression of stray light by optimizing design and manufacturing are achieved. A 2 mm-thickness geometrical waveguide with partially reflective mirror array is designed. The field of view of the optimized geometrical waveguide reaches 47° with 10 mm at exit pupil diameter and 20 mm at eye relief.
摘要波导技术以其比其他传统光学技术更大的视场、更低的厚度和更轻的重量在光学透视近眼显示器中具有广阔的发展前景。然而,在当前的光学设计和制造中,杂散光通常是不可避免的,导致成像质量差。本文分析了杂散光产生的原理和结构,并通过非连续光线跟踪和质量精度计算讨论了产生杂散光的原因。从光线跟踪入手,通过优化设计和制造,实现了对杂散光的抑制。设计了一种具有部分反射镜阵列的2mm厚度的几何波导。优化的几何波导的视场达到47°,出瞳直径为10mm,眼睛起伏为20mm。
{"title":"Stray light analysis and design optimization of geometrical waveguide","authors":"Yao Zhou, Jufan Zhang, F. Fang","doi":"10.1515/aot-2020-0059","DOIUrl":"https://doi.org/10.1515/aot-2020-0059","url":null,"abstract":"Abstract Waveguide technology has great prospects of development in optical see-through near-eye displays with larger field of view, lower thickness and lighter weight than other conventional optical technologies. However, the stray light is usually inevitable in current optical design and manufacturing, causing a poor imaging quality. In this paper, the principle and structures of stray light generation are analyzed, and the causes are discussed by non-sequential ray-tracing with mass precision calculation. From the ray-tracing, the suppression of stray light by optimizing design and manufacturing are achieved. A 2 mm-thickness geometrical waveguide with partially reflective mirror array is designed. The field of view of the optimized geometrical waveguide reaches 47° with 10 mm at exit pupil diameter and 20 mm at eye relief.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2020-0059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43827670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Diamond diffractive optics—recent progress and perspectives 金刚石衍射光学的最新进展与展望
IF 1.8 Q3 Physics and Astronomy Pub Date : 2020-12-03 DOI: 10.1515/aot-2020-0052
Marcell Kiss, Sichen Mi, G. Huszka, N. Quack
Abstract Diamond is an exceptional material that has recently seen a remarkable increase in interest in academic research and engineering since high-quality substrates became commercially available and affordable. Exploiting the high refractive index, hardness, laser-induced damage threshold, thermal conductivity and chemical resistance, an abundance of applications incorporating ever higher-performance diamond devices has seen steady growth. Among these, diffractive optical elements stand out—with progress in fabrication technologies, micro- and nanofabrication techniques have enabled the creation of gratings and diffractive optical elements with outstanding properties. Research activities in this field have further been spurred by the unique property of diamond to be able to host optically active atom scale defects in the crystal lattice. Such color centers allow generation and manipulation of individual photons, which has contributed to accelerated developments in engineering of novel quantum applications in diamond, with diffractive optical elements amidst critical components for larger-scale systems. This review collects recent examples of diffractive optical devices in diamond, and highlights the advances in manufacturing of such devices using micro- and nanofabrication techniques, in contrast to more traditional methods, and avenues to explore diamond diffractive optical elements for emerging and future applications are put in perspective.
摘要钻石是一种特殊的材料,自从高质量的基底商业化并价格合理以来,学术研究和工程领域的兴趣最近显著增加。利用高折射率、硬度、激光损伤阈值、热导率和耐化学性,结合越来越高性能的金刚石器件的大量应用已经稳步增长。其中,衍射光学元件脱颖而出——随着制造技术的进步,微米和纳米制造技术使光栅和衍射光学元件具有卓越的性能。金刚石能够在晶格中存在光学活性原子级缺陷的独特性质进一步推动了该领域的研究活动。这种色心允许生成和操纵单个光子,这有助于加快金刚石中新型量子应用的工程发展,衍射光学元件是更大规模系统的关键部件。这篇综述收集了金刚石衍射光学器件的最新例子,并强调了与更传统的方法相比,使用微米和纳米制造技术制造此类器件的进展,并展望了探索金刚石衍射光学元件的新兴和未来应用的途径。
{"title":"Diamond diffractive optics—recent progress and perspectives","authors":"Marcell Kiss, Sichen Mi, G. Huszka, N. Quack","doi":"10.1515/aot-2020-0052","DOIUrl":"https://doi.org/10.1515/aot-2020-0052","url":null,"abstract":"Abstract Diamond is an exceptional material that has recently seen a remarkable increase in interest in academic research and engineering since high-quality substrates became commercially available and affordable. Exploiting the high refractive index, hardness, laser-induced damage threshold, thermal conductivity and chemical resistance, an abundance of applications incorporating ever higher-performance diamond devices has seen steady growth. Among these, diffractive optical elements stand out—with progress in fabrication technologies, micro- and nanofabrication techniques have enabled the creation of gratings and diffractive optical elements with outstanding properties. Research activities in this field have further been spurred by the unique property of diamond to be able to host optically active atom scale defects in the crystal lattice. Such color centers allow generation and manipulation of individual photons, which has contributed to accelerated developments in engineering of novel quantum applications in diamond, with diffractive optical elements amidst critical components for larger-scale systems. This review collects recent examples of diffractive optical devices in diamond, and highlights the advances in manufacturing of such devices using micro- and nanofabrication techniques, in contrast to more traditional methods, and avenues to explore diamond diffractive optical elements for emerging and future applications are put in perspective.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2020-0052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49377263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Diffractive optics based automotive lighting system 基于衍射光学的汽车照明系统
