首页 > 最新文献

Atmospheric and Oceanic Science Letters最新文献

英文 中文
Variation in the permafrost active layer over the Tibetan Plateau during 1980–2020 1980-2020 年青藏高原冻土活动层的变化
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-01 DOI: 10.1016/j.aosl.2024.100536

The active layer, acting as an intermediary of water and heat exchange between permafrost and atmosphere, greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations. Utilizing the Chinese Meteorological Forcing Dataset to drive the Community Land Model, version 5.0, this study simulates the spatial and temporal characteristics of active layer thickness (ALT) on the Tibetan Plateau (TP) from 1980 to 2020. Results show that the ALT, primarily observed in the central and western parts of the TP where there are insufficient station observations, exhibits significant interdecadal changes after 2000. The average thickness on the TP decreases from 2.54 m during 1980–1999 to 2.28 m during 2000–2020. This change is mainly observed in the western permafrost region, displaying a sharp regional inconsistency compared to the eastern region. A persistent increasing trend of ALT is found in the eastern permafrost region, rather than an interdecadal change. The aforementioned changes in ALT are closely tied to the variations in the surrounding atmospheric environment, particularly air temperature. Additionally, the area of the active layer on the TP displays a profound interdecadal change around 2000, arising from the permafrost thawing and forming. It consistently decreases before 2000 but barely changes after 2000. The regional variation in the permafrost active layer over the TP revealed in this study indicates a complex response of the contemporary climate under global warming.

摘要

活动层是多年冻土和大气之间的缓冲层, 对气候波动十分敏感, 其冻融变化对多年冻土区的地球生物化学循环有较大影响. 本研究利用高分辨率气象数据集CMFD和陆面过程模式CLM5.0模拟分析了青藏高原1980–2020年活动层的变化. 结果表明: 青藏高原的活动层厚度在2000年后有显著的年代际变化, 青藏高原整体活动层厚度由1980–1999的2.54 m减少到2000–2020年的2.28 m. 这种变化主要发生在西部的多年冻土区, 与东部相比存在明显的区域差异. 在东部, 多年冻土区的活动层厚度呈持续增加趋势, 而不是年代际变化. 此外, 活动层面积在2000年也发生了年代际突变, 之前持续下降, 但之后几乎没有变化. 本文还发现青藏高原多年冻土活动层的区域变化受到气温和降水等环境因子的显著影响, 这反映了其在全球变暖背景下对气候变化的复杂响应.

活动层是冻土与大气之间水热交换的中介,对冻土地区的生物地球化学循环有很大影响,对气候波动非常敏感。本研究利用中国气象强迫数据集驱动共同体陆地模式 5.0 版,模拟了 1980-2020 年青藏高原活动层厚度(ALT)的时空特征。结果表明,2000 年以后,主要在青藏高原中西部观测站观测不足的地方,青藏高原活动层厚度呈现出显著的年代际变化。大陆坡的平均厚度从 1980-1999 年的 2.54 米下降到 2000-2020 年的 2.28 米。这种变化主要出现在西部永久冻土区,与东部地区相比,显示出明显的区域不一致性。在东部永久冻土区,ALT 呈持续上升趋势,而不是年代际变化。上述 ALT 的变化与周围大气环境,特别是气温的变化密切相关。此外,由于永久冻土的融化和形成,TP 上的活动层面积在 2000 年前后出现了深刻的年代际变化。2000 年之前,活动层面积持续减少,但 2000 年之后几乎没有变化。本研究揭示的 TP 上永久冻土活动层的区域变化表明了全球变暖下当代气候的复杂响应。摘要活动层是多年冻土和大气之间的缓冲层, 对气候波动十分敏感, 其冻融变化对多年冻土区的地球生物化学循环有较大影响。本研究利用高分辨率气象数据集cmfd和陆面过程模式clm5.0模拟分析了青藏高原1980-2020年活动层的变化。结果表明: 青藏高原的活动层厚度在 2000 年后有显著的年代际变化, 青藏高原整体活动层厚度由 1980-999 的 2.54 m 减少到 2000--2020 年的 2.28 m. 这种变化主要发生在西部的多年冻土区, 与东部相比存在明显的区域差异。在东部,多年冻土区的活动层厚度呈持续增加趋势,而不是年代际变化。此外,活动层面积在 2000 年也发生了年代际突变,之前持续下降,但之后几乎没有变化。本文还发现青藏高原多年冻土活动层的区域变化受到气温和降水等环境因子的显著影响, 这反映了其在全球变暖背景下对气候变化的复杂响应。
{"title":"Variation in the permafrost active layer over the Tibetan Plateau during 1980–2020","authors":"","doi":"10.1016/j.aosl.2024.100536","DOIUrl":"10.1016/j.aosl.2024.100536","url":null,"abstract":"<div><p>The active layer, acting as an intermediary of water and heat exchange between permafrost and atmosphere, greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations. Utilizing the Chinese Meteorological Forcing Dataset to drive the Community Land Model, version 5.0, this study simulates the spatial and temporal characteristics of active layer thickness (ALT) on the Tibetan Plateau (TP) from 1980 to 2020. Results show that the ALT, primarily observed in the central and western parts of the TP where there are insufficient station observations, exhibits significant interdecadal changes after 2000. The average thickness on the TP decreases from 2.54 m during 1980–1999 to 2.28 m during 2000–2020. This change is mainly observed in the western permafrost region, displaying a sharp regional inconsistency compared to the eastern region. A persistent increasing trend of ALT is found in the eastern permafrost region, rather than an interdecadal change. The aforementioned changes in ALT are closely tied to the variations in the surrounding atmospheric environment, particularly air temperature. Additionally, the area of the active layer on the TP displays a profound interdecadal change around 2000, arising from the permafrost thawing and forming. It consistently decreases before 2000 but barely changes after 2000. The regional variation in the permafrost active layer over the TP revealed in this study indicates a complex response of the contemporary climate under global warming.</p><p>摘要</p><p>活动层是多年冻土和大气之间的缓冲层, 对气候波动十分敏感, 其冻融变化对多年冻土区的地球生物化学循环有较大影响. 本研究利用高分辨率气象数据集CMFD和陆面过程模式CLM5.0模拟分析了青藏高原1980–2020年活动层的变化. 结果表明: 青藏高原的活动层厚度在2000年后有显著的年代际变化, 青藏高原整体活动层厚度由1980–1999的2.54 m减少到2000–2020年的2.28 m. 这种变化主要发生在西部的多年冻土区, 与东部相比存在明显的区域差异. 在东部, 多年冻土区的活动层厚度呈持续增加趋势, 而不是年代际变化. 此外, 活动层面积在2000年也发生了年代际突变, 之前持续下降, 但之后几乎没有变化. 本文还发现青藏高原多年冻土活动层的区域变化受到气温和降水等环境因子的显著影响, 这反映了其在全球变暖背景下对气候变化的复杂响应.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 5","pages":"Article 100536"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283424000850/pdfft?md5=5bdbe6b3d2873446dbdfcebd7b8938c7&pid=1-s2.0-S1674283424000850-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141392826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Future changes in precipitation and water availability over the Tibetan Plateau projected by CMIP6 models constrained by climate sensitivity 受气候敏感性制约的 CMIP6 模型预测的青藏高原降水量和可用水量的未来变化
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-01 DOI: 10.1016/j.aosl.2024.100537
Hui Qiu , Tianjun Zhou , Liwei Zou , Jie Jiang , Xiaolong Chen , Shuai Hu

Precipitation projections over the Tibetan Plateau (TP) show diversity among existing studies, partly due to model uncertainty. How to develop a reliable projection remains inconclusive. Here, based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity (ECS) and the climatological precipitation performance, the authors constrain the CMIP6 (phase 6 of the Coupled Model Intercomparison Project) model projection of summer precipitation and water availability over the TP. The best estimates of precipitation changes are 0.24, 0.25, and 0.45 mm d−1 (5.9 %, 6.1 %, and 11.2 %) under the Shared Socioeconomic Pathway (SSP) scenarios of SSP1–2.6, SSP2–4.5, and SSP5–8.5 from 2050–2099 relative to 1965–2014, respectively. The corresponding constrained projections of water availability measured by precipitation minus evaporation (P–E) are 0.10, 0.09, and 0.22 mm d−1 (5.7 %, 4.9 %, and 13.2 %), respectively. The increase of precipitation and P–E projected by the high-ECS models, whose ECS values are higher than the upper limit of the likely range, are about 1.7 times larger than those estimated by constrained projections. Spatially, there is a larger increase in precipitation and P–E over the eastern TP, while the western part shows a relatively weak difference in precipitation and a drier trend in P–E. The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6 °C–1.2 °C under all three scenarios during 2050–2099. This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes.

