首页 > 最新文献

Physical and Engineering Sciences in Medicine最新文献

英文 中文
Book review: The Physics of Radiotherapy X-rays and Electrons by Peter Metcalfe, Tomas Kron, Peter Hoban, Dean Cutajar and Nicholas Hardcastle : Medical Physics Publishing, 2023. 书评:放疗 X 射线和电子物理学》(The Physics of Radiotherapy X-rays and Electrons),彼得-梅特卡夫(Peter Metcalfe)、托马斯-克伦(Tomas Kron)、彼得-霍班(Peter Hoban)、迪恩-库塔亚尔(Dean Cutajar)和尼古拉斯-哈德卡索(Nicholas Hardcastle)著,医学物理出版社,2023 年。
IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-01 DOI: 10.1007/s13246-024-01459-0
Alexandre M C Santos
{"title":"Book review: The Physics of Radiotherapy X-rays and Electrons by Peter Metcalfe, Tomas Kron, Peter Hoban, Dean Cutajar and Nicholas Hardcastle : Medical Physics Publishing, 2023.","authors":"Alexandre M C Santos","doi":"10.1007/s13246-024-01459-0","DOIUrl":"https://doi.org/10.1007/s13246-024-01459-0","url":null,"abstract":"","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of direct point dose estimation based on the distribution of the size-specific dose estimate. 根据特定尺寸剂量估计值的分布,评估直接点剂量估计值。
IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-31 DOI: 10.1007/s13246-024-01465-2
Choirul Anam, Heri Sutanto, Riska Amilia, Rini Marini, Sinta Nur Barokah, Noor Diyana Osman, Geoff Dougherty

The aim of this study was to evaluate the point doses using a distribution of the size-specific dose estimate (SSDE) from axial CT images of in-house phantoms having diameters from 8 to 40 cm. In-house phantoms made of polyester-resin (PESR) mixed with methyl ethyl ketone peroxide (MEKP) were used. The phantoms were built with different diameter sizes of 8, 16, 24, 32, and 40 cm. The phantoms were scanned by Siemens a SOMATOM Perspective-128 slice CT scanner with constant input parameters. The point doses were interpolated from the central SSDE (SSDEc) and the peripheral SSDE (SSDEp). The SSDEc and SSDEp were calculated from the SSDE with h- and k-factors. The point doses were compared to the direct measurements using the nanoDot™ optically-stimulated luminescence dosimeter (OSLD) in dedicated holes on the phantoms. It was found that the point dose decreases as the phantom diameter increased. The doses obtained using two approaches differed by 11% on average. The highest difference was 40% and the lowest difference was < 1%. It was found that dose based on the SSDE concept tended to be higher compared to the measured dose by OSLD. Point dose estimation using the concept of SSDE distribution can be considered an alternative for accurate and simple estimation. This approach still requires improvements to increase its accuracy and its application to estimate the organ dose needs further investigation.