IF 1.8 Q3 Physics and Astronomy Pub Date : 2020-12-03 DOI: 10.1515/aot-2020-0055
M. Khan, Woheeb M. Saeed, B. Roth, R. Lachmayer
Abstract Information projection using laser-based illumination systems in the automotive area is of keen interest to enhance communication between road users. Numerous work on laser-based front end projection employing refractive and reflective optics has been reported so far, while for rear end illumination efforts are more scarce and a different optical design concept due to limited volumetric size and field of view regulations is required. Here, we report on a new and versatile approach for a laser-based rear end lighting system for automotive application which enables projection of information or signals to support other road users. The design is based on thin diffractive optical elements projecting the desired patterns upon illumination. Also, for protection of the road users from the steering laser beam, a diffusive back projection screen is designed to project information while fulfilling both the field of view and safety requirements. The projection system is based on a periodic diffusive structure made of an array of biconic lenses with sizes in the millimeter range. The field of view (FOV) from the simulated lens arrays complies with the angular requirements set by the Economic Commission for Europe (ECE). As a proof of concept, the diffusive screen is fabricated using microfabrication technology and characterized. In future, the screen will be combined with thin diffractive optical elements to realize an entire integrated projection system.
摘要在汽车领域使用基于激光的照明系统进行信息投影,以增强道路用户之间的通信,这引起了人们的极大兴趣。到目前为止,已经报道了使用折射和反射光学器件的基于激光的前端投影的大量工作,而对于后端照明,由于体积大小和视场调节有限,需要不同的光学设计概念。在这里,我们报告了一种用于汽车应用的基于激光的后端照明系统的新的通用方法,该方法能够投影信息或信号以支持其他道路用户。该设计基于在照明时投影所需图案的薄衍射光学元件。此外,为了保护道路使用者免受转向激光束的影响,设计了一个漫射背投影屏幕来投影信息,同时满足视野和安全要求。投影系统基于由尺寸在毫米范围内的双锥透镜阵列制成的周期性漫射结构。模拟透镜阵列的视场(FOV)符合欧洲经济委员会(ECE)设定的角度要求。作为概念的证明,扩散屏幕是使用微制造技术制造的,并进行了表征。未来,屏幕将与薄衍射光学元件相结合,实现整个集成投影系统。
{"title":"Diffractive optics based automotive lighting system","authors":"M. Khan, Woheeb M. Saeed, B. Roth, R. Lachmayer","doi":"10.1515/aot-2020-0055","DOIUrl":"https://doi.org/10.1515/aot-2020-0055","url":null,"abstract":"Abstract Information projection using laser-based illumination systems in the automotive area is of keen interest to enhance communication between road users. Numerous work on laser-based front end projection employing refractive and reflective optics has been reported so far, while for rear end illumination efforts are more scarce and a different optical design concept due to limited volumetric size and field of view regulations is required. Here, we report on a new and versatile approach for a laser-based rear end lighting system for automotive application which enables projection of information or signals to support other road users. The design is based on thin diffractive optical elements projecting the desired patterns upon illumination. Also, for protection of the road users from the steering laser beam, a diffusive back projection screen is designed to project information while fulfilling both the field of view and safety requirements. The projection system is based on a periodic diffusive structure made of an array of biconic lenses with sizes in the millimeter range. The field of view (FOV) from the simulated lens arrays complies with the angular requirements set by the Economic Commission for Europe (ECE). As a proof of concept, the diffusive screen is fabricated using microfabrication technology and characterized. In future, the screen will be combined with thin diffractive optical elements to realize an entire integrated projection system.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2020-0055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44667507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Frontmatter Frontmatter
IF 1.8 Q3 Physics and Astronomy Pub Date : 2020-12-01 DOI: 10.1515/aot-2020-frontmatter6
{"title":"Frontmatter","authors":"","doi":"10.1515/aot-2020-frontmatter6","DOIUrl":"https://doi.org/10.1515/aot-2020-frontmatter6","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2020-frontmatter6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46462316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automotive lighting 汽车照明
IF 1.8 Q3 Physics and Astronomy Pub Date : 2020-11-25 DOI: 10.1515/aot-2020-0062
C. Neumann
{"title":"Automotive lighting","authors":"C. Neumann","doi":"10.1515/aot-2020-0062","DOIUrl":"https://doi.org/10.1515/aot-2020-0062","url":null,"abstract":"","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2020-0062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46510148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Advanced Optical Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1