首页 > 最新文献

Earthquake Science最新文献

英文 中文
Strong ground motion characteristics observed in the February 6, 2023 MW7.7 Türkiye earthquake 在 2023 年 2 月 6 日 MW7.7 Türkiye 地震中观测到的强烈地面运动特征
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-06-01 DOI: 10.1016/j.eqs.2024.03.005
Faisal Mehraj Wani , Jayaprakash Vemuri , Chenna Rajaram

Türkiye is located in a seismically active region, where the Anatolian, African, and Arabian tectonic plates converge. High seismic hazards cause the region to be struck repeatedly by major earthquakes. On February 06, 2023, a devastating MW7.7 earthquake struck Türkiye at 01:17 am local time (01:17 UTC). In this regard, near and far-field ground motion data within the distance of 120 km are compiled and later characterized to identify the key ground motion intensity measures. Additionally, the vertical components of ground motions were examined to capture the complete three-dimensional nature of the seismic event. Moreover, the effect of Pulse-Like (PL) and Non-Pulse-Like (NPL) ground motion on a representative RC frame structure built as per the Türkiye code was investigated. The results indicate that PL behavior was observed in both horizontal and vertical components of ground motions and PL behavior were noted both near the epicenter and at higher distances from the epicenter. Moreover, the ratio of the peak vertical acceleration to peak horizontal acceleration at certain stations was found to be close to 1. Finally, the non-linear time history analysis of the representative reinforced concrete frame structure for ground motions recorded at stations located equidistant from the epicenter, indicated that PL ground motions led to more significant damage compared to NPL ground motions.

土耳其位于地震活跃地区,安纳托利亚板块、非洲板块和阿拉伯板块在此交汇。地震危险性高,导致该地区多次发生大地震。2023 年 2 月 6 日,当地时间凌晨 01:17(世界协调时 01:17),土耳其发生了 MW7.7 级破坏性地震。为此,我们对 120 千米范围内的近场和远场地动数据进行了汇编,随后对其进行了特征描述,以确定关键的地动强度测量值。此外,还研究了地动的垂直分量,以捕捉地震事件的完整三维性质。此外,还研究了脉冲样(PL)和非脉冲样(NPL)地动对按照土耳其规范建造的代表性 RC 框架结构的影响。结果表明,在地面运动的水平和垂直分量中都观察到了脉冲样行为,并且在震中附近和距离震中较远的地方都观察到了脉冲样行为。此外,还发现某些站点的垂直加速度峰值与水平加速度峰值之比接近 1。最后,对具有代表性的钢筋混凝土框架结构进行的非线性时间历程分析表明,在与震中等距离的站点记录到的地面运动中,PL 地面运动比 NPL 地面运动造成的破坏更为严重。
{"title":"Strong ground motion characteristics observed in the February 6, 2023 MW7.7 Türkiye earthquake","authors":"Faisal Mehraj Wani ,&nbsp;Jayaprakash Vemuri ,&nbsp;Chenna Rajaram","doi":"10.1016/j.eqs.2024.03.005","DOIUrl":"10.1016/j.eqs.2024.03.005","url":null,"abstract":"<div><p>Türkiye is located in a seismically active region, where the Anatolian, African, and Arabian tectonic plates converge. High seismic hazards cause the region to be struck repeatedly by major earthquakes. On February 06, 2023, a devastating <em>M</em><sub>W</sub>7.7 earthquake struck Türkiye at 01:17 am local time (01:17 UTC). In this regard, near and far-field ground motion data within the distance of 120 km are compiled and later characterized to identify the key ground motion intensity measures. Additionally, the vertical components of ground motions were examined to capture the complete three-dimensional nature of the seismic event. Moreover, the effect of Pulse-Like (PL) and Non-Pulse-Like (NPL) ground motion on a representative RC frame structure built as per the Türkiye code was investigated. The results indicate that PL behavior was observed in both horizontal and vertical components of ground motions and PL behavior were noted both near the epicenter and at higher distances from the epicenter. Moreover, the ratio of the peak vertical acceleration to peak horizontal acceleration at certain stations was found to be close to 1. Finally, the non-linear time history analysis of the representative reinforced concrete frame structure for ground motions recorded at stations located equidistant from the epicenter, indicated that PL ground motions led to more significant damage compared to NPL ground motions.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 3","pages":"Pages 241-262"},"PeriodicalIF":1.2,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000429/pdfft?md5=dec2731e949c8de78ee3b0f3073d50fa&pid=1-s2.0-S1674451924000429-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141233511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cascading multi-segment rupture process of the 2023 Turkish earthquake doublet on a complex fault system revealed by teleseismic P wave back projection method 远震 P 波反向投影法揭示 2023 年土耳其双联地震在复杂断层系统上的级联多段破裂过程
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-29 DOI: 10.1016/j.eqs.2024.01.017
Bonan Cao , Zengxi Ge

