Pub Date : 2020-02-01Epub Date: 2019-12-12DOI: 10.1080/21541264.2019.1699383
E Mauricio Barajas-Mora, Ann J Feeney
Enhancers are defined as regulatory elements that control transcription in a cell-type and developmental stage-specific manner. They achieve this by physically interacting with their cognate gene promoters. Significantly, these interactions can occur through long genomic distances since enhancers may not be near their cognate promoters. The optimal coordination of enhancer-regulated transcription is essential for the function and identity of the cell. Although great efforts to fully understand the principles of this type of regulation are ongoing, other potential functions of the long-range chromatin interactions (LRCIs) involving enhancers are largely unexplored. We recently uncovered a new role for enhancer elements in determining the three-dimensional (3D) structure of the immunoglobulin kappa (Igκ) light chain receptor locus suggesting a structural function for these DNA elements. This enhancer-mediated locus configuration shapes the resulting Igκ repertoire. We also propose a role for enhancers as critical components of sub-topologically associating domain (subTAD) formation and nuclear spatial localization.
{"title":"Enhancers as regulators of antigen receptor loci three-dimensional chromatin structure.","authors":"E Mauricio Barajas-Mora, Ann J Feeney","doi":"10.1080/21541264.2019.1699383","DOIUrl":"https://doi.org/10.1080/21541264.2019.1699383","url":null,"abstract":"<p><p>Enhancers are defined as regulatory elements that control transcription in a cell-type and developmental stage-specific manner. They achieve this by physically interacting with their cognate gene promoters. Significantly, these interactions can occur through long genomic distances since enhancers may not be near their cognate promoters. The optimal coordination of enhancer-regulated transcription is essential for the function and identity of the cell. Although great efforts to fully understand the principles of this type of regulation are ongoing, other potential functions of the long-range chromatin interactions (LRCIs) involving enhancers are largely unexplored. We recently uncovered a new role for enhancer elements in determining the three-dimensional (3D) structure of the immunoglobulin kappa (Igκ) light chain receptor locus suggesting a structural function for these DNA elements. This enhancer-mediated locus configuration shapes the resulting Igκ repertoire. We also propose a role for enhancers as critical components of sub-topologically associating domain (subTAD) formation and nuclear spatial localization.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"11 1","pages":"37-51"},"PeriodicalIF":3.6,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2019.1699383","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37451360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-02-01Epub Date: 2020-01-16DOI: 10.1080/21541264.2020.1713682
Jie Yao, Ji Chen, Lian-Yun Li, Min Wu
Enhancers are cis-acting elements with many sites bound by transcription factors and activate transcription over long distance. Histone modifications are critical for enhancer activity and utilized as hallmarks for the identification of putative enhancers. Monomethylation of histone H3 lysine 4 (H3K4me1) is the mark for enhancer priming; acetylation of histone H3 lysine 27 (H3K27ac) for active enhancers and trimethylation of histone H3 lysine 27 (H3K27me3) for silent enhancers. Recent studies from multiple groups have provided evidence that enhancer reprogramming, especially gain of enhancer activity, is closely related to tumorigenesis and cancer development. In this review, we will summarize the recent discoveries about enhancer regulation and the mechanisms of enhancer reprogramming in tumorigenesis, and discuss the potential application of enhancer manipulation in precision medicine.