本研究的目的是利用直径为 8 厘米至 40 厘米的内部模型轴向 CT 图像的尺寸特异性剂量估计值(SSDE)分布来评估点剂量。内部模型由聚酯树脂(PESR)和过氧化甲乙酮(MEKP)混合制成。模型的直径分别为 8、16、24、32 和 40 厘米。模型由西门子 SOMATOM Perspective-128 片 CT 扫描仪扫描,输入参数保持不变。点剂量由中央 SSDE(SSDEc)和外围 SSDE(SSDEp)内插得出。SSDEc 和 SSDEp 是根据带有 h 和 k 因子的 SSDE 计算得出的。点剂量与使用 nanoDot™ 光学刺激发光剂量计(OSLD)在模型上的专用孔中进行的直接测量结果进行了比较。结果发现,点剂量随着模型直径的增大而减小。使用两种方法获得的剂量平均相差 11%。最大差异为 40%,最小差异为
{"title":"Evaluation of direct point dose estimation based on the distribution of the size-specific dose estimate.","authors":"Choirul Anam, Heri Sutanto, Riska Amilia, Rini Marini, Sinta Nur Barokah, Noor Diyana Osman, Geoff Dougherty","doi":"10.1007/s13246-024-01465-2","DOIUrl":"https://doi.org/10.1007/s13246-024-01465-2","url":null,"abstract":"<p><p>The aim of this study was to evaluate the point doses using a distribution of the size-specific dose estimate (SSDE) from axial CT images of in-house phantoms having diameters from 8 to 40 cm. In-house phantoms made of polyester-resin (PESR) mixed with methyl ethyl ketone peroxide (MEKP) were used. The phantoms were built with different diameter sizes of 8, 16, 24, 32, and 40 cm. The phantoms were scanned by Siemens a SOMATOM Perspective-128 slice CT scanner with constant input parameters. The point doses were interpolated from the central SSDE (SSDEc) and the peripheral SSDE (SSDEp). The SSDEc and SSDEp were calculated from the SSDE with h- and k-factors. The point doses were compared to the direct measurements using the nanoDot™ optically-stimulated luminescence dosimeter (OSLD) in dedicated holes on the phantoms. It was found that the point dose decreases as the phantom diameter increased. The doses obtained using two approaches differed by 11% on average. The highest difference was 40% and the lowest difference was < 1%. It was found that dose based on the SSDE concept tended to be higher compared to the measured dose by OSLD. Point dose estimation using the concept of SSDE distribution can be considered an alternative for accurate and simple estimation. This approach still requires improvements to increase its accuracy and its application to estimate the organ dose needs further investigation.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoplethysmography-based non-invasive blood pressure monitoring via ensemble model and imbalanced dataset processing. 通过集合模型和不平衡数据集处理实现基于照相血压计的无创血压监测。
IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-30 DOI: 10.1007/s13246-024-01445-6
Qianyu Liu, Chaojie Yang, Sen Yang, Chiew Foong Kwong, Jing Wang, Ning Zhou

Photoplethysmography, a widely embraced tool for non-invasive blood pressure (BP) monitoring, has demonstrated potential in BP prediction, especially when machine learning techniques are involved. However, predictions with a singular model often fall short in terms of accuracy. In order to counter this issue, we propose an innovative ensemble model that utilizes Light Gradient Boosting Machine (LightGBM) as the base estimator for predicting systolic and diastolic BP. This study included 115 women and 104 men, with experimental results indicating mean absolute errors of 5.63 mmHg and 9.36 mmHg for diastolic and systolic BP, in line with level B and C standards set by the British Hypertension Society. Additionally, our research confronts data imbalance in medical research which can detrimentally affect classification. Here we demonstrate an effective use for the Synthetic Minority Over-sampling Technique (SMOTE) with three nearest neighbors for handling moderate imbalanced datasets. The application of this method outperformed other methods in the field, achieving an F1 score of 81.6% and an AUC value of 0.895, emphasizing the potential value of SMOTE for addressing imbalanced datasets in medical research.

