Predicting the winner of an election is of importance to multiple stakeholders. To formulate the problem, we consider an independent sequence of categorical data with a finite number of possible outcomes in each. The data is assumed to be observed in batches, each of which is based on a large number of such trials and can be modeled via multinomial distributions. We postulate that the multinomial probabilities of the categories vary randomly depending on batches. The challenge is to predict accurately on cumulative data based on data up to a few batches as early as possible. On the theoretical front, we first derive sufficient conditions of asymptotic normality of the estimates of the multinomial cell probabilities and present corresponding suitable transformations. Then, in a Bayesian framework, we consider hierarchical priors using multivariate normal and inverse Wishart distributions and establish the posterior convergence. The desired inference is arrived at using these results and ensuing Gibbs sampling. The methodology is demonstrated with election data from two different settings—one from India and the other from the United States. Additional insights of the effectiveness of the proposed methodology are attained through a simulation study.
{"title":"Forecasting elections from partial information using a Bayesian model for a multinomial sequence of data","authors":"Soudeep Deb, Rishideep Roy, Shubhabrata Das","doi":"10.1002/for.3107","DOIUrl":"10.1002/for.3107","url":null,"abstract":"<p>Predicting the winner of an election is of importance to multiple stakeholders. To formulate the problem, we consider an independent sequence of categorical data with a finite number of possible outcomes in each. The data is assumed to be observed in batches, each of which is based on a large number of such trials and can be modeled via multinomial distributions. We postulate that the multinomial probabilities of the categories vary randomly depending on batches. The challenge is to predict accurately on cumulative data based on data up to a few batches as early as possible. On the theoretical front, we first derive sufficient conditions of asymptotic normality of the estimates of the multinomial cell probabilities and present corresponding suitable transformations. Then, in a Bayesian framework, we consider hierarchical priors using multivariate normal and inverse Wishart distributions and establish the posterior convergence. The desired inference is arrived at using these results and ensuing Gibbs sampling. The methodology is demonstrated with election data from two different settings—one from India and the other from the United States. Additional insights of the effectiveness of the proposed methodology are attained through a simulation study.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 6","pages":"1814-1834"},"PeriodicalIF":3.4,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Federal Open Market Committee (FOMC) is a component of the Federal Reserve System responsible for overseeing open market operations. The FOMC meets roughly eight or more times per year to assess the economy of the United States. After each meeting, the FOMC releases a statement to the press outlining its assessment of the US economy and its monetary policy stance. The sentiment of these statements may have an influence on the US economy and financial markets. Using sentiment and correlational analyses, this research examines how the sentiment of these statements affects the US economy and financial markets by analyzing how FOMC statement sentiment is correlated with the Consumer Price Index (CPI), the National Financial Conditions Index (NFCI), and the Adjusted National Financial Conditions Index (ANFCI). We find evidence to suggest that there is a moderate negative correlation between an FOMC statement's sentiment and the US City Average CPI value associated with the month before and the month after the statement's release. We also find that there is no evidence to suggest there exists a correlation between an FOMC statement's sentiment and the NFCI value associated with the week before or the week after the statement's release. However, we do find evidence to suggest that there is a moderate negative correlation between an FOMC statement's sentiment and the ANFCI value associated with the week before and the week after the statement's release. We also found that out of the three models we tested (linear regression, vine copula regression, and Gaussian copula regression), the Gaussian copula regression model performs the best when forecasting the CPI and the ANFCI. Additionally, we find that when forecasting CPI values, the models that include FOMC statement sentiment are more accurate than the models that exclude FOMC statement sentiment.