In this study, the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th, 2023 Turkish earthquake doublet via back projection analysis. Data in two frequency bands (0.5–2 Hz and 1–3 Hz) are used in the imaging processes. The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest, lasting ∼90 s in total. The southwestern rupture is triggered by the northeastern rupture, demonstrating a sequential bidirectional unilateral rupture pattern. The rupture of the second event extends approximately 80 km in both northeast and west directions, lasting ∼35 s in total and demonstrates a typical bilateral rupture feature. The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults. In addition, we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.

本研究利用中国地震台网记录的宽带远震 P 波数据的垂直分量,通过反投影分析,对 2023 年 2 月 6 日土耳其双联地震的破裂过程进行成像。在成像过程中使用了两个频段(0.5-2 Hz 和 1-3 Hz)的数据。结果显示,第一个事件的断裂向东北方向延伸了约 200 公里,向西南方延伸了约 150 公里,总持续时间为 90 秒。西南方向的断裂是由东北方向的断裂引发的,显示出一种连续的双向单侧断裂模式。第二个事件的断裂向东北和西两个方向延伸了约 80 公里,总持续时间为 35 秒,表现出典型的双边断裂特征。两侧的级联破裂也反映了分叉断层的选择性破裂行为。此外,我们还在某些断层结构相对平直、余震稀疏的断层段上观测到超剪切破裂。
{"title":"Cascading multi-segment rupture process of the 2023 Turkish earthquake doublet on a complex fault system revealed by teleseismic P wave back projection method","authors":"Bonan Cao ,&nbsp;Zengxi Ge","doi":"10.1016/j.eqs.2024.01.017","DOIUrl":"https://doi.org/10.1016/j.eqs.2024.01.017","url":null,"abstract":"<div><p>In this study, the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th, 2023 Turkish earthquake doublet via back projection analysis. Data in two frequency bands (0.5–2 Hz and 1–3 Hz) are used in the imaging processes. The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest, lasting ∼90 s in total. The southwestern rupture is triggered by the northeastern rupture, demonstrating a sequential bidirectional unilateral rupture pattern. The rupture of the second event extends approximately 80 km in both northeast and west directions, lasting ∼35 s in total and demonstrates a typical bilateral rupture feature. The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults. In addition, we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 2","pages":"Pages 158-173"},"PeriodicalIF":1.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000211/pdfft?md5=08724a6eb9ac5f365d0dcc5f1d792808&pid=1-s2.0-S1674451924000211-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations of shear-wave splitting parameters in the source region of the 2023 Türkiye doublet earthquakes 2023 年图尔基耶双地震震源区剪切波分裂参数的变化
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-29 DOI: 10.1016/j.eqs.2024.01.016
Xuelai Cao, Lijun Chang

In this study, the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes (event 1 and event 2, respectively) were measured from June 1, 2022, to April 25, 2023, and their spatiotemporal characteristics were analyzed. The results revealed clear spatial and temporal differences. Spatially, the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress, as characterized by focal mechanism solutions of seismic events (MW≥3.5) near the station. The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate, African Plate, and Anatolian Block. Along the Nurdagi-Pazarcik fault zone, the seismic fault of event 1, stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock. In addition, the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgü fault also exhibited large delay times. The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field, which is closely related to the state of the block motion. During the seismogenic process of the MW7.7 earthquake, more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault. Under the influence of the MW7.7 and MW7.6 events, the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes, and the crustal stress and its adjustment range near the outer stations increased significantly. With the exception of two stations with few effective events, all stations showed a consistent change in shear-wave splitting parameters over time. In particular, each station showed a decreasing trend in delay times after the doublet earthquakes, reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes. With the occurrence of the earthquake doublet and a large number of aftershocks, the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released, and then the adjustment range of crustal stress is also gradually reduced.