{"title":"Epigenetic plasticity of enhancers in cancer.","authors":"Jie Yao, Ji Chen, Lian-Yun Li, Min Wu","doi":"10.1080/21541264.2020.1713682","DOIUrl":"https://doi.org/10.1080/21541264.2020.1713682","url":null,"abstract":"<p><p>Enhancers are cis-acting elements with many sites bound by transcription factors and activate transcription over long distance. Histone modifications are critical for enhancer activity and utilized as hallmarks for the identification of putative enhancers. Monomethylation of histone H3 lysine 4 (H3K4me1) is the mark for enhancer priming; acetylation of histone H3 lysine 27 (H3K27ac) for active enhancers and trimethylation of histone H3 lysine 27 (H3K27me3) for silent enhancers. Recent studies from multiple groups have provided evidence that enhancer reprogramming, especially gain of enhancer activity, is closely related to tumorigenesis and cancer development. In this review, we will summarize the recent discoveries about enhancer regulation and the mechanisms of enhancer reprogramming in tumorigenesis, and discuss the potential application of enhancer manipulation in precision medicine.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"11 1","pages":"26-36"},"PeriodicalIF":3.6,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2020.1713682","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37547505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-20DOI: 10.1080/21541264.2019.1682454
M. Gottesman, A. Mustaev
ABSTRACT Inorganic phosphate (Pi), a ubiquitous metabolite, is involved in all major biochemical pathways. We demonstrate that, in vitro, MgHPO4 (the intracellular Pi form) at physiological concentrations can exist in a metastable supersaturated dissolved state or as a precipitate. We have shown that in solution, MgHPO4 strongly stimulates exonuclease nascent transcript cleavage by RNA polymerase. We report here that MgHPO4 precipitate selectively and efficiently inhibits transcription initiation in vitro. In view of the MgHPO4 solubility and in vitro sensitivity of RNA synthesis to MgHPO4 precipitate, at physiological concentrations, MgHPO4 should cause a 50–98% inhibition of cellular RNA synthesis, thus exerting a strong regulatory action. The effects of Pi on transcription in vivo will, therefore, reflect the physical state of intracellular Pi.
{"title":"Change in inorganic phosphate physical state can regulate transcription","authors":"M. Gottesman, A. Mustaev","doi":"10.1080/21541264.2019.1682454","DOIUrl":"https://doi.org/10.1080/21541264.2019.1682454","url":null,"abstract":"ABSTRACT Inorganic phosphate (Pi), a ubiquitous metabolite, is involved in all major biochemical pathways. We demonstrate that, in vitro, MgHPO4 (the intracellular Pi form) at physiological concentrations can exist in a metastable supersaturated dissolved state or as a precipitate. We have shown that in solution, MgHPO4 strongly stimulates exonuclease nascent transcript cleavage by RNA polymerase. We report here that MgHPO4 precipitate selectively and efficiently inhibits transcription initiation in vitro. In view of the MgHPO4 solubility and in vitro sensitivity of RNA synthesis to MgHPO4 precipitate, at physiological concentrations, MgHPO4 should cause a 50–98% inhibition of cellular RNA synthesis, thus exerting a strong regulatory action. The effects of Pi on transcription in vivo will, therefore, reflect the physical state of intracellular Pi.","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"104 1","pages":"187 - 194"},"PeriodicalIF":3.6,"publicationDate":"2019-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80672770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-20DOI: 10.1080/21541264.2019.1685837
Jessica B Campbell, M. Edwards, Sydney A Ozersky, Andrea A Duina
ABSTRACT FACT (FAcilitates Chromatin Transactions) is a highly conserved histone chaperone complex in eukaryotic cells that can interact and manipulate nucleosomes in order to promote a variety of DNA-based processes and to maintain the integrity of chromatin throughout the genome. Whereas key features of the physical interactions that occur between FACT and nucleosomes in vitro have been elucidated in recent years, less is known regarding FACT functional dynamics in vivo. Using the Saccharomyces cerevisiae system, we now provide evidence that at least at some genes dissociation of the FACT subunit Spt16 from their 3′ ends is partially dependent on RNA Polymerase II (Pol II) termination. Combined with other studies, our results are consistent with a two-phase mechanism for FACT dissociation from genes, one that occurs upstream from Pol II dissociation and is Pol II termination-independent and the other that occurs further downstream and is dependent on Pol II termination.