光敏血压计是一种广受欢迎的无创血压(BP)监测工具,在 BP 预测方面已显示出潜力,尤其是在涉及机器学习技术时。然而,使用单一模型进行预测的准确性往往不高。为了解决这个问题,我们提出了一种创新的集合模型,利用光梯度提升机(LightGBM)作为预测收缩压和舒张压的基础估计器。这项研究包括 115 名女性和 104 名男性,实验结果表明舒张压和收缩压的平均绝对误差分别为 5.63 mmHg 和 9.36 mmHg,符合英国高血压学会制定的 B 级和 C 级标准。此外,我们的研究还面临着医学研究中的数据不平衡问题,这可能会对分类产生不利影响。在此,我们展示了合成少数群体过度采样技术(SMOTE)与三个最近邻的有效应用,以处理中等程度的不平衡数据集。该方法的应用效果优于该领域的其他方法,F1 得分为 81.6%,AUC 值为 0.895,强调了 SMOTE 在处理医学研究不平衡数据集方面的潜在价值。
{"title":"Photoplethysmography-based non-invasive blood pressure monitoring via ensemble model and imbalanced dataset processing.","authors":"Qianyu Liu, Chaojie Yang, Sen Yang, Chiew Foong Kwong, Jing Wang, Ning Zhou","doi":"10.1007/s13246-024-01445-6","DOIUrl":"https://doi.org/10.1007/s13246-024-01445-6","url":null,"abstract":"<p><p>Photoplethysmography, a widely embraced tool for non-invasive blood pressure (BP) monitoring, has demonstrated potential in BP prediction, especially when machine learning techniques are involved. However, predictions with a singular model often fall short in terms of accuracy. In order to counter this issue, we propose an innovative ensemble model that utilizes Light Gradient Boosting Machine (LightGBM) as the base estimator for predicting systolic and diastolic BP. This study included 115 women and 104 men, with experimental results indicating mean absolute errors of 5.63 mmHg and 9.36 mmHg for diastolic and systolic BP, in line with level B and C standards set by the British Hypertension Society. Additionally, our research confronts data imbalance in medical research which can detrimentally affect classification. Here we demonstrate an effective use for the Synthetic Minority Over-sampling Technique (SMOTE) with three nearest neighbors for handling moderate imbalanced datasets. The application of this method outperformed other methods in the field, achieving an F1 score of 81.6% and an AUC value of 0.895, emphasizing the potential value of SMOTE for addressing imbalanced datasets in medical research.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced 3D dose prediction for hypofractionated SRS (gamma knife radiosurgery) in brain tumor using cascaded-deep-supervised convolutional neural network. 利用级联-深度监督卷积神经网络增强脑肿瘤低分次SRS(伽玛刀放射外科)的三维剂量预测。
IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-30 DOI: 10.1007/s13246-024-01457-2
Nan Li, Jinyuan Wang, Yanping Wang, Chunfeng Fang, Yaoying Liu, Chunsu Zhang, Dongxue Zhou, Lin Cao, Gaolong Zhang, Shouping Xu

Gamma Knife radiosurgery (GKRS) is a well-established technique in radiation therapy (RT) for treating small-size brain tumors. It administers highly concentrated doses during each treatment fraction, with even minor dose errors posing a significant risk of causing severe damage to healthy tissues. It underscores the critical need for precise and meticulous precision in GKRS. However, the planning process for GKRS is complex and time-consuming, heavily reliant on the expertise of medical physicists. Incorporating deep learning approaches for GKRS dose prediction can reduce this dependency, improve planning efficiency and homogeneity, streamline clinical workflows, and reduce patient lagging times. Despite this, precise Gamma Knife plan dose distribution prediction using existing models remains a significant challenge. The complexity stems from the intricate nature of dose distributions, subtle contrasts in CT scans, and the interdependence of dosimetric metrics. To overcome these challenges, we have developed a "Cascaded-Deep-Supervised" Convolutional Neural Network (CDS-CNN) that employs a hybrid-weighted optimization scheme. Our innovative method incorporates multi-level deep supervision and a strategic sequential multi-network training approach. It enables the extraction of intra-slice and inter-slice features, leading to more realistic dose predictions with additional contextual information. CDS-CNN was trained and evaluated using data from 105 brain cancer patients who underwent GKRS treatment, with 85 cases used for training and 20 for testing. Quantitative assessments and statistical analyses demonstrated high consistency between the predicted dose distributions and the reference doses from the treatment planning system (TPS). The 3D overall gamma passing rates (GPRs) reached 97.15% ± 1.36% (3 mm/3%, 10% threshold), surpassing the previous best performance by 2.53% using the 3D Dense U-Net model. When evaluated against more stringent criteria (2 mm/3%, 10% threshold, and 1 mm/3%, 10% threshold), the overall GPRs still achieved 96.53% ± 1.08% and 95.03% ± 1.18%. Furthermore, the average target coverage (TC) was 98.33% ± 1.16%, dose selectivity (DS) was 0.57 ± 0.10, gradient index (GI) was 2.69 ± 0.30, and homogeneity index (HI) was 1.79 ± 0.09. Compared to the 3D Dense U-Net, CDS-CNN predictions demonstrated a 3.5% improvement in TC, and CDS-CNN's dose prediction yielded better outcomes than the 3D Dense U-Net across all evaluation criteria. The experimental results demonstrated that the proposed CDS-CNN model outperformed other models in predicting GKRS dose distributions, with predictions closely matching the TPS doses.