本研究在 2022 年 6 月 1 日至 2023 年 4 月 25 日期间测量了 2023 年图尔基耶 MW7.7 和 MW7.6 双联地震(分别为事件 1 和事件 2)震源区局部地震事件的剪切波分裂参数,并分析了其时空特征。结果显示出明显的时空差异。从空间上看,每个台站的主要快波极化方向与台站附近地震事件(MW≥3.5)的焦点机制解所表征的最大水平主压应力方向有很强的相关性。主要的快波极化方向和区域应力场也显示出与阿拉伯板块、非洲板块和安纳托利亚块体的相互移动密切相关。沿着事件 1 的地震断层 Nurdagi-Pazarcik 断层带,靠近发生主震的断层中部的台站的延迟时间明显大于位于断层两端和远离主震的台站。此外,位于 Nurdagi-Pazarcik 断层以东和 Sürgü 断层以北的站点也表现出较大的延迟时间。从各台站获得的剪切波分裂参数的空间分布来看,震源区上部地壳各向异性主要受区域应力场控制,与块体运动状态密切相关。在 MW7.7 地震的成震过程中,Nurdagi-Pazarcik 断层中部积累的应力大于断层两端。在 MW7.7 和 MW7.6 事件的影响下,地震双联发生过程中积累的应力可能在震后向余震密集区以外的一些地区迁移,外围台站附近的地壳应力及其调整范围明显增大。除两个有效事件较少的台站外,其他台站的剪切波分裂参数随时间的推移均有一致的变化。其中,各台站在双发地震后的延迟时间均呈减小趋势,反映出双发地震后成震区地壳应力调整明显加强。随着双发地震和大量余震的发生,双发地震成震过程中积累的应力逐渐释放,地壳应力的调整范围也随之逐渐减小。
{"title":"Variations of shear-wave splitting parameters in the source region of the 2023 Türkiye doublet earthquakes","authors":"Xuelai Cao,&nbsp;Lijun Chang","doi":"10.1016/j.eqs.2024.01.016","DOIUrl":"https://doi.org/10.1016/j.eqs.2024.01.016","url":null,"abstract":"<div><p>In this study, the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye <em>M</em><sub>W</sub>7.7 and <em>M</em><sub>W</sub>7.6 doublet earthquakes (event 1 and event 2, respectively) were measured from June 1, 2022, to April 25, 2023, and their spatiotemporal characteristics were analyzed. The results revealed clear spatial and temporal differences. Spatially, the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress, as characterized by focal mechanism solutions of seismic events (<em>M</em><sub>W</sub>≥3.5) near the station. The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate, African Plate, and Anatolian Block. Along the Nurdagi-Pazarcik fault zone, the seismic fault of event 1, stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock. In addition, the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgü fault also exhibited large delay times. The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field, which is closely related to the state of the block motion. During the seismogenic process of the <em>M</em><sub>W</sub>7.7 earthquake, more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault. Under the influence of the <em>M</em><sub>W</sub>7.7 and <em>M</em><sub>W</sub>7.6 events, the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes, and the crustal stress and its adjustment range near the outer stations increased significantly. With the exception of two stations with few effective events, all stations showed a consistent change in shear-wave splitting parameters over time. In particular, each station showed a decreasing trend in delay times after the doublet earthquakes, reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes. With the occurrence of the earthquake doublet and a large number of aftershocks, the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released, and then the adjustment range of crustal stress is also gradually reduced.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 2","pages":"Pages 174-187"},"PeriodicalIF":1.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S167445192400020X/pdfft?md5=25902bb748fb39f75feb7ddd3666a177&pid=1-s2.0-S167445192400020X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crustal and uppermost mantle structure of the northeastern Qinghai-Xizang Plateau from joint inversion of surface wave dispersions and receiver functions with P velocity constraints 从面波频散和接收函数联合反演及 P 速度约束看青藏高原东北部的地壳和最上层地幔结构
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-29 DOI: 10.1016/j.eqs.2024.01.014
Pei Zhang , Xiaodong Song , Jiangtao Li , Xingchen Wang , Xuezhen Zhang

Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the ChinArray II temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method (Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vS structures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vS ratios. While, lower velocities and higher vP/vS ratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane (SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust. Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones (LVZs) in the SPGZ. The crustal thickness, vS, and vP/vS ratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.