{"title":"Evidence that dissociation of Spt16 from transcribed genes is partially dependent on RNA Polymerase II termination","authors":"Jessica B Campbell, M. Edwards, Sydney A Ozersky, Andrea A Duina","doi":"10.1080/21541264.2019.1685837","DOIUrl":"https://doi.org/10.1080/21541264.2019.1685837","url":null,"abstract":"ABSTRACT FACT (FAcilitates Chromatin Transactions) is a highly conserved histone chaperone complex in eukaryotic cells that can interact and manipulate nucleosomes in order to promote a variety of DNA-based processes and to maintain the integrity of chromatin throughout the genome. Whereas key features of the physical interactions that occur between FACT and nucleosomes in vitro have been elucidated in recent years, less is known regarding FACT functional dynamics in vivo. Using the Saccharomyces cerevisiae system, we now provide evidence that at least at some genes dissociation of the FACT subunit Spt16 from their 3′ ends is partially dependent on RNA Polymerase II (Pol II) termination. Combined with other studies, our results are consistent with a two-phase mechanism for FACT dissociation from genes, one that occurs upstream from Pol II dissociation and is Pol II termination-independent and the other that occurs further downstream and is dependent on Pol II termination.","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"21 1","pages":"195 - 206"},"PeriodicalIF":3.6,"publicationDate":"2019-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85065934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-09DOI: 10.1080/21541264.2019.1673636
Joshua R Beytebiere, Ben J Greenwell, A. Sahasrabudhe, J. Menet
ABSTRACT Circadian clocks regulate the rhythmic expression of thousands of genes underlying the daily oscillations of biological functions. Here, we discuss recent findings showing that circadian clock rhythmic transcriptional outputs rely on additional mechanisms than just clock gene DNA binding, which may ultimately contribute to the plasticity of circadian transcriptional programs.
{"title":"Clock-controlled rhythmic transcription: is the clock enough and how does it work?","authors":"Joshua R Beytebiere, Ben J Greenwell, A. Sahasrabudhe, J. Menet","doi":"10.1080/21541264.2019.1673636","DOIUrl":"https://doi.org/10.1080/21541264.2019.1673636","url":null,"abstract":"ABSTRACT Circadian clocks regulate the rhythmic expression of thousands of genes underlying the daily oscillations of biological functions. Here, we discuss recent findings showing that circadian clock rhythmic transcriptional outputs rely on additional mechanisms than just clock gene DNA binding, which may ultimately contribute to the plasticity of circadian transcriptional programs.","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"20 1","pages":"212 - 221"},"PeriodicalIF":3.6,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81989959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-02DOI: 10.1080/21541264.2019.1658557
Jihae Shin, Hong Cheng, B. Tian
ABSTRACT Gene expression involves multiple co- and post-transcriptional processes that have been increasingly found intertwined. A recent work by our groups (Chen et al. Mol Cell, 2019) indicates that expression of alternative polyadenylation isoforms in mammalian cells can be controlled by nuclear export activities. This regulation has distinct impacts on genes having different sizes and nucleotide contents, and involves RNA polymerase II distribution toward the 3ʹ end of genes. This work raises a number of intriguing questions concerning how 3ʹ end processing and nuclear export are integrated and how their regulation feeds back to transcription.
基因表达涉及多个共同和转录后过程,这些过程越来越多地交织在一起。我们小组最近的一项工作(Chen et al.)。Mol Cell, 2019)表明,哺乳动物细胞中选择性多腺苷化异构体的表达可以通过核输出活动来控制。这种调控对不同大小和核苷酸含量的基因有不同的影响,涉及RNA聚合酶II向基因3′端分布。这项工作提出了一些有趣的问题,如3′末端加工和核输出是如何整合的,以及它们的调节如何反馈到转录上。
{"title":"New means to an end: mRNA export activity impacts alternative polyadenylation","authors":"Jihae Shin, Hong Cheng, B. Tian","doi":"10.1080/21541264.2019.1658557","DOIUrl":"https://doi.org/10.1080/21541264.2019.1658557","url":null,"abstract":"ABSTRACT Gene expression involves multiple co- and post-transcriptional processes that have been increasingly found intertwined. A recent work by our groups (Chen et al. Mol Cell, 2019) indicates that expression of alternative polyadenylation isoforms in mammalian cells can be controlled by nuclear export activities. This regulation has distinct impacts on genes having different sizes and nucleotide contents, and involves RNA polymerase II distribution toward the 3ʹ end of genes. This work raises a number of intriguing questions concerning how 3ʹ end processing and nuclear export are integrated and how their regulation feeds back to transcription.","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"300 1","pages":"207 - 211"},"PeriodicalIF":3.6,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73590160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-01Epub Date: 2019-10-30DOI: 10.1080/21541264.2019.1684137
Markus C Wahl, Ranjan Sen
Bacteriophages employ small proteins to usurp host molecular machinery, thereby interfering with central metabolic processes in infected bacteria. Generally, phages inhibit or redirect host transcription to favor transcription of their own genomes. Mechanistic and structural studies of phage-modulated host transcription may provide inspirations for the development of novel antibacterial substances.