伽玛刀放射外科(GKRS)是放射治疗(RT)中治疗小型脑肿瘤的成熟技术。它在每个治疗分段中施用高度集中的剂量,即使是微小的剂量误差也会对健康组织造成严重损害。这凸显了 GKRS 对精确和细致的关键需求。然而,GKRS 的规划过程复杂而耗时,严重依赖于医学物理学家的专业知识。采用深度学习方法进行 GKRS 剂量预测可以减少这种依赖性,提高规划效率和均匀性,简化临床工作流程,减少患者滞后时间。尽管如此,使用现有模型进行精确的伽马刀计划剂量分布预测仍然是一项重大挑战。这种复杂性源于剂量分布的复杂性、CT 扫描中的微妙对比以及剂量测定指标的相互依存性。为了克服这些挑战,我们开发了一种采用混合加权优化方案的 "级联-深度监督 "卷积神经网络(CDS-CNN)。我们的创新方法结合了多层次深度监督和战略性顺序多网络训练方法。它能够提取切片内和切片间特征,从而利用额外的上下文信息进行更真实的剂量预测。CDS-CNN 利用 105 名接受 GKRS 治疗的脑癌患者的数据进行了训练和评估,其中 85 例用于训练,20 例用于测试。定量评估和统计分析表明,预测的剂量分布与治疗计划系统(TPS)的参考剂量高度一致。三维总体伽马通过率(GPRs)达到了 97.15% ± 1.36%(3 毫米/3%,10% 临界值),比之前使用三维密集 U-Net 模型的最佳性能高出 2.53%。如果按照更严格的标准(2 毫米/3%,10%阈值和 1 毫米/3%,10%阈值)进行评估,总体 GPRs 仍然达到 96.53% ± 1.08% 和 95.03% ± 1.18%。此外,平均目标覆盖率(TC)为 98.33% ± 1.16%,剂量选择性(DS)为 0.57 ± 0.10,梯度指数(GI)为 2.69 ± 0.30,均匀性指数(HI)为 1.79 ± 0.09。与 3D Dense U-Net 相比,CDS-CNN 预测的 TC 值提高了 3.5%,在所有评价标准中,CDS-CNN 的剂量预测结果均优于 3D Dense U-Net。实验结果表明,所提出的 CDS-CNN 模型在预测 GKRS 剂量分布方面优于其他模型,其预测结果与 TPS 剂量非常接近。
{"title":"Enhanced 3D dose prediction for hypofractionated SRS (gamma knife radiosurgery) in brain tumor using cascaded-deep-supervised convolutional neural network.","authors":"Nan Li, Jinyuan Wang, Yanping Wang, Chunfeng Fang, Yaoying Liu, Chunsu Zhang, Dongxue Zhou, Lin Cao, Gaolong Zhang, Shouping Xu","doi":"10.1007/s13246-024-01457-2","DOIUrl":"https://doi.org/10.1007/s13246-024-01457-2","url":null,"abstract":"<p><p>Gamma Knife radiosurgery (GKRS) is a well-established technique in radiation therapy (RT) for treating small-size brain tumors. It administers highly concentrated doses during each treatment fraction, with even minor dose errors posing a significant risk of causing severe damage to healthy tissues. It underscores the critical need for precise and meticulous precision in GKRS. However, the planning process for GKRS is complex and time-consuming, heavily reliant on the expertise of medical physicists. Incorporating deep learning approaches for GKRS dose prediction can reduce this dependency, improve planning efficiency and homogeneity, streamline clinical workflows, and reduce patient lagging times. Despite this, precise Gamma Knife plan dose distribution prediction using existing models remains a significant challenge. The complexity stems from the intricate nature of dose distributions, subtle contrasts in CT scans, and the interdependence of dosimetric metrics. To overcome these challenges, we have developed a \"Cascaded-Deep-Supervised\" Convolutional Neural Network (CDS-CNN) that employs a hybrid-weighted optimization scheme. Our innovative method incorporates multi-level deep supervision and a strategic sequential multi-network training approach. It enables the extraction of intra-slice and inter-slice features, leading to more realistic dose predictions with additional contextual information. CDS-CNN was trained and evaluated using data from 105 brain cancer patients who underwent GKRS treatment, with 85 cases used for training and 20 for testing. Quantitative