青藏高原东北部地下岩石圈结构对研究青藏高原地壳增厚和扩张的地球动力学过程具有重要意义。我们利用布设在青藏高原的 ChinArray II 临时站的数据,对接收函数和面波频散与 P 波速度约束进行了联合反演。在联合反演之前,我们对接收函数数据采用了H-κ-c方法(Li JT等,2019),以校正地壳各向异性和倾斜界面引起的Ps相和地壳多相到达时间的后方位角变化。联合反演同时得出了青藏高原的高分辨率vS、地壳厚度和vP/vS结构图像。地震图像显示,地壳厚度从青藏高原向外递减。鄂尔多斯块体和阿拉善块体的稳定内部表现出较高的速度和较低的地壳 vP/vS 比值。而在祁连造山带和松潘-甘孜地块(SPGZ)下,速度较低,vP/vS比值较高,这两个地块地质活跃,机械强度较弱,尤其是在中下地壳。热星体流引发的岩石圈脱层或热侵蚀是在松潘-甘孜地块观测到的最上层地幔低速带的成因。地壳厚度、vS和vP/vS比值表明,整个岩石圈缩短是青藏高原地壳增厚的一个合理机制,支持了该地区岩石圈尺度耦合变形的观点。
{"title":"Crustal and uppermost mantle structure of the northeastern Qinghai-Xizang Plateau from joint inversion of surface wave dispersions and receiver functions with P velocity constraints","authors":"Pei Zhang ,&nbsp;Xiaodong Song ,&nbsp;Jiangtao Li ,&nbsp;Xingchen Wang ,&nbsp;Xuezhen Zhang","doi":"10.1016/j.eqs.2024.01.014","DOIUrl":"https://doi.org/10.1016/j.eqs.2024.01.014","url":null,"abstract":"<div><p>Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the ChinArray II temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the <em>H</em>-<em>κ</em>-c method (Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of <em>v</em><sub>S</sub>, crustal thickness, and <em>v</em><sub>P</sub>/<em>v</em><sub>S</sub> structures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal <em>v</em><sub>P</sub>/<em>v</em><sub>S</sub> ratios. While, lower velocities and higher <em>v</em><sub>P</sub>/<em>v</em><sub>S</sub> ratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane (SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust. Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones (LVZs) in the SPGZ. The crustal thickness, <em>v</em><sub>S</sub>, and <em>v</em><sub>P</sub>/<em>v</em><sub>S</sub> ratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 2","pages":"Pages 93-106"},"PeriodicalIF":1.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000181/pdfft?md5=d68985c7d9bade2434ea6675dae33b91&pid=1-s2.0-S1674451924000181-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CREDIT-X1local: A reference dataset for machine learning seismology from ChinArray in Southwest China CREDIT-X1local:来自中国西南地区 ChinArray 的机器学习地震学参考数据集
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-29 DOI: 10.1016/j.eqs.2024.01.018
Lu Li , Weitao Wang , Ziye Yu , Yini Chen

High-quality datasets are critical for the development of advanced machine-learning algorithms in seismology. Here, we present an earthquake dataset based on the ChinArray Phase I records (X1). ChinArray Phase I was deployed in the southern north-south seismic zone (20° N–32° N, 95° E–110° E) in 2011–2013 using 355 portable broadband seismic stations. CREDIT-X1local, the first release of the ChinArray Reference Earthquake Dataset for Innovative Techniques (CREDIT), includes comprehensive information for the 105,455 local events that occurred in the southern north-south seismic zone during array observation, incorporating them into a single HDF5 file. Original 100-Hz sampled three-component waveforms are organized by event for stations within epicenter distances of 1,000 km, and records of ≥ 200 s are included for each waveform. Two types of phase labels are provided. The first includes manually picked labels for 5,999 events with magnitudes ≥ 2.0, providing 66,507 Pg, 42,310 Sg, 12,823 Pn, and 546 Sn phases. The second contains automatically labeled phases for 105,442 events with magnitudes of −1.6 to 7.6. These phases were picked using a recurrent neural network phase picker and screened using the corresponding travel time curves, resulting in 1,179,808 Pg, 884,281 Sg, 176,089 Pn, and 22,986 Sn phases. Additionally, first-motion polarities are included for 31,273 Pg phases. The event and station locations are provided, so that deep learning networks for both conventional phase picking and phase association can be trained and validated. The CREDIT-X1local dataset is the first million-scale dataset constructed from a dense seismic array, which is designed to support various multi-station deep-learning methods, high-precision focal mechanism inversion, and seismic tomography studies. Additionally, owing to the high seismicity in the southern north-south seismic zone in China, this dataset has great potential for future scientific discoveries.