摘要

青藏高原是气候变化敏感区, 可靠的气候预估对气候变化应对至关重要. 青藏高原夏季降水变化的预估结果在CMIP6气候模式间存在较大的不确定性, 原因部分地和这些模式对温室气体强迫的敏感度不同有关. 作者在对CMIP6模式性能进行评估基础上, 选择了具有较高气候态降水模拟技巧的模式用于预估研究, 并根据IPCC AR6估算的平衡态气候敏感度 (ECS) 的可能性范围, 对青藏高原夏季降水的中远期 (2050–2099) 变化进行约束. 结果表明, 在SSP1–2.6, SSP2–4.5 和 SSP5–8.5情景下, 青藏高原夏季降水将分别增多0.24, 0.25 和 0.45 mm d−1 (5.9 %, 6.1 %, 和 11.2 %), 水资源可用性 (P–E) 将分别增加0.10, 0.09和0.22 mm d−1(5.7 %, 4.9 % 和13.2 %) . 与约束预估相比, 高ECS模式预估的水文敏感度约为约束后的1.2–1.4倍, 升温幅度偏高0.6 °C–1.2 °C, 这二者共同导致高ECS模式预估的高原降水增幅约为约束预估的1.7倍. 本文指出气候敏感度是影响未来青藏高原水资源预估不确定性的重要来源, 同时基于IPCC AR6对ECS的最佳估算, 给出了高原夏季降水和水资源的最佳预估结果.

对青藏高原降水量的预测在现有研究中表现出多样性,部分原因是模型的不确定性。如何进行可靠的预测仍无定论。在此,作者根据 IPCC 第六次评估报告评估的平衡气候敏感性(ECS)可能范围和气候学降水表现,对 CMIP6(耦合模式相互比较项目第 6 阶段)模式预测的青藏高原夏季降水量和可用水量进行了约束。在 SSP1-2.6、SSP2-4.5 和 SSP5-8.5 的共享社会经济路径(SSP)情景下,2050-2099 年降水量变化的最佳估计值分别为 0.24、0.25 和 0.45 mm d-1(5.9%、6.1% 和 11.2%),而 1965-2014 年的降水量变化则分别为 0.24、0.25 和 0.45 mm d-1(5.9%、6.1% 和 11.2%)。以降水量减去蒸发量(P-E)计算的相应可用水量限制预测值分别为 0.10、0.09 和 0.22 mm d-1(5.7%、4.9% 和 13.2%)。高 ECS 模式的 ECS 值高于可能范围的上限,其预测的降水量和 P-E 的增加值是约束预测值的 1.7 倍。从空间上看,东部大陆坡的降水量和 P-E 增加较多,而西部地区的降水量差异相对较小,P-E 呈干燥趋势。在 2050-2099 年期间的所有三种情景下,水文灵敏度提高了约 1.2-1.4 倍,升温幅度增加了 0.6 ℃-1.2 ℃,因此,高 ECS 模式预测的热 带降雨量更多。这项研究强调,选择气候敏感性在可能范围内的气候模式,对于减少地下水降水量和水供应变化预测的不确定性至关重要。摘要青藏高原是气候变化敏感区,可靠的气候预估对气候变化应对至关重要。青藏高原夏季降水变化的预估结果在 cmip6 气候模式间存在较大的不确定性, 原因部分地和这些模式对温室气体强迫的敏感度不同有关。作者在对 cmip6 模式性能进行评估基础上, 选择了具有较高气候态降水模拟技巧的模式用于预估研究, 并根据 IPCC ar6 估算的平衡态气候敏感度 (ecs) 的可能性范围, 对青藏高原夏季降水的中远期 (2050-2099) 变化进行约束。结果表明,在 SSP1-2.6, SSP2-4.5 和 SSP5-8.5 情景下,青藏高原夏季降水将分别增多 0.24, 0.25 和 0.45 mm d-1 (5.9 %, 6.1 %, 和 11.2 %), 水资源可用性 (P-E) 将分别增加 0.10, 0.09 和 0.22 mm d-1(5.7 %, 4.9 % 和 13.2 %) .与约束预估相比,高ecs模式预估的水文敏感度约为约束后的1.2-1.4倍, 升温幅度偏高0.6 °c-1.2 °c, 这二者共同导致高ecs模式预估的高原降水增幅约为约束预估的1.7倍。本文指出气候敏感度是影响未来青藏高原水资源预估不确定性的重要来源, 同时基于ipcc ar6对ecs的最佳估算, 给出了高原夏季降水和水资源的最佳预估结果.
{"title":"Future changes in precipitation and water availability over the Tibetan Plateau projected by CMIP6 models constrained by climate sensitivity","authors":"Hui Qiu ,&nbsp;Tianjun Zhou ,&nbsp;Liwei Zou ,&nbsp;Jie Jiang ,&nbsp;Xiaolong Chen ,&nbsp;Shuai Hu","doi":"10.1016/j.aosl.2024.100537","DOIUrl":"10.1016/j.aosl.2024.100537","url":null,"abstract":"<div><p>Precipitation projections over the Tibetan Plateau (TP) show diversity among existing studies, partly due to model uncertainty. How to develop a reliable projection remains inconclusive. Here, based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity (ECS) and the climatological precipitation performance, the authors constrain the CMIP6 (phase 6 of the Coupled Model Intercomparison Project) model projection of summer precipitation and water availability over the TP. The best estimates of precipitation changes are 0.24, 0.25, and 0.45 mm d<sup>−1</sup> (5.9 %, 6.1 %, and 11.2 %) under the Shared Socioeconomic Pathway (SSP) scenarios of SSP1–2.6, SSP2–4.5, and SSP5–8.5 from 2050–2099 relative to 1965–2014, respectively. The corresponding constrained projections of water availability measured by precipitation minus evaporation (P–E) are 0.10, 0.09, and 0.22 mm d<sup>−1</sup> (5.7 %, 4.9 %, and 13.2 %), respectively. The increase of precipitation and P–E projected by the high-ECS models, whose ECS values are higher than the upper limit of the likely range, are about 1.7 times larger than those estimated by constrained projections. Spatially, there is a larger increase in precipitation and P–E over the eastern TP, while the western part shows a relatively weak difference in precipitation and a drier trend in P–E. The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6 °C–1.2 °C under all three scenarios during 2050–2099. This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes.</p><p>摘要</p><p>青藏高原是气候变化敏感区, 可靠的气候预估对气候变化应对至关重要. 青藏高原夏季降水变化的预估结果在CMIP6气候模式间存在较大的不确定性, 原因部分地和这些模式对温室气体强迫的敏感度不同有关. 作者在对CMIP6模式性能进行评估基础上, 选择了具有较高气候态降水模拟技巧的模式用于预估研究, 并根据IPCC AR6估算的平衡态气候敏感度 (ECS) 的可能性范围, 对青藏高原夏季降水的中远期 (2050–2099) 变化进行约束. 结果表明, 在SSP1–2.6, SSP2–4.5 和 SSP5–8.5情景下, 青藏高原夏季降水将分别增多0.24, 0.25 和 0.45 mm d<sup>−1</sup> (5.9 %, 6.1 %, 和 11.2 %), 水资源可用性 (P–E) 将分别增加0.10, 0.09和0.22 mm d<sup>−1</sup>(5.7 %, 4.9 % 和13.2 %) . 与约束预估相比, 高ECS模式预估的水文敏感度约为约束后的1.2–1.4倍, 升温幅度偏高0.6 °C–1.2 °C, 这二者共同导致高ECS模式预估的高原降水增幅约为约束预估的1.7倍. 本文指出气候敏感度是影响未来青藏高原水资源预估不确定性的重要来源, 同时基于IPCC AR6对ECS的最佳估算, 给出了高原夏季降水和水资源的最佳预估结果.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 5","pages":"Article 100537"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283424000862/pdfft?md5=68c7bec658cb012bffbe4f08b8df1040&pid=1-s2.0-S1674283424000862-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study on the simulation of carbon and water fluxes of Dangxiong alpine meadow and its response to climate change 当雄高寒草甸碳通量和水通量模拟及其对气候变化的响应研究
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-01 DOI: 10.1016/j.aosl.2024.100507