assessments and statistical analyses demonstrated high consistency between the predicted dose distributions and the reference doses from the treatment planning system (TPS). The 3D overall gamma passing rates (GPRs) reached 97.15% ± 1.36% (3 mm/3%, 10% threshold), surpassing the previous best performance by 2.53% using the 3D Dense U-Net model. When evaluated against more stringent criteria (2 mm/3%, 10% threshold, and 1 mm/3%, 10% threshold), the overall GPRs still achieved 96.53% ± 1.08% and 95.03% ± 1.18%. Furthermore, the average target coverage (TC) was 98.33% ± 1.16%, dose selectivity (DS) was 0.57 ± 0.10, gradient index (GI) was 2.69 ± 0.30, and homogeneity index (HI) was 1.79 ± 0.09. Compared to the 3D Dense U-Net, CDS-CNN predictions demonstrated a 3.5% improvement in TC, and CDS-CNN's dose prediction yielded better outcomes than the 3D Dense U-Net across all evaluation criteria. The experimental results demonstrated that the proposed CDS-CNN model outperformed other models in predicting GKRS dose distributions, with predictions closely matching the TPS doses.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variable-density velocity-selective magnetization preparation for non-contrast-enhanced peripheral MR angiography. 用于非对比度增强外周磁共振血管造影的可变密度速度选择性磁化准备。
IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-30 DOI: 10.1007/s13246-024-01464-3
Minyoung Kim, Inpyeong Hwang, Seung Hong Choi, Jaeseok Park, Taehoon Shin

Velocity-selective (VS) magnetization preparation has shown great promise for non-contrast-enhanced (NCE) magnetic resonance angiography (MRA) with the ability to generate positive angiographic contrast directly using a single 3D acquisition. However, existing VS-MRA methods have an issue of aliased saturation around a certain velocity, known as velocity field-of-view (vFOV), which can cause undesired signal loss in arteries. This study aimed to develop a new version of the VS preparation pulse sequence that overcomes the aliased saturation problem in conventional VS preparation. Utilizing the fact that an excitation profile is the Fourier transform of excitation k-space sampling, we sampled the k-space in a non-uniform fashion by scaling gradient pulses accordingly to have aliased excitation diffused over velocity. The variable density sampling function was numerically optimized to maximize the average of the velocity passband signal while minimizing its variance. The optimized variable density VS magnetization was validated through Bloch simulations and applied to peripheral NCE MRA in healthy subjects. The in-vivo experiments showed that the proposed variable density VS-MRA significantly lowered arterial signal loss observed in conventional VS-MRA, as evidenced by a higher arterial signal-to-noise ratio (58.50 ± 14.29 vs. 55.54 ± 12.32; p < 0.05) and improved artery-to-background contrast-to-noise ratio (22.75 ± 7.57 vs. 20.60 ± 6.51; p < 0.05).