{"title":"Forecasting Consumer Price Index with Federal Open Market Committee Sentiment Index","authors":"Joshua Eklund, Jong-Min Kim","doi":"10.1002/for.3109","DOIUrl":"10.1002/for.3109","url":null,"abstract":"<p>The Federal Open Market Committee (FOMC) is a component of the Federal Reserve System responsible for overseeing open market operations. The FOMC meets roughly eight or more times per year to assess the economy of the United States. After each meeting, the FOMC releases a statement to the press outlining its assessment of the US economy and its monetary policy stance. The sentiment of these statements may have an influence on the US economy and financial markets. Using sentiment and correlational analyses, this research examines how the sentiment of these statements affects the US economy and financial markets by analyzing how FOMC statement sentiment is correlated with the Consumer Price Index (CPI), the National Financial Conditions Index (NFCI), and the Adjusted National Financial Conditions Index (ANFCI). We find evidence to suggest that there is a moderate negative correlation between an FOMC statement's sentiment and the US City Average CPI value associated with the month before and the month after the statement's release. We also find that there is no evidence to suggest there exists a correlation between an FOMC statement's sentiment and the NFCI value associated with the week before or the week after the statement's release. However, we do find evidence to suggest that there is a moderate negative correlation between an FOMC statement's sentiment and the ANFCI value associated with the week before and the week after the statement's release. We also found that out of the three models we tested (linear regression, vine copula regression, and Gaussian copula regression), the Gaussian copula regression model performs the best when forecasting the CPI and the ANFCI. Additionally, we find that when forecasting CPI values, the models that include FOMC statement sentiment are more accurate than the models that exclude FOMC statement sentiment.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 6","pages":"1795-1813"},"PeriodicalIF":3.4,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140057648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposes a cross-section long short-term memory (CS-LSTM) factor model to explore the possibility of estimating expected returns in the Chinese stock market. In contrast to previous machine-learning-based asset pricing models that make predictions directly on equity returns, CS-LSTM estimates are based on predictions of slope terms from Fama–MacBeth cross-section regressions using 16 stock characteristics as factor loadings. In line with previous studies in the context of the Chinese market, we find illiquidity and short-term momentum to be the most important factors in describing asset returns. By using 274 value-weighted portfolios as test assets, we systematically compare the performances of CS-LSTM and three other candidate models. Our CS-LSTM model consistently delivers better performance than the candidate models and beats the market at all different levels of transaction costs. In addition, we observe that assets with smaller cap are favored by the model. By repeating the empirical analysis based on the top 70% of stocks, our CS-LSTM model remains robust and consistently provides significant market-beating performance. Our findings from the CS-LSTM model have practical implications for the future development of the Chinese stock market and other emerging markets.
{"title":"Return predictability via an long short-term memory-based cross-section factor model: Evidence from Chinese stock market","authors":"Haixiang Yao, Shenghao Xia, Hao Liu","doi":"10.1002/for.3096","DOIUrl":"https://doi.org/10.1002/for.3096","url":null,"abstract":"<p>This paper proposes a cross-section long short-term memory (CS-LSTM) factor model to explore the possibility of estimating expected returns in the Chinese stock market. In contrast to previous machine-learning-based asset pricing models that make predictions directly on equity returns, CS-LSTM estimates are based on predictions of slope terms from Fama–MacBeth cross-section regressions using 16 stock characteristics as factor loadings. In line with previous studies in the context of the Chinese market, we find illiquidity and short-term momentum to be the most important factors in describing asset returns. By using 274 value-weighted portfolios as test assets, we systematically compare the performances of CS-LSTM and three other candidate models. Our CS-LSTM model consistently delivers better performance than the candidate models and beats the market at all different levels of transaction costs. In addition, we observe that assets with smaller cap are favored by the model. By repeating the empirical analysis based on the top 70% of stocks, our CS-LSTM model remains robust and consistently provides significant market-beating performance. Our findings from the CS-LSTM model have practical implications for the future development of the Chinese stock market and other emerging markets.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 6","pages":"1770-1794"},"PeriodicalIF":3.4,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we propose the application of the GARCH-EVT-Copula model in estimating liquidity-adjusted value-at-risk (L-VaR) of energy stocks while modeling nonlinear dependence between return and bid-ask spread. Using the L-VaR framework of Bangia et al. (1998), we present a more parsimonious model that effectively captures non-zero skewness, excess kurtosis, and volatility clustering of both return and spread distributions of energy stocks. Moreover, to measure the nonlinear dependence between return and spread series, we use multiple copulas: Clayton, Gumbel, Frank, Normal, and Student-t. Based on the statistical backtesting and economic loss functions, our results suggest that the GARCH-EVT-Clayton copula is superior and most consistent in forecasting L-VaR compared with other competing models. This finding has several implications for investors, market makers, and daily traders who appreciate the importance of liquidity in market risk computation.