高质量的数据集对于开发先进的地震学机器学习算法至关重要。在此,我们介绍基于 ChinArray 第一阶段记录(X1)的地震数据集。ChinArray 第一阶段于 2011-2013 年在南部南北地震带(北纬 20°-32°,东经 95°-110°)部署,使用了 355 个便携式宽带地震台。CREDIT-X1local是ChinArray创新技术参考地震数据集(CREDIT)的首次发布,包括阵列观测期间在南部南北地震带发生的105,455次本地事件的综合信息,并将其合并为一个HDF5文件。原始的 100 赫兹采样三分量波形按震中距离在 1,000 公里以内的台站事件分类,每个波形都包含≥ 200 秒的记录。提供两种相位标签。第一种包括人工挑选的 5999 个震级≥ 2.0 事件的标签,提供 66507 个 Pg、42310 个 Sg、12823 个 Pn 和 546 个 Sn 相位。第二个相位包含 105,442 个震级为-1.6 到 7.6 的事件的自动标记相位。这些相位使用递归神经网络相位拾取器拾取,并使用相应的移动时间曲线进行筛选,最终得到 1,179,808 个 Pg 相位、884,281 个 Sg 相位、176,089 个 Pn 相位和 22,986 个 Sn 相位。此外,还包括 31 273 个 Pg 相位的第一运动极性。提供了事件和站点位置,以便对用于传统相位拾取和相位关联的深度学习网络进行训练和验证。CREDIT-X1local 数据集是首个由密集地震阵列构建的百万级数据集,旨在支持各种多台站深度学习方法、高精度焦点机制反演和地震层析成像研究。此外,由于中国南部南北地震带地震活动频繁,该数据集对未来科学发现具有巨大潜力。
{"title":"CREDIT-X1local: A reference dataset for machine learning seismology from ChinArray in Southwest China","authors":"Lu Li ,&nbsp;Weitao Wang ,&nbsp;Ziye Yu ,&nbsp;Yini Chen","doi":"10.1016/j.eqs.2024.01.018","DOIUrl":"https://doi.org/10.1016/j.eqs.2024.01.018","url":null,"abstract":"<div><p>High-quality datasets are critical for the development of advanced machine-learning algorithms in seismology. Here, we present an earthquake dataset based on the ChinArray Phase I records (X1). ChinArray Phase I was deployed in the southern north-south seismic zone (20° N–32° N, 95° E–110° E) in 2011–2013 using 355 portable broadband seismic stations. CREDIT-X1local, the first release of the ChinArray Reference Earthquake Dataset for Innovative Techniques (CREDIT), includes comprehensive information for the 105,455 local events that occurred in the southern north-south seismic zone during array observation, incorporating them into a single HDF5 file. Original 100-Hz sampled three-component waveforms are organized by event for stations within epicenter distances of 1,000 km, and records of ≥ 200 s are included for each waveform. Two types of phase labels are provided. The first includes manually picked labels for 5,999 events with magnitudes ≥ 2.0, providing 66,507 Pg, 42,310 Sg, 12,823 Pn, and 546 Sn phases. The second contains automatically labeled phases for 105,442 events with magnitudes of −1.6 to 7.6. These phases were picked using a recurrent neural network phase picker and screened using the corresponding travel time curves, resulting in 1,179,808 Pg, 884,281 Sg, 176,089 Pn, and 22,986 Sn phases. Additionally, first-motion polarities are included for 31,273 Pg phases. The event and station locations are provided, so that deep learning networks for both conventional phase picking and phase association can be trained and validated. The CREDIT-X1local dataset is the first million-scale dataset constructed from a dense seismic array, which is designed to support various multi-station deep-learning methods, high-precision focal mechanism inversion, and seismic tomography studies. Additionally, owing to the high seismicity in the southern north-south seismic zone in China, this dataset has great potential for future scientific discoveries.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 2","pages":"Pages 139-157"},"PeriodicalIF":1.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000223/pdfft?md5=8e02eb44f9bdbf58fbce3bd1a13349cf&pid=1-s2.0-S1674451924000223-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in seismological methods for characterizing fault zone structure 确定断层带结构特征的地震学方法的进展
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-29 DOI: 10.1016/j.eqs.2024.01.019
Yan Cai , Jianping Wu , Yaning Liu , Shijie Gao

