This article provides researchers with knowledge of how to design a high quality mixed methods research study. To design a mixed study, researchers must understand and carefully consider each of the dimensions of mixed methods design, and always keep an eye on the issue of validity. We explain the seven major design dimensions: purpose, theoretical drive, timing (simultaneity and dependency), point of integration, typological versus interactive design approaches, planned versus emergent design, and design complexity. There also are multiple secondary dimensions that need to be considered during the design process. We explain ten secondary dimensions of design to be considered for each research study. We also provide two case studies showing how the mixed designs were constructed.
While regional mortality inequalities in Germany tend to be relatively stable in the short run, over the course of the past century marked changes have occurred in the country's regional mortality patterns. These changes include not only the re-emergence of stark differences between eastern and western Germany after 1970, which have almost disappeared again in the decades after the reunification of Germany in 1990; but also substantial changes in the disparities between northern and southern Germany. At the beginning of the twentieth century, the northern regions in Germany had the highest life expectancy levels, while the southern regions had the lowest. Today, this mortality pattern is reversed. In this paper, we study these long-term trends in spatial mortality disparities in Germany since 1910, and link them with theoretical considerations and existing research on the possible determinants of these patterns. Our findings support the view that the factors which contributed to shape spatial mortality variation have changed substantially over time, and suggest that the link between regional socioeconomic conditions and recorded mortality levels strengthened over the last 100 years.