The alpine meadow ecosystem accounts for 27 % of the total area of the Tibetan Plateau and is also one of the most important vegetation types. The Dangxiong alpine meadow ecosystem, located in the south-central part of the Tibetan Plateau, is a typical example. To understand the carbon and water fluxes, water use efficiency (WUE), and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area, two parameter estimation methods, the Model-independent Parameter Estimation (PEST) and the Dynamic Dimensions Search (DDS), were used to optimize the Biome-BGC model. Then, the gross primary productivity (GPP) and evapotranspiration (ET) were simulated. The results show that the DDS parameter calibration method has a better performance. The annual GPP and ET show an increasing trend, while the WUE shows a decreasing trend. Meanwhile, ET and GPP reach their peaks in July and August, respectively, and WUE shows a “dual-peak” pattern, reaching peaks in May and November. Furthermore, according to the simulation results for the next nearly 100 years, the ensemble average GPP and ET exhibit a significant increasing trend, and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario. WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario. This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.

摘要

全球气候变化对青藏高原生态系统产生了深远影响, 暖湿化背景下青藏高原植被碳, 水通量变化趋势值得关注. 高寒草甸是青藏高原最主要的植被类型之一, 为理解青藏高原当雄地区高寒草甸生态系统碳, 水通量, 水分利用效率及其对未来气候变化的响应, 本研究利用PEST和DDS两种参数率定方法优化Biome-BGC模型, 进而模拟2000–2019年当雄站的总初级生产力 (GPP) 和蒸散量 (ET) . 研究结果表明: DDS参数率定方法具有更优的性能. GPP和ET在研究时段内呈上升趋势, 而水分利用效率 (WUE) 则呈下降趋势. 同时, ET和GPP分别在7月和8月达到峰值, 而WUE则呈“双峰”变化, 分别于5月和11月达到峰值. 此外, 未来近百年的模拟表明GPP和ET的集合平均结果呈显著增加趋势, 其中在SSP5–8.5情景下的增速大于SSP2–4.5情景. WUE在SSP2–4.5情景下呈增加趋势, 而在SSP5–8.5情景下呈显著增加趋势. 本研究结果可为青藏高原碳, 水循环预测研究和植被生态保护的应用研究提供参考和借鉴.

高寒草甸生态系统占青藏高原总面积的 27%,也是最重要的植被类型之一。位于青藏高原中南部的当雄高寒草甸生态系统就是一个典型的例子。为了解当雄地区高寒草甸生态系统的碳通量、水通量、水分利用效率(WUE)及其对未来气候变化的响应,研究人员采用了两种参数估计方法,即独立于模型的参数估计法(PEST)和动态维度搜索法(DDS),对Biome-BGC模型进行了优化。然后,模拟了总初级生产力(GPP)和蒸散量(ET)。结果表明,DDS 参数校准方法具有更好的性能。年总初级生产力(GPP)和蒸散发(ET)呈上升趋势,而水分利用效率(WUE)呈下降趋势。同时,蒸散发和 GPP 分别在 7 月和 8 月达到峰值,而 WUE 则呈现 "双峰 "模式,在 5 月和 11 月达到峰值。此外,根据未来近 100 年的模拟结果,集合平均 GPP 和蒸散发均呈显著增长趋势,且 SSP5-8.5 情景下的增长率大于 SSP2-4.5 情景下的增长率。WUE 在 SSP2-4.5 情景下呈上升趋势,在 SSP5-8.5 情景下呈显著上升趋势。该研究对青藏高原碳循环、水循环预测和植被生态保护具有重要的科学意义。摘要全球气候变化对青藏高原生态系统产生了深远影响, 暖湿化背景下青藏高原植被碳、水通量变化趋势值得关注。高寒草甸是青藏高原最主要的植被类型之一, 为理解青藏高原当雄地区高寒草甸生态系统碳, 水通量, 水分利用效率及其对未来气候变化的响应, 本研究利用PEST和DDS两种参数率定方法优化Biome-BGC模型, 进而模拟2000-2019年当雄站的总初级生产力 (GPP) 和蒸散量 (ET) .研究结果表明:dds参数率定方法具有更优的性能。gpp和et在研究时段内呈上升趋势, 而水分利用效率 (wue) 则呈下降趋势。同时,et 和 gpp 分别在 7 月和 8 月达到峰值, 而 wue 则呈 "双峰 "变化, 分别于 5 月和 11 月达到峰值。此外, 未来近百年的模拟表明gpp和et的集合平均结果呈显著增加趋势, 其中在ssp5-8.5情景下的增速大于ssp2-4.5情景。wue在ssp2-4.5情景下呈显著增加趋势, 而在ssp5-8.5情景下呈显著增加趋势。本研究结果可为青藏高原碳、水循环预测研究和植被生态保护的应用研究提供参考和借鉴。
{"title":"A study on the simulation of carbon and water fluxes of Dangxiong alpine meadow and its response to climate change","authors":"","doi":"10.1016/j.aosl.2024.100507","DOIUrl":"10.1016/j.aosl.2024.100507","url":null,"abstract":"<div><p>The alpine meadow ecosystem accounts for 27 % of the total area of the Tibetan Plateau and is also one of the most important vegetation types. The Dangxiong alpine meadow ecosystem, located in the south-central part of the Tibetan Plateau, is a typical example. To understand the carbon and water fluxes, water use efficiency (WUE), and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area, two parameter estimation methods, the Model-independent Parameter Estimation (PEST) and the Dynamic Dimensions Search (DDS), were used to optimize the Biome-BGC model. Then, the gross primary productivity (GPP) and evapotranspiration (ET) were simulated. The results show that the DDS parameter calibration method has a better performance. The annual GPP and ET show an increasing trend, while the WUE shows a decreasing trend. Meanwhile, ET and GPP reach their peaks in July and August, respectively, and WUE shows a “dual-peak” pattern, reaching peaks in May and November. Furthermore, according to the simulation results for the next nearly 100 years, the ensemble average GPP and ET exhibit a significant increasing trend, and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario. WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario. This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.</p><p>摘要</p><p>全球气候变化对青藏高原生态系统产生了深远影响, 暖湿化背景下青藏高原植被碳, 水通量变化趋势值得关注. 高寒草甸是青藏高原最主要的植被类型之一, 为理解青藏高原当雄地区高寒草甸生态系统碳, 水通量, 水分利用效率及其对未来气候变化的响应, 本研究利用PEST和DDS两种参数率定方法优化Biome-BGC模型, 进而模拟2000–2019年当雄站的总初级生产力 (GPP) 和蒸散量 (ET) . 研究结果表明: DDS参数率定方法具有更优的性能. GPP和ET在研究时段内呈上升趋势, 而水分利用效率 (WUE) 则呈下降趋势. 同时, ET和GPP分别在7月和8月达到峰值, 而WUE则呈“双峰”变化, 分别于5月和11月达到峰值. 此外, 未来近百年的模拟表明GPP和ET的集合平均结果呈显著增加趋势, 其中在SSP5–8.5情景下的增速大于SSP2–4.5情景. WUE在SSP2–4.5情景下呈增加趋势, 而在SSP5–8.5情景下呈显著增加趋势. 本研究结果可为青藏高原碳, 水循环预测研究和植被生态保护的应用研究提供参考和借鉴.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 5","pages":"Article 100507"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283424000564/pdfft?md5=321f26220b000716c9b88ec2f566bdec&pid=1-s2.0-S1674283424000564-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140774115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate state of the Three Gorges Region in the Yangtze River basin in 2022–2023 2022-2023 年长江流域三峡地区气候状况
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-01 DOI: 10.1016/j.aosl.2024.100540
Tong Cui, Xianyan Chen, Xukai Zou, Linhai Sun, Qiang Zhang, Hongling Zeng

