Groundwater is extensively utilized for drinking, irrigation, and industrial activities globally. However, its quality is deteriorating significantly, particularly in coastal regions where saline water infiltration is a major issue. This study investigates the coastal aquifer of Udupi district in Karnataka, India, covering approximately 80 km2, through hydro-geochemical analysis of groundwater samples from 57 spatially distributed locations, pre- and post-monsoon. The major anion and cation parameters analyzed include Cl−, HCO₃−, SO42−, NO₃−, Na+, Ca2+, K+, and Mg2+. The analysis revealed a pH range of 2.9 to 8.3, indicating acidic to slightly alkaline conditions, and total dissolved solids (TDS) concentrations ranging from 110 to 6683 mg/L, predominantly showing saline characteristics toward the coastline. Hydrogeochemical assessment, including Chadha’s plot, identified Na-Cl type water in most samples, indicating the influence of salinity. Approximately 21% of pre-monsoon and 67% of post-monsoon samples were deemed unsuitable for irrigation based on permeability index values, with 2 to 3% exhibiting high salinity hazards. The variation in correlation coefficients between pre-monsoon and post-monsoon periods suggests that saline water intrusion, freshwater recharge, and geochemical interactions influence the coastal groundwater system. The molar ratio of Na⁺ to Cl− suggested a reverse cation exchange process, highlighting the complex interactions between saline and freshwater. Overall, 79% of pre-monsoon and 80% of post-monsoon samples were deemed suitable for irrigation, while 21% and 20% were classified as completely unsuitable, respectively.