Large earthquakes frequently occur along complex fault systems. Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures. We provide a comprehensive overview of recent advancements in seismological methods used to study fault zone structures, including seismic tomography, fault zone seismic wave analysis, and seismicity analysis. Observational conditions limit our current ability to fully characterize fault zones, for example, insufficient imaging resolution to discern small-scale anomalies, incomplete capture of crucial fault zone seismic waves, and limited precision in event location accuracy. Dense seismic arrays can overcome these limitations and enable more detailed investigations of fault zone structures. Moreover, we present new insights into the structure of the Anninghe-Xiaojiang fault zone in the southeastern margin of the Qinghai-Xizang Plateau based on data collected from a dense seismic array. We found that utilizing a dense seismic array can identify small-scale features within fault zones, aiding in the interpretation of fault zone geometry and material properties.

大地震经常沿着复杂的断层系统发生。要了解地震破裂和断层的长期演化,需要对断层带结构的几何和材料特性进行约束。我们全面概述了用于研究断层带结构的地震学方法的最新进展,包括地震层析成像、断层带地震波分析和震度分析。观测条件限制了我们目前全面描述断层带特征的能力,例如,成像分辨率不足,无法辨别小尺度异常,无法完全捕捉关键的断层带地震波,以及事件定位精度有限。密集地震阵列可以克服这些限制,对断层带结构进行更详细的研究。此外,我们基于密集地震阵列采集的数据,对青藏高原东南缘安宁河-小江断裂带的结构提出了新的见解。我们发现,利用密集地震阵列可以识别断层带内的小尺度特征,有助于解释断层带的几何形状和物质属性。
{"title":"Advances in seismological methods for characterizing fault zone structure","authors":"Yan Cai ,&nbsp;Jianping Wu ,&nbsp;Yaning Liu ,&nbsp;Shijie Gao","doi":"10.1016/j.eqs.2024.01.019","DOIUrl":"https://doi.org/10.1016/j.eqs.2024.01.019","url":null,"abstract":"<div><p>Large earthquakes frequently occur along complex fault systems. Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures. We provide a comprehensive overview of recent advancements in seismological methods used to study fault zone structures, including seismic tomography, fault zone seismic wave analysis, and seismicity analysis. Observational conditions limit our current ability to fully characterize fault zones, for example, insufficient imaging resolution to discern small-scale anomalies, incomplete capture of crucial fault zone seismic waves, and limited precision in event location accuracy. Dense seismic arrays can overcome these limitations and enable more detailed investigations of fault zone structures. Moreover, we present new insights into the structure of the Anninghe-Xiaojiang fault zone in the southeastern margin of the Qinghai-Xizang Plateau based on data collected from a dense seismic array. We found that utilizing a dense seismic array can identify small-scale features within fault zones, aiding in the interpretation of fault zone geometry and material properties.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 2","pages":"Pages 122-138"},"PeriodicalIF":1.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000235/pdfft?md5=157007a99f8ccc19826cb362aefaf71a&pid=1-s2.0-S1674451924000235-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal analysis of major faults and fractal dimension of lineaments in the Indo-Gangetic Plain on a regional scale 印度洋-甘地平原主要断层的分形分析和区域尺度线形的分形维度
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-29 DOI: 10.1016/j.eqs.2024.01.015
Vipin Chauhan, Jagabandhu Dixit

The Indo-Gangetic Plain (IGP) is one of the most seismically vulnerable areas due to its proximity to the Himalayas. Geographic information system (GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension. The zone between the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT) in the Himalayan Mountain Range (HMR) experienced large variations in earthquake magnitude, which were identified by Number-Size (NS) fractal modeling. The central IGP zone experienced only moderate to low mainshock levels. Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones. Similarly, the fault fractal analysis identifies the HMR, central IGP, and south-western IGP zones as having more faults. Overall, the seismicity of the study region is strong in the central IGP, south-western IGP, and HMR zones, moderate in the western and southern IGP, and low in the northern, eastern, and south-eastern IGP zones.