Based on daily observation data of the Three Gorges Region (TGR) of the Yangtze River basin and global reanalysis data, the climate characteristics, climate events, and meteorological disasters of the TGR in 2022 and 2023 were analyzed. For the TGR, the average annual temperature for 2022 and 2023 was 0.8 °C and 0.4 °C higher than normal, respectively, making them the two warmest years in the past decade. In 2022, the TGR experienced its warmest summer on record. The average air temperature was 2.4 °C higher than the average, and there were 24.8 days of above-average high temperature days during summer. Rainfall in the TGR varied significantly between 2022 and 2023. Annual rainfall was 18.4 % below normal and drier than normal in most parts of the region. In contrast, the precipitation in 2023 was considerably higher than the long-term average, and above normal for almost the entire year. The average wind speed exhibited minimal variation between the two years. However, the number of foggy days and relative humidity increased in 2023 compared to 2022. In 2022–2023, the TGR mainly experienced meteorological disasters such as extreme high temperatures, regional heavy rain and flooding, overcast rain, and inverted spring chill. Analysis indicates that the abnormal western Pacific subtropical high and the abnormal persistence of the eastward-shifted South Asian high were the two important drivers of the durative enhancement of record-breaking high temperature in the summer of 2022.

摘要

基于长江三峡地区观测资料和全球再分析资料, 分析了该地区 2022–2023年气候特征, 酸雨状况以及主要天气气候事件. 2022 年和2023年三峡地区平均气温分别较常年偏高0.8 °C和0.4 °C, 是近十年来最暖的两年, 特别是2022年夏季出现破记录极端高温; 2022年三峡地区降水量较常年偏少18.4 %, 2023年降水量转为偏多15.3 %. 在这两年中该地区主要出现了极端高温, 区域性暴雨洪涝, 连阴雨和倒春寒等气候事件. 分析表明, 西太平洋副热带高压和南亚高压协同异常是2022年夏季极端高温维持的两个重要因素.

基于长江流域三峡地区的日观测资料和全球再分析资料,分析了三峡地区2022年和2023年的气候特征、气候事件和气象灾害。2022年和2023年长江流域地区年平均气温分别较常年偏高0.8 ℃和0.4 ℃,是近十年来最暖的两年。2022 年,TGR 经历了有记录以来最温暖的夏季。平均气温比常年高 2.4 °C,夏季有 24.8 天超过平均高温日。2022 年至 2023 年期间,德涅斯特河沿岸地区的降雨量变化很大。年降雨量比正常值低 18.4%,该地区大部分地区比正常值干燥。相比之下,2023 年的降水量大大高于长期平均值,几乎全年都高于正常值。这两年的平均风速变化极小。不过,与 2022 年相比,2023 年的雾日数和相对湿度都有所增加。2022-2023年,天津地区主要出现了极端高温、区域性暴雨洪涝、阴雨、倒春寒等气象灾害。分析表明,西太平洋副热带高压异常和南亚高压东移持续异常是导致2022年夏季破纪录高温持续增强的两个重要原因。摘要基于长江三峡地区观测资料和全球再分析资料,分析了该地区 2022-2023年气候特征、酸雨状况以及主要天气气候事件。2022 年和 2023 年三峡地区平均气温分别较常年偏高 0.8 ℃和 0.4 ℃, 是近十年来最暖的两年, 特别是 2022 年夏季出现破记录极端高温; 2022 年三峡地区降水量较常年偏少 18.4 %, 2023 年降水量转为偏多 15.3 %。在这两年中该地区主要出现了极端高温, 区域性暴雨洪涝, 连阴雨和倒春寒等气候事件。分析表明,西太平洋副热带高压和南亚高压协同异常是 2022 年夏季极端高温维持的两个重要因素。
{"title":"Climate state of the Three Gorges Region in the Yangtze River basin in 2022–2023","authors":"Tong Cui,&nbsp;Xianyan Chen,&nbsp;Xukai Zou,&nbsp;Linhai Sun,&nbsp;Qiang Zhang,&nbsp;Hongling Zeng","doi":"10.1016/j.aosl.2024.100540","DOIUrl":"10.1016/j.aosl.2024.100540","url":null,"abstract":"<div><p>Based on daily observation data of the Three Gorges Region (TGR) of the Yangtze River basin and global reanalysis data, the climate characteristics, climate events, and meteorological disasters of the TGR in 2022 and 2023 were analyzed. For the TGR, the average annual temperature for 2022 and 2023 was 0.8 °C and 0.4 °C higher than normal, respectively, making them the two warmest years in the past decade. In 2022, the TGR experienced its warmest summer on record. The average air temperature was 2.4 °C higher than the average, and there were 24.8 days of above-average high temperature days during summer. Rainfall in the TGR varied significantly between 2022 and 2023. Annual rainfall was 18.4 % below normal and drier than normal in most parts of the region. In contrast, the precipitation in 2023 was considerably higher than the long-term average, and above normal for almost the entire year. The average wind speed exhibited minimal variation between the two years. However, the number of foggy days and relative humidity increased in 2023 compared to 2022. In 2022–2023, the TGR mainly experienced meteorological disasters such as extreme high temperatures, regional heavy rain and flooding, overcast rain, and inverted spring chill. Analysis indicates that the abnormal western Pacific subtropical high and the abnormal persistence of the eastward-shifted South Asian high were the two important drivers of the durative enhancement of record-breaking high temperature in the summer of 2022.</p><p>摘要</p><p>基于长江三峡地区观测资料和全球再分析资料, 分析了该地区 2022–2023年气候特征, 酸雨状况以及主要天气气候事件. 2022 年和2023年三峡地区平均气温分别较常年偏高0.8 °C和0.4 °C, 是近十年来最暖的两年, 特别是2022年夏季出现破记录极端高温; 2022年三峡地区降水量较常年偏少18.4 %, 2023年降水量转为偏多15.3 %. 在这两年中该地区主要出现了极端高温, 区域性暴雨洪涝, 连阴雨和倒春寒等气候事件. 分析表明, 西太平洋副热带高压和南亚高压协同异常是2022年夏季极端高温维持的两个重要因素.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 5","pages":"Article 100540"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283424000898/pdfft?md5=a56c614fe781f3779330a724ec56d0ae&pid=1-s2.0-S1674283424000898-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State of China's climate in 2023 2023 年中国气候状况
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-01 DOI: 10.1016/j.aosl.2024.100519
Linhai Sun, Xiaying Zhu, Wei Li, Wanxiu Ai, Xianyan Chen, Yundi Jiang, Ling Wang, Xukai Zou, Shanshan Zhao, Hongling Zeng, Hailing Zhong

China witnessed a warm and dry climate in 2023. The annual surface air temperature reached a new high of 10.71°C, with the hottest autumn and the second hottest summer since 1961. Meanwhile, the annual precipitation was the second lowest since 2012, at 615.0 mm. Precipitation was less than normal from winter to summer, but more in autumn. Consistent with the annual condition, precipitation in the flood season from May to September was also the second lowest since 2012, which was 4.3% less than normal, with the anomalies in the central and eastern parts of China being higher in central areas and lower in the north and south. On the contrary, the West China Autumn Rain brought much more rainfall than normal, with an earlier start and later end. Although there was less annual precipitation in 2023, China suffered seriously from heavy precipitation events and floods. In particular, from the end of July to the beginning of August, a rare, extremely strong rainstorm caused by Typhoon Dussuri hit Beijing, Tianjin, and Hebei, causing an abrupt alteration from drought to flood conditions in North China. By contrast, Southwest China experienced continuous drought from the previous autumn to current spring. In early summer, North China and the Huanghuai region experienced the strongest high-temperature process since 1961. Nevertheless, there were more cold-air processes than normal impacting China, with the most severe of the year occurring in mid-January. Unexpectedly, in spring, there were more sand and dust occurrences in northern China.