速度选择性(VS)磁化准备在非对比度增强(NCE)磁共振血管造影(MRA)中大有可为,它能通过一次三维采集直接生成正血管造影对比度。然而,现有的 VS-MRA 方法存在一个问题,即在一定速度(称为速度视场(vFOV))周围存在混叠饱和,这会导致动脉中出现不希望出现的信号丢失。本研究旨在开发一种新版 VS 准备脉冲序列,以克服传统 VS 准备中的混叠饱和问题。利用激发曲线是激发 k 空间采样的傅立叶变换这一事实,我们通过相应缩放梯度脉冲对 k 空间进行非均匀采样,使混叠激发在速度上扩散。变密度采样函数经过数值优化,使速度通带信号的平均值最大化,同时使其方差最小化。通过布洛赫模拟验证了优化的可变密度 VS 磁化,并将其应用于健康受试者的外周 NCE MRA。体内实验表明,所提出的可变密度 VS-MRA 显著降低了传统 VS-MRA 中观察到的动脉信号损失,更高的动脉信噪比(58.50 ± 14.29 vs. 55.54 ± 12.32;p<0.05)证明了这一点。
{"title":"Variable-density velocity-selective magnetization preparation for non-contrast-enhanced peripheral MR angiography.","authors":"Minyoung Kim, Inpyeong Hwang, Seung Hong Choi, Jaeseok Park, Taehoon Shin","doi":"10.1007/s13246-024-01464-3","DOIUrl":"https://doi.org/10.1007/s13246-024-01464-3","url":null,"abstract":"<p><p>Velocity-selective (VS) magnetization preparation has shown great promise for non-contrast-enhanced (NCE) magnetic resonance angiography (MRA) with the ability to generate positive angiographic contrast directly using a single 3D acquisition. However, existing VS-MRA methods have an issue of aliased saturation around a certain velocity, known as velocity field-of-view (vFOV), which can cause undesired signal loss in arteries. This study aimed to develop a new version of the VS preparation pulse sequence that overcomes the aliased saturation problem in conventional VS preparation. Utilizing the fact that an excitation profile is the Fourier transform of excitation k-space sampling, we sampled the k-space in a non-uniform fashion by scaling gradient pulses accordingly to have aliased excitation diffused over velocity. The variable density sampling function was numerically optimized to maximize the average of the velocity passband signal while minimizing its variance. The optimized variable density VS magnetization was validated through Bloch simulations and applied to peripheral NCE MRA in healthy subjects. The in-vivo experiments showed that the proposed variable density VS-MRA significantly lowered arterial signal loss observed in conventional VS-MRA, as evidenced by a higher arterial signal-to-noise ratio (58.50 ± 14.29 vs. 55.54 ± 12.32; p < 0.05) and improved artery-to-background contrast-to-noise ratio (22.75 ± 7.57 vs. 20.60 ± 6.51; p < 0.05).</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dosiomics-based detection of dose distribution variations in helical tomotherapy for prostate cancer patients: influence of treatment plan parameters. 基于剂量组学的前列腺癌螺旋断层治疗剂量分布变化检测:治疗方案参数的影响。
IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-30 DOI: 10.1007/s13246-024-01463-4
Marziyeh Mirzaeiyan, Ali Akhavan, Simin Hemati, Mahnaz Etehadtavakol, Alireza Amouheidari, Atoosa Adibi, Hossein Khanahmad, Zahra Sharifonnasabi, Parvaneh Shokrani

The stability of dosiomics features (DFs) and dose-volume histogram (DVH) parameters for detecting disparities in helical tomotherapy planned dose distributions was assessed. Treatment plans of 18 prostate patients were recalculated using the followings: field width (WF) (2.5 vs. 5), pitch factor (PF) (0.433 vs. 0.444), and modulation factor (MF) (2.5 vs. 3). From each of the eight plans per patient, ninety-three original and 744 wavelet-based DFs were extracted, using 3D-Slicer software, across six regions including: target volume (PTV), pelvic lymph nodes (PTV-LN), PTV + PTV-LN (PTV-All), one cm rind around PTV-All (PTV-Ring), rectum, and bladder. For the resulting DFs and DVH parameters, the coefficient of variation (CV) was calculated, and using hierarchical clustering, the features were classified into low/high variability. The significance of parameters on instability was analyzed by a three-way analysis of variance. All DF's were stable in PTV, PTV-LN, and PTV-Ring (average CV ( CV ¯ )  ≤ 0.36). Only one feature in the bladder ( CV ¯  = 0.9), rectum ( CV ¯  = 0.4), and PTV-All ( CV ¯  = 0.37) were considered unstable due to change in MF in the bladder and WF in the PTV-All. The value of CV ¯ for the wavelet features was much higher than that for the original features. Out of 225 unstable wavelet features, 84 features had CV ¯  ≥ 1. The CVs for all the DVHs remained very small ( CV ¯ < 0.06). This study highlights that the sensitivity of DFs to changes in tomotherapy planning parameters is influenced by the region and the DFs, particularly wavelet features, surpassing the effectiveness of DVHs.