印度洋-恒河平原(IGP)毗邻喜马拉雅山脉,是最容易发生地震的地区之一。根据变形程度和分形维度,对印度洋-甘地平原进行了基于地理信息系统(GIS)的地震特征描述。喜马拉雅山脉(HMR)的主边界推力(MBT)和主中央推力(MCT)之间的区域经历了巨大的震级变化,这些变化是通过数量-尺寸(NS)分形建模确定的。IGP 中心地带仅经历了中等至较低的主震级别。对地震震中的分形分析表明,HMR 和 IGP 中心区的地震震中非常分散。同样,断层分形分析表明,HMR、IGP 中部和 IGP 西南部地带的断层较多。总体而言,研究区域的地震活动性在 IGP 中部、IGP 西南部和 HMR 区较强,在 IGP 西部和南部中等,在 IGP 北部、东部和东南部较低。
{"title":"Fractal analysis of major faults and fractal dimension of lineaments in the Indo-Gangetic Plain on a regional scale","authors":"Vipin Chauhan,&nbsp;Jagabandhu Dixit","doi":"10.1016/j.eqs.2024.01.015","DOIUrl":"https://doi.org/10.1016/j.eqs.2024.01.015","url":null,"abstract":"<div><p>The Indo-Gangetic Plain (IGP) is one of the most seismically vulnerable areas due to its proximity to the Himalayas. Geographic information system (GIS)-based seismic characterization of the IGP was performed based on the degree of deformation and fractal dimension. The zone between the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT) in the Himalayan Mountain Range (HMR) experienced large variations in earthquake magnitude, which were identified by Number-Size (NS) fractal modeling. The central IGP zone experienced only moderate to low mainshock levels. Fractal analysis of earthquake epicenters reveals a large scattering of earthquake epicenters in the HMR and central IGP zones. Similarly, the fault fractal analysis identifies the HMR, central IGP, and south-western IGP zones as having more faults. Overall, the seismicity of the study region is strong in the central IGP, south-western IGP, and HMR zones, moderate in the western and southern IGP, and low in the northern, eastern, and south-eastern IGP zones.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 2","pages":"Pages 107-121"},"PeriodicalIF":1.2,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000193/pdfft?md5=2b5ba5408714428e5ca9637a210c7ec7&pid=1-s2.0-S1674451924000193-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A modified stochastic finite-fault method for estimating strong ground motion: Validation and application 用于估算强地面运动的修正随机有限故障法:验证与应用
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.eqs.2023.11.002
Xinjuan He, Hua Pan

We developed a modified stochastic finite-fault method for estimating strong ground motions. An adjustment to the dynamic corner frequency was introduced, which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction, to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency. By comparing the peak ground acceleration (PGA), pseudo-absolute response spectra acceleration (PSA, damping ratio of 5%), and duration, the results of the modified and existing methods were compared, demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect. We applied our modified method to simulate near-field strong motions within 150 km of the 2008 MW7.9 Wenchuan earthquake rupture. Our modified method performed well over a broad period range, particularly at 0.04–4 s. The total deviations of the stochastic finite-fault method (EXSIM) and the modified EXSIM were 0.1676 and 0.1494, respectively. The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation.

我们开发了一种用于估算强地面运动的修正随机有限断层法。我们引入了对动态角频率的调整,该调整考虑了子断层相对于次中心的位置和断裂传播方向的影响,以考虑断裂传播方向对子断层动态角频率的影响。通过比较峰值地面加速度(PGA)、伪绝对响应谱加速度(PSA,阻尼比为 5%)和持续时间,比较了修改后的方法和现有方法的结果,证明我们提出的动态角频率调整能准确反映破裂指向性效应。我们应用修改后的方法模拟了 2008 年 MW7.9 级汶川地震破裂 150 公里范围内的近场强震。随机有限断层法(EXSIM)和修正的 EXSIM 的总偏差分别为 0.1676 和 0.1494。修正后的方法可以有效地考虑破裂传播方向的影响,为地震减灾提供更真实的地面运动估算。
{"title":"A modified stochastic finite-fault method for estimating strong ground motion: Validation and application","authors":"Xinjuan He,&nbsp;Hua Pan","doi":"10.1016/j.eqs.2023.11.002","DOIUrl":"https://doi.org/10.1016/j.eqs.2023.11.002","url":null,"abstract":"<div><p>We developed a modified stochastic finite-fault method for estimating strong ground motions. An adjustment to the dynamic corner frequency was introduced, which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction, to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency. By comparing the peak ground acceleration (PGA), pseudo-absolute response spectra acceleration (PSA, damping ratio of 5%), and duration, the results of the modified and existing methods were compared, demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect. We applied our modified method to simulate near-field strong motions within 150 km of the 2008 <em>M</em><sub>W</sub>7.9 Wenchuan earthquake rupture. Our modified method performed well over a broad period range, particularly at 0.04–4 s. The total deviations of the stochastic finite-fault method (EXSIM) and the modified EXSIM were 0.1676 and 0.1494, respectively. The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 1","pages":"Pages 36-50"},"PeriodicalIF":1.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000575/pdfft?md5=85701b6a41e901723ca69c58be7207f0&pid=1-s2.0-S1674451923000575-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The accessible seismological dataset of a high-density 2D seismic array along Anninghe fault 安宁河断层沿线高密度二维地震阵列可获取的地震学数据集
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.eqs.2023.11.001
Weifan Lu , Zeyan Zhao , Han Yue , Shiyong Zhou , Jianping Wu , Xiaodong Song