摘要

2023年, 我国气候暖干特征明显, 全国平均气温10.71°C, 为1951年以来最暖; 全国平均降水量615.0 mm, 较常年偏少3.9%, 为2012年以来第二少. 汛期 (5–9月), 全国平均降水量为2012年以来第二少, 中东部降水总体呈“中间多南北少”的分布. 2023年, 我国区域性气象干旱多发, 西南地区遭遇冬春连旱; 春季北方沙尘天气过程偏多; 夏季前期, 华北和黄淮遭受1961年以来最强高温过程; 7月底至8月初, 受台风杜苏芮影响, 京津冀地区发生历史罕见极端强降雨过程, 华北地区出现“旱涝急转”; 华西秋雨开始早, 结束晚, 雨量多.

2023 年,中国气候温暖干燥。年地表气温达到新高 10.71°C,为 1961 年以来最热的秋季和第二热的夏季。同时,年降水量为 615.0 毫米,为 2012 年以来第二少。冬季至夏季降水量较常年偏少,但秋季降水量较常年偏多。与常年情况一致,5 月至 9 月汛期降水量也是 2012 年以来第二少,比常年偏少 4.3%,中部和东部地区异常,中部偏多,北部和南部偏少。相反,"华西秋雨 "带来的降水却比常年同期偏多,且开始时间偏早,结束时间偏晚。虽然 2023 年全年降水偏少,但中国遭受了严重的强降水和洪涝灾害。特别是 7 月底至 8 月初,台风 "杜苏芮 "引发的罕见特大暴雨袭击京津冀,导致华北地区旱涝急转。与此形成鲜明对比的是,西南地区从去年秋季到今年春季经历了持续干旱。初夏,华北和黄淮地区经历了 1961 年以来最强的高温过程。不过,影响中国的冷空气过程比常年偏多,其中最严重的一次出现在 1 月中旬。摘要2023年, 我国气候暖干特征明显, 全国平均气温10.71°C, 为1951年以来最暖; 全国平均降水量615.0毫米, 较常年偏少3.9%, 为2012年以来第二少。汛期(5-9月),全国平均降水量为2012年以来第二少, 中东部降水总体呈 "中间多南北少 "的分布。2023年, 我国区域性气象干旱多发, 西南地区遭遇冬春连旱; 春季北方沙尘天气过程偏多; 夏季前期, 华北和黄淮遭受1961年以来最强高温过程; 7月底至8月初, 受台风杜苏芮影响, 京津冀地区发生历史罕见极端强降雨过程, 华北地区出现 "旱涝急转"; 华西秋雨开始早, 结束晚, 雨量多。
{"title":"State of China's climate in 2023","authors":"Linhai Sun,&nbsp;Xiaying Zhu,&nbsp;Wei Li,&nbsp;Wanxiu Ai,&nbsp;Xianyan Chen,&nbsp;Yundi Jiang,&nbsp;Ling Wang,&nbsp;Xukai Zou,&nbsp;Shanshan Zhao,&nbsp;Hongling Zeng,&nbsp;Hailing Zhong","doi":"10.1016/j.aosl.2024.100519","DOIUrl":"10.1016/j.aosl.2024.100519","url":null,"abstract":"<div><p>China witnessed a warm and dry climate in 2023. The annual surface air temperature reached a new high of 10.71°C, with the hottest autumn and the second hottest summer since 1961. Meanwhile, the annual precipitation was the second lowest since 2012, at 615.0 mm. Precipitation was less than normal from winter to summer, but more in autumn. Consistent with the annual condition, precipitation in the flood season from May to September was also the second lowest since 2012, which was 4.3% less than normal, with the anomalies in the central and eastern parts of China being higher in central areas and lower in the north and south. On the contrary, the West China Autumn Rain brought much more rainfall than normal, with an earlier start and later end. Although there was less annual precipitation in 2023, China suffered seriously from heavy precipitation events and floods. In particular, from the end of July to the beginning of August, a rare, extremely strong rainstorm caused by Typhoon Dussuri hit Beijing, Tianjin, and Hebei, causing an abrupt alteration from drought to flood conditions in North China. By contrast, Southwest China experienced continuous drought from the previous autumn to current spring. In early summer, North China and the Huanghuai region experienced the strongest high-temperature process since 1961. Nevertheless, there were more cold-air processes than normal impacting China, with the most severe of the year occurring in mid-January. Unexpectedly, in spring, there were more sand and dust occurrences in northern China.</p><p>摘要</p><p>2023年, 我国气候暖干特征明显, 全国平均气温10.71°C, 为1951年以来最暖; 全国平均降水量615.0 mm, 较常年偏少3.9%, 为2012年以来第二少. 汛期 (5–9月), 全国平均降水量为2012年以来第二少, 中东部降水总体呈“中间多南北少”的分布. 2023年, 我国区域性气象干旱多发, 西南地区遭遇冬春连旱; 春季北方沙尘天气过程偏多; 夏季前期, 华北和黄淮遭受1961年以来最强高温过程; 7月底至8月初, 受台风杜苏芮影响, 京津冀地区发生历史罕见极端强降雨过程, 华北地区出现“旱涝急转”; 华西秋雨开始早, 结束晚, 雨量多.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 5","pages":"Article 100519"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283424000680/pdfft?md5=33e16e8e8906bc4a86f1fe93d95642b9&pid=1-s2.0-S1674283424000680-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolated deep convections over the Tibetan Plateau in the rainy season during 2001–2020 2001-2020 年雨季青藏高原上空的孤立深层对流
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-01 DOI: 10.1016/j.aosl.2024.100489

The Tibetan Plateau (TP) is a prevalent region for convection systems due to its unique thermodynamic forcing. This study investigated isolated deep convections (IDCs), which have a smaller spatial and temporal size than mesoscale convective systems (MCSs), over the TP in the rainy season (June–September) during 2001–2020. The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission. Results show that IDCs mainly concentrate over the southern TP. The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP, with an average 54.2. The initiation time of IDCs exhibits an obvious diurnal cycle, with the peak at 1400–1500 LST and the valley at 0900–1000 LST. Most IDCs last less than five hours and more than half appear for only one hour. IDCs generally have a cold cloud area of 7422.9 km2, containing a precipitation area of approximately 65%. The larger the IDC, the larger the fraction of intense precipitation it contains. IDCs contribute approximately 20%–30% to total precipitation and approximately 30%–40% to extreme precipitation over the TP, with a larger percentage in July and August than in June and September. In terms of spatial distribution, IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions. IDCs over the TP account for a larger fraction than MCSs, indicating the important role of IDCs over the region.

摘要

本文利用卫星观测资料, 研究了2001–2020年雨季 (6–9月) 青藏高原上孤立深对流 (Isolated deep convections, IDCs) 的气候特征. IDCs定义为比中尺度对流系统 (Mesoscale convective systems, MCSs) 时空尺度小的对流. 结果显示, 每年雨季青藏高原上平均的IDC数量为54.2个, 主要分布在高原的南部. IDCs的初始时刻呈现明显的日循环, 在下午14–15时为峰值, 在上午9–10时为谷值. 大部分IDCs持续时间在5小时以内, 超过一半的IDCs仅持续1小时. IDCs的冷云平均面积约为7422.9km2, 其中包含65%的降水面积. IDC面积越大, 包含的强降水范围也越大. IDCs对青藏高原总降水的贡献约为20%–30%, 对极端降水贡献约为30%–40%, 在7月和8月的占比大于6月和9月. 在空间分布方面, 青藏高原上IDCs对总降水和极端降水的贡献大于周围平原地区. 青藏高原上IDCs对降水的贡献大于MCSs, 表明IDCs在该地区起着重要作用.