我们评估了用于检测螺旋断层治疗计划剂量分布差异的剂量组学特征(DFs)和剂量-体积直方图(DVH)参数的稳定性。对 18 位前列腺患者的治疗计划进行了重新计算,计算时使用了以下参数:场宽 (WF) (2.5 vs. 5)、间距因子 (PF) (0.433 vs. 0.444) 和调制因子 (MF) (2.5 vs. 3)。使用 3D-Slicer 软件从每名患者的八份计划中提取了 93 个原始 DF 和 744 个基于小波的 DF,涉及六个区域,包括:靶体积 (PTV)、盆腔淋巴结 (PTV-LN)、PTV + PTV-LN (PTV-All)、PTV-All 周围一厘米边缘 (PTV-Ring)、直肠和膀胱。对于得出的 DFs 和 DVH 参数,计算变异系数 (CV),并使用层次聚类将特征分为低变异性/高变异性。参数对不稳定性的影响通过三方方差分析进行分析。在 PTV、PTV-LN 和 PTV-Ring 中,所有 DF 都是稳定的(平均 CV ( CV ¯ ) ≤ 0.36)。只有膀胱(CV ¯ = 0.9)、直肠(CV ¯ = 0.4)和 PTV-All (CV ¯ = 0.37)中的一个特征被认为是不稳定的,原因是膀胱中频和 PTV-All 中的 WF 发生了变化。小波特征的 CV ¯ 值远远高于原始特征的 CV ¯ 值。在 225 个不稳定的小波特征中,有 84 个特征的 CV ¯ ≥ 1。所有 DVH 的 CV 值都非常小(CV ¯ ≥ 1)。
{"title":"Dosiomics-based detection of dose distribution variations in helical tomotherapy for prostate cancer patients: influence of treatment plan parameters.","authors":"Marziyeh Mirzaeiyan, Ali Akhavan, Simin Hemati, Mahnaz Etehadtavakol, Alireza Amouheidari, Atoosa Adibi, Hossein Khanahmad, Zahra Sharifonnasabi, Parvaneh Shokrani","doi":"10.1007/s13246-024-01463-4","DOIUrl":"https://doi.org/10.1007/s13246-024-01463-4","url":null,"abstract":"<p><p>The stability of dosiomics features (DFs) and dose-volume histogram (DVH) parameters for detecting disparities in helical tomotherapy planned dose distributions was assessed. Treatment plans of 18 prostate patients were recalculated using the followings: field width (WF) (2.5 vs. 5), pitch factor (PF) (0.433 vs. 0.444), and modulation factor (MF) (2.5 vs. 3). From each of the eight plans per patient, ninety-three original and 744 wavelet-based DFs were extracted, using 3D-Slicer software, across six regions including: target volume (PTV), pelvic lymph nodes (PTV-LN), PTV + PTV-LN (PTV-All), one cm rind around PTV-All (PTV-Ring), rectum, and bladder. For the resulting DFs and DVH parameters, the coefficient of variation (CV) was calculated, and using hierarchical clustering, the features were classified into low/high variability. The significance of parameters on instability was analyzed by a three-way analysis of variance. All DF's were stable in PTV, PTV-LN, and PTV-Ring (average CV ( <math> <mrow> <mover><mrow><mi>CV</mi></mrow> <mo>¯</mo></mover> <mrow><mo>)</mo></mrow> </mrow> </math>  ≤ 0.36). Only one feature in the bladder ( <math> <mover><mrow><mi>CV</mi></mrow> <mo>¯</mo></mover> </math>  = 0.9), rectum ( <math> <mover><mrow><mi>CV</mi></mrow> <mo>¯</mo></mover> </math>  = 0.4), and PTV-All ( <math> <mover><mrow><mi>CV</mi></mrow> <mo>¯</mo></mover> </math>  = 0.37) were considered unstable due to change in MF in the bladder and WF in the PTV-All. The value of <math> <mover><mrow><mi>CV</mi></mrow> <mo>¯</mo></mover> </math> for the wavelet features was much higher than that for the original features. Out of 225 unstable wavelet features, 84 features had <math> <mover><mrow><mi>CV</mi></mrow> <mo>¯</mo></mover> </math>  ≥ 1. The CVs for all the DVHs remained very small ( <math> <mover><mrow><mi>CV</mi></mrow> <mo>¯</mo></mover> </math> < 0.06). This study highlights that the sensitivity of DFs to changes in tomotherapy planning parameters is influenced by the region and the DFs, particularly wavelet features, surpassing the effectiveness of DVHs.