{"title":"Liquidity-adjusted value-at-risk using extreme value theory and copula approach","authors":"Harish Kamal, Samit Paul","doi":"10.1002/for.3105","DOIUrl":"10.1002/for.3105","url":null,"abstract":"<p>In this study, we propose the application of the GARCH-EVT-Copula model in estimating liquidity-adjusted value-at-risk (L-VaR) of energy stocks while modeling nonlinear dependence between return and bid-ask spread. Using the L-VaR framework of Bangia et al. (1998), we present a more parsimonious model that effectively captures non-zero skewness, excess kurtosis, and volatility clustering of both return and spread distributions of energy stocks. Moreover, to measure the nonlinear dependence between return and spread series, we use multiple copulas: Clayton, Gumbel, Frank, Normal, and Student-<i>t</i>. Based on the statistical backtesting and economic loss functions, our results suggest that the GARCH-EVT-Clayton copula is superior and most consistent in forecasting L-VaR compared with other competing models. This finding has several implications for investors, market makers, and daily traders who appreciate the importance of liquidity in market risk computation.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 6","pages":"1747-1769"},"PeriodicalIF":3.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140033998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuejun Chen, Ying Wang, Haitao Zhang, Jianzhou Wang
Accurate wind speed prediction is of great importance for the operation of wind farms, and extensive efforts have been made to develop effective forecasting methods in this regard. However, the feature selection of data input as well as optimization of deep learning models have received comparatively less attention, leading to unreliable forecasting results. This research proposes a novel hybrid model that integrates data preprocessing, feature selection, and optimized forecasting for improved wind speed prediction. Specifically, a powerful preprocessing technique is utilized to reduce data noise disturbances, while an innovative two-stage feature selection is designed to achieve the optimal input data format for forecasting purposes. Moreover, a hybrid forecasting module based on long-short term memory, which is optimized by the Bayesian optimization algorithm, has been developed to enhance the efficiency and reliability of the model. The empirical study used 10-min interval wind speed data of four seasons for presentation and evaluation results demonstrated its superior performance in effectively learning the volatility and irregularity features of wind speed series, which established a solid foundation for practical applications in wind power systems.
{"title":"A novel hybrid forecasting model with feature selection and deep learning for wind speed research","authors":"Xuejun Chen, Ying Wang, Haitao Zhang, Jianzhou Wang","doi":"10.1002/for.3098","DOIUrl":"10.1002/for.3098","url":null,"abstract":"<p>Accurate wind speed prediction is of great importance for the operation of wind farms, and extensive efforts have been made to develop effective forecasting methods in this regard. However, the feature selection of data input as well as optimization of deep learning models have received comparatively less attention, leading to unreliable forecasting results. This research proposes a novel hybrid model that integrates data preprocessing, feature selection, and optimized forecasting for improved wind speed prediction. Specifically, a powerful preprocessing technique is utilized to reduce data noise disturbances, while an innovative two-stage feature selection is designed to achieve the optimal input data format for forecasting purposes. Moreover, a hybrid forecasting module based on long-short term memory, which is optimized by the Bayesian optimization algorithm, has been developed to enhance the efficiency and reliability of the model. The empirical study used 10-min interval wind speed data of four seasons for presentation and evaluation results demonstrated its superior performance in effectively learning the volatility and irregularity features of wind speed series, which established a solid foundation for practical applications in wind power systems.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1682-1705"},"PeriodicalIF":3.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140033884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In a collaborative supply chain arrangement like vendor-managed inventory, information on product demand at the point of sale is expected to be shared among members of the supply chain. However, in practice, obtaining such information can be costly, and some members may be unwilling or unable to provide the necessary access to the data. As such, large collaborative supply chains with multiple members may operate under a mixed-information scenario where point-of-sale demand information is not known for all customers. Other sources of demand information exist and are becoming more available along supply chains using Industry 4.0 technologies and can serve as a substitute, but the data may be noisy, distorted, and partially missing. Under mixed information, leveraging existing customers' point-of-sale demand to improve the intermittent demand forecast of customers with missing information has yet to be explored. We propose a supervised demand forecasting method that uses multivariate time series clustering to map multiple sources of demand data. Members with missing downstream demand data have their resulting demand forecast improved by averaging over customers with similar delivery patterns for their final demand forecast. Our results show up to a 10% accuracy improvement over traditional intermittent demand forecasting methods with missing information.