青藏高原因其独特的热动力强迫而成为对流系统的多发区。本研究调查了 2001-2020 年间雨季(6-9 月)青藏高原上的孤立深对流(IDCs),与中尺度对流系统(MCSs)相比,IDCs 的时空规模较小。作者使用了全球降水测量任务的卫星降水和亮度温度观测数据。结果表明,IDC 主要集中在南部大陆架。每个雨季的 IDC 数量从南部热带降雨带的约 140 个减少到北部热带降雨带的约 10 个,平均为 54.2 个。IDC 的开始时间呈现出明显的昼夜周期,高峰期在 1400-1500 LST,低谷期在 0900-1000 LST。大多数 IDC 持续时间不超过 5 小时,一半以上的 IDC 仅出现 1 小时。IDC 的冷云面积一般为 7422.9 平方公里,其中降水面积约占 65%。IDC 的面积越大,包含的强降水就越多。IDC 约占整个热带降水量的 20%-30%,约占极端降水量的 30%-40%,其中 7 月和 8 月的比例大于 6 月和 9 月。从空间分布来看,与周边平原地区相比,IDC 对大洋洲保护区总降水量和极端降水量的贡献都更大。TP上的IDC占比大于MCS,表明IDC在该区域的重要作用。摘要本文利用卫星观测资料,研究了2001-2020年雨季 (6-9月) 青藏高原上孤立深对流 (Isolated deep convections, IDCs) 的气候特征。IDCs定义为比中尺度对流系统 (Mesoscale convective systems, MCSs) 时空尺度小的对流。结果显示, 每年雨季青藏高原上平均的idc 数量为 54.2 个, 主要分布在高原的南部。IDCs的初始时刻呈现明显的日循环, 在下午14-15时为峰值, 在上午9-10时为谷值。大部分 IDCs 持续时间在 5 小时以内, 超过一半的 IDCs 仅持续 1 小时。IDCs的冷云平均面积约为7422.9km2,其中包含65%的降水面积。IDC的冷云平均面积约为7422.9km2, 其中包含65%的降水面积。IDCs对青藏高原总降水的贡献约为20%-30%, 对极端降水的贡献约为30%-40%, 在7月和8月的占比大于6月和9月。在空间分布方面,青藏高原上IDCs对总降水和极端降水的贡献大于周围平原地区。青藏高原上 IDCs 对总降水和极端降水的贡献大于周围平原地区。
{"title":"Isolated deep convections over the Tibetan Plateau in the rainy season during 2001–2020","authors":"","doi":"10.1016/j.aosl.2024.100489","DOIUrl":"10.1016/j.aosl.2024.100489","url":null,"abstract":"<div><p>The Tibetan Plateau (TP) is a prevalent region for convection systems due to its unique thermodynamic forcing. This study investigated isolated deep convections (IDCs), which have a smaller spatial and temporal size than mesoscale convective systems (MCSs), over the TP in the rainy season (June–September) during 2001–2020. The authors used satellite precipitation and brightness temperature observations from the Global Precipitation Measurement mission. Results show that IDCs mainly concentrate over the southern TP. The IDC number per rainy season decreases from around 140 over the southern TP to around 10 over the northern TP, with an average 54.2. The initiation time of IDCs exhibits an obvious diurnal cycle, with the peak at 1400–1500 LST and the valley at 0900–1000 LST. Most IDCs last less than five hours and more than half appear for only one hour. IDCs generally have a cold cloud area of 7422.9 km<sup>2</sup>, containing a precipitation area of approximately 65%. The larger the IDC, the larger the fraction of intense precipitation it contains. IDCs contribute approximately 20%–30% to total precipitation and approximately 30%–40% to extreme precipitation over the TP, with a larger percentage in July and August than in June and September. In terms of spatial distribution, IDCs contribute more to both total precipitation and extreme precipitation over the TP compared to the surrounding plain regions. IDCs over the TP account for a larger fraction than MCSs, indicating the important role of IDCs over the region.</p><p>摘要</p><p>本文利用卫星观测资料, 研究了2001–2020年雨季 (6–9月) 青藏高原上孤立深对流 (Isolated deep convections, IDCs) 的气候特征. IDCs定义为比中尺度对流系统 (Mesoscale convective systems, MCSs) 时空尺度小的对流. 结果显示, 每年雨季青藏高原上平均的IDC数量为54.2个, 主要分布在高原的南部. IDCs的初始时刻呈现明显的日循环, 在下午14–15时为峰值, 在上午9–10时为谷值. 大部分IDCs持续时间在5小时以内, 超过一半的IDCs仅持续1小时. IDCs的冷云平均面积约为7422.9km<sup>2</sup>, 其中包含65%的降水面积. IDC面积越大, 包含的强降水范围也越大. IDCs对青藏高原总降水的贡献约为20%–30%, 对极端降水贡献约为30%–40%, 在7月和8月的占比大于6月和9月. 在空间分布方面, 青藏高原上IDCs对总降水和极端降水的贡献大于周围平原地区. 青藏高原上IDCs对降水的贡献大于MCSs, 表明IDCs在该地区起着重要作用.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 5","pages":"Article 100489"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283424000382/pdfft?md5=308d88abdcdef39b723facf7c55f9df7&pid=1-s2.0-S1674283424000382-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140399858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projected changes in extreme snowfall events over the Tibetan Plateau based on a set of RCM simulations 基于一套区域气候变化模型模拟的青藏高原极端降雪事件的预测变化
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-01 DOI: 10.1016/j.aosl.2023.100446

Extreme snowfall events over the Tibetan Plateau (TP) cause considerable damage to local society and natural ecosystems. In this study, the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model, RegCM4. The model is driven by five CMIP5 global climate models at a grid spacing of 25 km, under the RCP4.5 and RCP8.5 pathways. Four modified ETCCDI extreme indices—namely, SNOWTOT, S1mm, S10mm, and Sx5day—are employed to characterize the extreme snowfall events. RegCM4 generally reproduces the spatial distribution of the indices over the region, although with a tendency of overestimation. For the projected changes, a general decrease in SNOWTOT is found over most of the TP, with greater magnitude and better cross-simulation agreement over the eastern part. All the simulations project an overall decrease in S1mm, ranging from a 25% decrease in the west and to a 50% decrease in the east of the TP. Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP. Notably, S10mm shows a marked increase (more than double) with high cross-simulation agreement over the central TP. Significant increases in all four indices are found over the Tarim and Qaidam basins, and northwestern China north of the TP. The projected changes show topographic dependence over the TP in the latitudinal direction, and tend to decrease/increase in low-/high-altitude areas.

摘要

基于RegCM4区域气候模式的气候变化预估试验数据, 开展了青藏高原及其周边地区极端降雪事件的未来变化研究. 结果表明, 总降雪量在高原大部分地区呈减少趋势, 降雪日数在高原也将明显减少, 尤其是在东部. 大雪日数和五日最大降雪量在高原东部将减少, 而在中部和西部明显增加. 在高原周边的塔里木和柴达木盆地及中国西北地区, 极端降雪事件同样增加显著. 极端降雪事件在高原上呈现出东西方向上的地形依赖性, 在低/高海拔地区呈减少/增加趋势.