The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone. This 2D seismic array is composed of 161 stations forming sub-rectangular geometry along the Anninghe fault, which covers 50 km and 150 km in the fault normal and strike directions, respectively, with ∼ 5 km intervals. The data were collected between June 2020 and June 2021, with some level of temporal gaps. Two types of instruments, i.e. QS-05A and SmartSolo, are used in this array. Data quality and examples of seismograms are provided in this paper. After the data protection period ends (expected in June 2024), researchers can request a dataset from the National Earthquake Science Data Center.

安宁河地震台阵的科学目标是研究安宁河断层的详细几何形状和断层带的速度结构。该二维地震台阵由 161 个台站组成,沿安宁河断层呈次矩形分布,在断层法向和走向上的覆盖范围分别为 50 千米和 150 千米,台站间距为 5 千米。数据采集时间为 2020 年 6 月至 2021 年 6 月,有一定的时间间隔。该阵列使用了两种仪器,即 QS-05A 和 SmartSolo。本文提供了数据质量和地震图示例。数据保护期结束后(预计在 2024 年 6 月),研究人员可向国家地震科学数据中心申请数据集。
{"title":"The accessible seismological dataset of a high-density 2D seismic array along Anninghe fault","authors":"Weifan Lu ,&nbsp;Zeyan Zhao ,&nbsp;Han Yue ,&nbsp;Shiyong Zhou ,&nbsp;Jianping Wu ,&nbsp;Xiaodong Song","doi":"10.1016/j.eqs.2023.11.001","DOIUrl":"https://doi.org/10.1016/j.eqs.2023.11.001","url":null,"abstract":"<div><p>The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone. This 2D seismic array is composed of 161 stations forming sub-rectangular geometry along the Anninghe fault, which covers 50 km and 150 km in the fault normal and strike directions, respectively, with ∼ 5 km intervals. The data were collected between June 2020 and June 2021, with some level of temporal gaps. Two types of instruments, i.e. QS-05A and SmartSolo, are used in this array. Data quality and examples of seismograms are provided in this paper. After the data protection period ends (expected in June 2024), researchers can request a dataset from the National Earthquake Science Data Center.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 1","pages":"Pages 67-77"},"PeriodicalIF":1.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000563/pdfft?md5=b25ae01b84436e2f54cce37d877a671e&pid=1-s2.0-S1674451923000563-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: A review of the wave gradiometry method for seismic imaging 勘误:地震成像波梯度测量法综述
IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2024-02-01 DOI: 10.1016/j.eqs.2023.12.002
Chuntao Liang , Feihuang Cao , Zhijin Liu , Yingna Chang
{"title":"Erratum to: A review of the wave gradiometry method for seismic imaging","authors":"Chuntao Liang ,&nbsp;Feihuang Cao ,&nbsp;Zhijin Liu ,&nbsp;Yingna Chang","doi":"10.1016/j.eqs.2023.12.002","DOIUrl":"https://doi.org/10.1016/j.eqs.2023.12.002","url":null,"abstract":"","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 1","pages":"Page 91"},"PeriodicalIF":1.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000666/pdfft?md5=a14e28047ef4ae8f0ad46f5c470b9e9c&pid=1-s2.0-S1674451923000666-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Earthquake Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1