{"title":"Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering","authors":"Corey Ducharme, Bruno Agard, Martin Trépanier","doi":"10.1002/for.3095","DOIUrl":"10.1002/for.3095","url":null,"abstract":"<p>In a collaborative supply chain arrangement like vendor-managed inventory, information on product demand at the point of sale is expected to be shared among members of the supply chain. However, in practice, obtaining such information can be costly, and some members may be unwilling or unable to provide the necessary access to the data. As such, large collaborative supply chains with multiple members may operate under a mixed-information scenario where point-of-sale demand information is not known for all customers. Other sources of demand information exist and are becoming more available along supply chains using Industry 4.0 technologies and can serve as a substitute, but the data may be noisy, distorted, and partially missing. Under mixed information, leveraging existing customers' point-of-sale demand to improve the intermittent demand forecast of customers with missing information has yet to be explored. We propose a supervised demand forecasting method that uses multivariate time series clustering to map multiple sources of demand data. Members with missing downstream demand data have their resulting demand forecast improved by averaging over customers with similar delivery patterns for their final demand forecast. Our results show up to a 10% accuracy improvement over traditional intermittent demand forecasting methods with missing information.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1661-1681"},"PeriodicalIF":3.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, the self-monitoring learning model FinBERT is used to identify text emotions, and the sliding time window time-lagged cross-correlation (WTLCC) method is utilized to screen Baidu Index keywords for the Shanghai Stock Exchange Index and 18 A-share listed companies. There are five different types of indicators constructed: news media sentiment, public attention, investor sentiment, investor sentiment disagreement, and media sentiment disagreement. To accurately describe the structure of sentimental contagion, this paper combines graph neural network to learn and output the sentimental contagion graph, and then constructs multivariable time series forecasting with graph neural networks (MTGNN) volatility forecasting model, which can extract the spatial–temporal dependence of variables in pairs. The results show that MTGNN model possesses the highest forecasting accuracy, which performs 30.30% lower on average across four evaluation indicators for Shanghai Stock Exchange Index than temporal pattern attention–long short-term memory model, which ranks second. For all of the models considered in this paper, adding sentimental contagion mechanism can significantly improve the volatility forecasting accuracy. The error of MTGNN is reduced the most, with a 15.21% average reduction for the Shanghai Stock Exchange Index. The contagion relationship among media reports, investor sentiment, and attention can help provide new ideas for enhancing the precision of volatility forecasting from the public opinion environment in the financial market.
{"title":"Volatility forecasting for stock market incorporating media reports, investors' sentiment, and attention based on MTGNN model","authors":"Bolin Lei, Yuping Song","doi":"10.1002/for.3101","DOIUrl":"10.1002/for.3101","url":null,"abstract":"<p>In this paper, the self-monitoring learning model FinBERT is used to identify text emotions, and the sliding time window time-lagged cross-correlation (WTLCC) method is utilized to screen Baidu Index keywords for the Shanghai Stock Exchange Index and 18 A-share listed companies. There are five different types of indicators constructed: news media sentiment, public attention, investor sentiment, investor sentiment disagreement, and media sentiment disagreement. To accurately describe the structure of sentimental contagion, this paper combines graph neural network to learn and output the sentimental contagion graph, and then constructs multivariable time series forecasting with graph neural networks (MTGNN) volatility forecasting model, which can extract the spatial–temporal dependence of variables in pairs. The results show that MTGNN model possesses the highest forecasting accuracy, which performs 30.30% lower on average across four evaluation indicators for Shanghai Stock Exchange Index than temporal pattern attention–long short-term memory model, which ranks second. For all of the models considered in this paper, adding sentimental contagion mechanism can significantly improve the volatility forecasting accuracy. The error of MTGNN is reduced the most, with a 15.21% average reduction for the Shanghai Stock Exchange Index. The contagion relationship among media reports, investor sentiment, and attention can help provide new ideas for enhancing the precision of volatility forecasting from the public opinion environment in the financial market.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 5","pages":"1706-1730"},"PeriodicalIF":3.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140045752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, ensuring food security has become a global concern, necessitating accurate forecasting of agriculture security to aid in policymaking and resource allocation. This article proposes the utilization of transformers, a powerful deep learning technique, for predicting the Agriculture Security Index (