青藏高原(TP)上的极端降雪事件给当地社会和自然生态系统造成了巨大损失。在本研究中,作者利用区域气候模式 RegCM4,根据一组 21 世纪气候变化预测组合,研究了青藏高原及其周边地区极端降雪事件的预测变化。在 RCP4.5 和 RCP8.5 路径下,该模型由网格间距为 25 千米的五个 CMIP5 全球气候模型驱动。模型采用了四个修正的 ETCCDI 极端指数(即 SNOWTOT、S1mm、S10mm 和 Sx5day)来描述极端降雪事件。RegCM4 总体上再现了这些指数在该地区的空间分布,但有高估的趋势。就预测变化而言,在大部分热带降雨地区,SNOWTOT 普遍下降,东部地区降雪量更大,交叉模拟的一致性更好。所有模拟都预测 S1mm 会全面减少,从大洋洲西部减少 25% 到东部减少 50% 不等。预计 S10mm 和 Sx5day 都将在大洋洲东部地区减少,而在中部和西部地区增加。值得注意的是,S10mm 显著增加(超过一倍),与大洋洲中部的交叉模拟结果高度一致。在塔里木盆地和柴达木盆地以及大洋洲北部的中国西北地区,所有四个指数都有显著增加。预测的变化在纬度方向上显示出与大洋洲地形的相关性,在低海拔/高海拔地区有减少/增加的趋势。摘要基于 RegCM4 区域气候模式的气候变化预估试验数据,开展了青藏高原及其周边地区极端降雪事件的未来变化研究。结果表明, 总降雪量在高原大部分地区呈减少趋势, 降雪日数在高原也将明显减少, 尤其是在东部。大雪日数和五日最大降雪量在高原东部将减少, 而在中部和西部明显增加。在高原周边的塔里木和柴达木盆地及中国西北地区,极端降雪事件同样增加显著。极端降雪事件在高原上呈现出东西方向上的地形依赖性, 在低/高海拔地区呈减少/增加趋势。
{"title":"Projected changes in extreme snowfall events over the Tibetan Plateau based on a set of RCM simulations","authors":"","doi":"10.1016/j.aosl.2023.100446","DOIUrl":"10.1016/j.aosl.2023.100446","url":null,"abstract":"<div><p>Extreme snowfall events over the Tibetan Plateau (TP) cause considerable damage to local society and natural ecosystems. In this study, the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model, RegCM4. The model is driven by five CMIP5 global climate models at a grid spacing of 25 km, under the RCP4.5 and RCP8.5 pathways. Four modified ETCCDI extreme indices—namely, SNOWTOT, S1mm, S10mm, and Sx5day—are employed to characterize the extreme snowfall events. RegCM4 generally reproduces the spatial distribution of the indices over the region, although with a tendency of overestimation. For the projected changes, a general decrease in SNOWTOT is found over most of the TP, with greater magnitude and better cross-simulation agreement over the eastern part. All the simulations project an overall decrease in S1mm, ranging from a 25% decrease in the west and to a 50% decrease in the east of the TP. Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP. Notably, S10mm shows a marked increase (more than double) with high cross-simulation agreement over the central TP. Significant increases in all four indices are found over the Tarim and Qaidam basins, and northwestern China north of the TP. The projected changes show topographic dependence over the TP in the latitudinal direction, and tend to decrease/increase in low-/high-altitude areas.</p><p>摘要</p><p>基于RegCM4区域气候模式的气候变化预估试验数据, 开展了青藏高原及其周边地区极端降雪事件的未来变化研究. 结果表明, 总降雪量在高原大部分地区呈减少趋势, 降雪日数在高原也将明显减少, 尤其是在东部. 大雪日数和五日最大降雪量在高原东部将减少, 而在中部和西部明显增加. 在高原周边的塔里木和柴达木盆地及中国西北地区, 极端降雪事件同样增加显著. 极端降雪事件在高原上呈现出东西方向上的地形依赖性, 在低/高海拔地区呈减少/增加趋势.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 5","pages":"Article 100446"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283423001459/pdfft?md5=0f9d88b01fcd624760a099c0666f3808&pid=1-s2.0-S1674283423001459-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139302808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights from the Second Tibetan Plateau Scientific Expedition: Unveiling the westerly–monsoon synergy and hydroclimate changes 第二次青藏高原科学考察的启示:揭示西风-季风协同作用和水文气候的变化
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-01 DOI: 10.1016/j.aosl.2024.100541
Chaofan Li , Yaoming Ma , Tianjun Zhou , Riyu Lu
{"title":"Insights from the Second Tibetan Plateau Scientific Expedition: Unveiling the westerly–monsoon synergy and hydroclimate changes","authors":"Chaofan Li ,&nbsp;Yaoming Ma ,&nbsp;Tianjun Zhou ,&nbsp;Riyu Lu","doi":"10.1016/j.aosl.2024.100541","DOIUrl":"10.1016/j.aosl.2024.100541","url":null,"abstract":"","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 5","pages":"Article 100541"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283424000904/pdfft?md5=f373c695dc0c6e2313e5a7149f1da2c9&pid=1-s2.0-S1674283424000904-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research progress on the water vapor channel within the Yarlung Zsangbo Grand Canyon, China 中国雅鲁藏布大峡谷水汽通道研究进展
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-01 DOI: 10.1016/j.aosl.2024.100462

The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the “Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon (INVC)” in the southeastern Tibetan Plateau (TP). This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes. The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon (YGC) topography on precipitation at the hourly scale. The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area. The GPM-IMERG (Integrated Multi-satellitE Retrievals for Global Precipitation Measurement) satellite precipitation data for the YGC region should be calibrated before they are used. The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP. The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC. High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.

摘要

第二次青藏高原科学考察研究在青藏高原东南部组建了雅鲁藏布大峡谷水汽通道科学考察分队, 本文主要总结了该科考分队近几年开展的观测研究以及利用该分队建立的观测网收集的观测数据所取得的科学成果, 重点介绍了与大峡谷水汽输送相关的强降雨过程的研究进展; 研究主要发现科考分队在大峡谷建立的雨量筒观测网可以代表该地区地形对小时降水量的空间影响; 藏东南降水的微物理特征与低海拔地区有明显差异; GPM卫星降水数据在大峡谷地区存在干偏差的问题, 使用前需进行校准; 穿越大峡谷的经向水汽输送对青藏高原东南部的降水有重要影响, 大峡谷周边区域降水量的减少可能是由于穿越大峡谷经向水汽通量的减少造成; 使用特定云降水方案的高分辨率数值模型可以较好的捕捉大峡谷内的风场和水汽输送时, 该模型能对该地区夜间强降水做出准确预报.

第二次青藏高原科学考察研究计划 "课题组承担了青藏高原东南部 "雅鲁藏布大峡谷水汽通道(INVC)调查 "任务。本文总结了 INVC 观测网收集的数据所取得的科学成果,并重点介绍了在研究与水汽变化相关的暴雨事件发展方面所取得的进展。雅鲁藏布大峡谷观测站的雨量计网络能够以小时为单位反映雅鲁藏布大峡谷地形对降水的影响。雅鲁藏布大峡谷降水的微物理特征与低洼地区不同。YGC 地区的 GPM-IMERG (全球降水测量多卫星综合检索)卫星降水数据应在使用前进行校准。对于东南热带降水来说,通过 YGC 的经向水汽通量比地带通量更为重要。YGC 区域周围降水量减少的部分原因是通过 YGC 的经向水汽通量减少。高分辨率数值模式可以通过结合使用特定方案来捕捉谷底风和水汽通量,从而有利于该地区的降水预报。摘要第二次青藏高原科学考察研究在青藏高原东南部组建了雅鲁藏布大峡谷水汽通道科学考察分队, 本文主要总结了该科考分队近几年开展的观测研究以及利用该分队建立的观测网收集的观测数据所取得的科学成果, 重点介绍了与大峡谷水汽输送相关的强降雨过程的研究进展; 研究主要发现科考分队在大峡谷建立的雨量筒观测网可以代表该地区地形对小时降水量的空间影响;藏东南降水的微物理特征与低海拔地区有明显差异; Gpm卫星降水数据在大峡谷地区存在干偏差的问题, 使用前需进行校准; 穿越大峡谷的经向水汽输送对青藏高原东南部的降水有重要影响, 大峡谷周边区域降水量的减少可能是由于穿越大峡谷经向水汽通量的减少造成的; 使用特定云降水方案的高分辨率数值模型可以较好的捕捉大峡谷内的风场和水汽输送时, 该模型能对该地区夜间强降水做出准确预报.
{"title":"Research progress on the water vapor channel within the Yarlung Zsangbo Grand Canyon, China","authors":"","doi":"10.1016/j.aosl.2024.100462","DOIUrl":"10.1016/j.aosl.2024.100462","url":null,"abstract":"<div><p>The Second Tibetan Plateau Scientific Expedition and Research Program tasked a research team with the “Investigation of the water vapor channel of the Yarlung Zsangbo Grand Canyon (INVC)” in the southeastern Tibetan Plateau (TP). This paper summarizes the scientific achievements obtained from the data collected by the INVC observation network and highlights the progress in investigating the development of heavy rainfall events associated with water vapor changes. The rain gauge network of the INVC can represent the impacts of the Yarlung Zsangbo Grand Canyon (YGC) topography on precipitation at the hourly scale. The microphysical characteristics of the precipitation in the YGC are different than those in the lowland area. The GPM-IMERG (Integrated Multi-satellitE Retrievals for Global Precipitation Measurement) satellite precipitation data for the YGC region should be calibrated before they are used. The meridional water vapor flux through the YGC is more important than the zonal flux for the precipitation over the southeastern TP. The decreased precipitation around the YGC region is partly due to the decreased meridional water vapor flux passing through the YGC. High-resolution numerical models can benefit precipitation forecasting in this region by using a combination of specific schemes that capture the valley wind and water vapor flux along the valley floor.</p><p>摘要</p><p>第二次青藏高原科学考察研究在青藏高原东南部组建了雅鲁藏布大峡谷水汽通道科学考察分队, 本文主要总结了该科考分队近几年开展的观测研究以及利用该分队建立的观测网收集的观测数据所取得的科学成果, 重点介绍了与大峡谷水汽输送相关的强降雨过程的研究进展; 研究主要发现科考分队在大峡谷建立的雨量筒观测网可以代表该地区地形对小时降水量的空间影响; 藏东南降水的微物理特征与低海拔地区有明显差异; GPM卫星降水数据在大峡谷地区存在干偏差的问题, 使用前需进行校准; 穿越大峡谷的经向水汽输送对青藏高原东南部的降水有重要影响, 大峡谷周边区域降水量的减少可能是由于穿越大峡谷经向水汽通量的减少造成; 使用特定云降水方案的高分辨率数值模型可以较好的捕捉大峡谷内的风场和水汽输送时, 该模型能对该地区夜间强降水做出准确预报.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 5","pages":"Article 100462"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283424000102/pdfft?md5=eafc877f376f6713edcfbb4d393eee74&pid=1-s2.0-S1674283424000102-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139455693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variation in the surface heat flux on the north and south slopes of Mount Qomolangma 珠穆朗玛峰南北坡地表热通量的变化
IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-01 DOI: 10.1016/j.aosl.2024.100513
Yonghao Jiang , Maoshan Li , Yuchen Liu , Ting Wang , Pei Xu , Yaoming Ma , Fanglin Sun