{"title":"Exploiting phage strategies to modulate bacterial transcription.","authors":"Markus C Wahl, Ranjan Sen","doi":"10.1080/21541264.2019.1684137","DOIUrl":"https://doi.org/10.1080/21541264.2019.1684137","url":null,"abstract":"<p><p>Bacteriophages employ small proteins to usurp host molecular machinery, thereby interfering with central metabolic processes in infected bacteria. Generally, phages inhibit or redirect host transcription to favor transcription of their own genomes. Mechanistic and structural studies of phage-modulated host transcription may provide inspirations for the development of novel antibacterial substances.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"222-230"},"PeriodicalIF":3.6,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2019.1684137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40552370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01Epub Date: 2019-02-05DOI: 10.1080/21541264.2019.1575159
Ji-Gang Zhang, Chao Xu, Lan Zhang, Wei Zhu, Hui Shen, Hong-Wen Deng
Gene transcription is regulated with distinct sets of regulatory factors at multiple levels. Transcriptional and post-transcriptional regulation constitute two major regulation modes of gene expression to either activate or repress the initiation of transcription and thereby control the number of proteins synthesized during translation. Disruptions of the proper regulation patterns at transcriptional and post-transcriptional levels are increasingly recognized as causes of human diseases. Consequently, identifying the differential gene expression at transcriptional and post-transcriptional levels respectively is vital to identify potential disease-associated and/or causal genes and understand their roles in the disease development. Here, we proposed a novel method with a linear mixed model that can identify a set of differentially expressed genes at transcriptional and post-transcriptional levels. The simulation and real data analysis showed our method could provide an accurate way to identify genes subject to aberrant transcriptional and post-transcriptional regulation and reveal the potential causal genes that contributed to the diseases.
{"title":"Identify gene expression pattern change at transcriptional and post-transcriptional levels.","authors":"Ji-Gang Zhang, Chao Xu, Lan Zhang, Wei Zhu, Hui Shen, Hong-Wen Deng","doi":"10.1080/21541264.2019.1575159","DOIUrl":"https://doi.org/10.1080/21541264.2019.1575159","url":null,"abstract":"<p><p>Gene transcription is regulated with distinct sets of regulatory factors at multiple levels. Transcriptional and post-transcriptional regulation constitute two major regulation modes of gene expression to either activate or repress the initiation of transcription and thereby control the number of proteins synthesized during translation. Disruptions of the proper regulation patterns at transcriptional and post-transcriptional levels are increasingly recognized as causes of human diseases. Consequently, identifying the differential gene expression at transcriptional and post-transcriptional levels respectively is vital to identify potential disease-associated and/or causal genes and understand their roles in the disease development. Here, we proposed a novel method with a linear mixed model that can identify a set of differentially expressed genes at transcriptional and post-transcriptional levels. The simulation and real data analysis showed our method could provide an accurate way to identify genes subject to aberrant transcriptional and post-transcriptional regulation and reveal the potential causal genes that contributed to the diseases.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"10 3","pages":"137-146"},"PeriodicalIF":3.6,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2019.1575159","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36910378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01Epub Date: 2019-01-31DOI: 10.1080/21541264.2019.1570812
Huasong Lu, Rongdiao Liu, Qiang Zhou
We recently reported that the cyclin T1 histidine-rich domain creates a phase-separated environment to promote hyperphosphorylation of RNA polymerase II C-terminal domain and robust transcriptional elongation by P-TEFb. Here, we discuss this and several other recent discoveries to demonstrate that phase separation is important for controlling various aspects of transcription.
{"title":"Balanced between order and disorder: a new phase in transcription elongation control and beyond.","authors":"Huasong Lu, Rongdiao Liu, Qiang Zhou","doi":"10.1080/21541264.2019.1570812","DOIUrl":"https://doi.org/10.1080/21541264.2019.1570812","url":null,"abstract":"<p><p>We recently reported that the cyclin T1 histidine-rich domain creates a phase-separated environment to promote hyperphosphorylation of RNA polymerase II C-terminal domain and robust transcriptional elongation by P-TEFb. Here, we discuss this and several other recent discoveries to demonstrate that phase separation is important for controlling various aspects of transcription.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"10 3","pages":"157-163"},"PeriodicalIF":3.6,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2019.1570812","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36870818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}