Of the four interrelated concepts in the title, only symmetry has an exact mathematical definition. In mathematical development, symmetry is a graded variable-in marked contrast with the popular binary conception of symmetry in and out of the laboratory (i.e. an object is either symmetrical or nonsymmetrical). Because the notion does not have a direct graded perceptual counterpart (experimental participants are not asked about the amount of symmetry of an object), students of symmetry have taken various detours to characterize the perceptual effects of symmetry. Current approaches have been informed by information theory, mathematical group theory, randomness research, and complexity. Apart from reviewing the development of the main approaches, for the first time we calculated associations between figural goodness as measured in the Garner tradition and measures of algorithmic complexity and randomness developed in recent research. We offer novel ideas and analyses by way of integrating the various approaches.
Investigations of eye movements were transformed by Ewald Hering in 1879. He developed a novel method for recording them using the muscular sounds attendant on their rapid movements. Brief "clapping" sounds could be heard with the aid of a device like a stethoscope placed on the eyelid and they occurred when afterimages or "floaters" were seen to move. Hering applied the technique to record eye movements during reading and he called the rapid eye movements Rucke (jerks in English). Hering published a long review of eye movements and spatial vision later in 1879, but without a description of the muscle sounds. Hering's insightful article has been overlooked and a translation of it into English is presented.
Symmetry is an important geometric feature that affects object segmentation into parts, though De Winter and Wagemans note that partly occluded objects can still be identified by the remaining visible parts. In two sets of experiments with children (n = 31, age 7-11, M = 8.8, SD = 1.4) and adults (n = 19, age 17-57, M = 30.4, SD = 12.6), we used 13 basic geometric figures distinguished by symmetry types to test how they are naturally segmented or combined and what the developmental impacts are on the segmentation and combination. In the first experiment, participants were asked to cut figures into two along a straight line; in the second experiment, participants had to create five sets of connected two-figure combinations where overlapping figures were allowed. The results confirmed the importance of the symmetry axis in both tasks. Other relevant criteria were dividing into half, maximal/minimal curvature, and use of edges or corners for reference. This study allows comparisons of the impact of symmetry type on the segmentation and combining of geometric figures and indicates developmental differences between children and adults.
We measured participants' psychophysiological responses and gaze behavior while viewing a stimulus person's direct and averted gaze in three different conditions manipulating the participants' experience of being watched. The results showed that skin conductance responses and heart rate deceleration responses were greater to direct than averted gaze only in the condition in which the participants had the experience of being watched by the other individual. In contrast, gaze direction had no effects on these responses when the participants were manipulated to believe that the other individual could not watch them or when the stimulus person was presented in a pre-recorded video. Importantly, the eye tracking measures showed no differences in participants' looking behavior between these stimulus presentation conditions. The results of facial electromyography responses suggested that direct gaze elicited greater zygomatic and periocular responses than averted gaze did, independent of the presentation condition. It was concluded that the affective arousal and attention-orienting indexing autonomic responses to eye contact are driven by the experience of being watched. In contrast, the facial responses seem to reflect automatized affiliative responses which can be elicited even in conditions in which seeing another's direct gaze does not signal that the self is being watched.
We can correctly recognize the content of an image by presenting all of the elements within a limited time, such as in a slit view or a divided painting image. It is important to clarify how temporally divided information is integrated and perceived to understand the temporal properties of the information-processing mechanism of visual systems. Previous studies related to this topic have often used two-dimensional pictorial stimuli; however, few have considered the temporal integration of binocular disparity for the recognition of objects defined with disparity. In this study, we examined image recognition properties based on the temporal integration of binocular disparity, by comparing that based on the temporal integration of luminance. The effect of element onset asynchrony (the time lag among presented elements) was somewhat similar between disparity and luminance with respect to randomly divided elements. On the other hand, under slit-vision conditions, the tolerance range of spatiotemporal integration for luminance stimuli was much wider than that for disparity stimuli. These results indicate that the temporal integration mechanism in localized areas is common to disparity and luminance, but that for global motion shows differences between the two mechanisms. Thus, we conclude that global motion has little contribution to the temporal integration of binocular disparity information for image recognition.
Visual motion signals can produce self-motion perception known as vection in observers. Vection can be generated by illusory motions in the form of global expantion in still images as well as by visual motion signals. The perception of vection can be enhanced by flickering images at a rate of 5 Hz. This study examined the illusory motion and vection induced by a printed static image under flickering ambient light at rates up to 100 Hz. The perception of illusory motion and vection were enhanced by flickering ambient lights at 50, 75, and 100 Hz. The enhancement effect was higher for the flicker rates expected to be detectable by humans. The findings of this study suggest that alternating bright and dark signals to the cone receptors and primary visual cortex trigger perceptions of illusory motions.