The distinctive conditions present on the north and south slopes of Mount Qomolangma, along with the intricate variations in the underlying surfaces, result in notable variations in the surface energy flux patterns of the two slopes. In this paper, data from TESEBS (Topographical Enhanced Surface Energy Balance System), remote sensing data from eight cloud-free scenarios, and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes. The inclusion of MCD43A3 satellite data enhances the surface albedo, contributing to more accurate simulation outcomes. The model results are validated using observational data. The RMSEs of the net radiation, ground heat, sensible heat, and latent heat flux are 40.73, 17.09, 33.26, and 30.91 W m−2, respectively. The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn. Due to the influence of the monsoon, on the north slope, the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon. The south slope experiences the highest latent heat flux in summer. The dominant flux on the north slope is sensible heat, while it is latent heat on the south slope. The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope. Except in summer, the ground heat flux on the north slope surpasses that on the south slope.

摘要

珠穆朗玛峰南北坡独特的地形条件和复杂的下垫面, 导致了南北坡地表通量分布的显著差异. 本文利用地形增强地表能量平衡模式 (Topographical Enhanced Surface Energy Balance System (TESEBS)), 遥感数据和站点观测数据, 对季风和非季风期南北坡的地表热通量变化进行了研究. 首先, 把MCD43A3卫星数据加入TESEBS, 改进了地表反照率, 使模拟结果更准确. 受季风影响, 北坡季风期感热通量最大值出现在季风前期, 潜热通量最大值出现在季风期. 南坡季风期潜热通量最大. 全年北坡以感热交换为主, 南坡以潜热交换为主. 土壤热通量的季节变化在南坡比北坡更明显.

由于珠穆朗玛峰南北两坡的地形条件各不相同,加上地表的复杂变化,导致两坡的地表能量通量模式存在明显差异。本文利用 TESEBS(地形增强地表能量平衡系统)数据、8 个无云场景的遥感数据和 9 个观测站的观测数据,研究了两个山坡地表热通量的波动情况。MCD43A3 卫星数据的加入增强了地表反照率,有助于获得更精确的模拟结果。利用观测数据对模型结果进行了验证。净辐射、地热、显热和潜热通量的均方根误差分别为 40.73、17.09、33.26 和 30.91 W m-2。南坡的净辐射通量较大,从夏季到秋季呈快速下降趋势。由于季风的影响,北坡的最大显热通量出现在夏季季风前期,最大潜热通量出现在季风期间。南坡夏季的潜热通量最大。北坡的主要通量是显热,而南坡则是潜热。南坡地热通量的季节变化比北坡更明显。摘要 珠穆朗玛峰南北坡独特的地形条件和复杂的下垫面,导致了南北坡地表通量分布的显著差异。本文利用地形增强地表能量平衡模式 (Topographical Enhanced Surface Energy Balance System, TESEBS), 遥感数据和站点观测数据, 对季风和非季风期南北坡的地表热通量变化进行了研究。首先,把 mcd43a3 卫星数据加入 tesebs, 改进了地表反照率, 使模拟结果更准确。受季风影响, 北坡季风期感热通量最大值出现在季风前期, 潜热通量最大值出现在季风期.南坡季风期潜热通量最大。全年北坡以感热交换为主,南坡以潜热交换为主。土壤热通量的季节变化在南坡比北坡更明显。
{"title":"Variation in the surface heat flux on the north and south slopes of Mount Qomolangma","authors":"Yonghao Jiang ,&nbsp;Maoshan Li ,&nbsp;Yuchen Liu ,&nbsp;Ting Wang ,&nbsp;Pei Xu ,&nbsp;Yaoming Ma ,&nbsp;Fanglin Sun","doi":"10.1016/j.aosl.2024.100513","DOIUrl":"10.1016/j.aosl.2024.100513","url":null,"abstract":"<div><p>The distinctive conditions present on the north and south slopes of Mount Qomolangma, along with the intricate variations in the underlying surfaces, result in notable variations in the surface energy flux patterns of the two slopes. In this paper, data from TESEBS (Topographical Enhanced Surface Energy Balance System), remote sensing data from eight cloud-free scenarios, and observational data from nine stations are utilized to examine the fluctuations in the surface heat flux on both slopes. The inclusion of MCD43A3 satellite data enhances the surface albedo, contributing to more accurate simulation outcomes. The model results are validated using observational data. The RMSEs of the net radiation, ground heat, sensible heat, and latent heat flux are 40.73, 17.09, 33.26, and 30.91 W m<sup>−2</sup>, respectively. The net radiation flux is greater on the south slope and exhibits a rapid decline from summer to autumn. Due to the influence of the monsoon, on the north slope, the maximum sensible heat flux occurs in the pre-monsoon period in summer and the maximum latent heat flux occurs during the monsoon. The south slope experiences the highest latent heat flux in summer. The dominant flux on the north slope is sensible heat, while it is latent heat on the south slope. The seasonal variations in the ground heat flux are more pronounced on the south slope than on the north slope. Except in summer, the ground heat flux on the north slope surpasses that on the south slope.</p><p>摘要</p><p>珠穆朗玛峰南北坡独特的地形条件和复杂的下垫面, 导致了南北坡地表通量分布的显著差异. 本文利用地形增强地表能量平衡模式 (Topographical Enhanced Surface Energy Balance System (TESEBS)), 遥感数据和站点观测数据, 对季风和非季风期南北坡的地表热通量变化进行了研究. 首先, 把MCD43A3卫星数据加入TESEBS, 改进了地表反照率, 使模拟结果更准确. 受季风影响, 北坡季风期感热通量最大值出现在季风前期, 潜热通量最大值出现在季风期. 南坡季风期潜热通量最大. 全年北坡以感热交换为主, 南坡以潜热交换为主. 土壤热通量的季节变化在南坡比北坡更明显.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 5","pages":"Article 100513"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S167428342400062X/pdfft?md5=55246a9b274532fc324f6ce1bb0a7c75&pid=1-s2.0-S167428342400062X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Atmospheric and Oceanic Science Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1