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic in silico explorations of the immunogenic and synergistic effects of radiotherapy and immunotherapy: a critical review. 放疗和免疫疗法的免疫原性和协同效应的硅学机制探索:重要综述。
IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-17 DOI: 10.1007/s13246-024-01458-1
Allison M Ng, Kelly M MacKinnon, Alistair A Cook, Rebecca A D'Alonzo, Pejman Rowshanfarzad, Anna K Nowak, Suki Gill, Martin A Ebert

Immunotherapy is a rapidly evolving field, with many models attempting to describe its impact on the immune system, especially when paired with radiotherapy. Tumor response to this combination involves a complex spatiotemporal dynamic which makes either clinical or pre-clinical in vivo investigation across the resulting extensive solution space extremely difficult. In this review, several in silico models of the interaction between radiotherapy, immunotherapy, and the patient's immune system are examined. The study included only mathematical models published in English that investigated the effects of radiotherapy on the immune system, or the effect of immuno-radiotherapy with immune checkpoint inhibitors. The findings indicate that treatment efficacy was predicted to improve when both radiotherapy and immunotherapy were administered, compared to radiotherapy or immunotherapy alone. However, the models do not agree on the optimal schedule and fractionation of radiotherapy and immunotherapy. This corresponds to relevant clinical trials, which report an improved treatment efficacy with combination therapy, however, the optimal scheduling varies between clinical trials. This discrepancy between the models can be attributed to the variation in model approach and the specific cancer types modeled, making the determination of the optimum general treatment schedule and model challenging. Further research needs to be conducted with similar data sets to evaluate the best model and treatment schedule for a specific cancer type and stage.

免疫疗法是一个快速发展的领域,许多模型都在试图描述免疫疗法对免疫系统的影响,尤其是与放疗结合使用时。肿瘤对这种组合疗法的反应涉及复杂的时空动态,这使得在由此产生的广泛解决方案空间内进行临床或临床前体内研究极为困难。本综述研究了放疗、免疫疗法和患者免疫系统之间相互作用的几种硅学模型。这项研究只包括用英文发表的研究放疗对免疫系统影响或免疫检查点抑制剂对免疫放疗影响的数学模型。研究结果表明,与单独使用放疗或免疫疗法相比,同时使用放疗和免疫疗法可提高疗效。然而,模型对放疗和免疫疗法的最佳时间安排和分次并不一致。这与相关的临床试验相吻合,这些临床试验报告称,联合疗法可提高疗效,但不同临床试验的最佳时间安排各不相同。模型之间的这种差异可归因于模型方法和特定癌症类型模型的差异,这使得确定最佳总体治疗方案和模型具有挑战性。需要利用类似的数据集开展进一步研究,以评估针对特定癌症类型和阶段的最佳模型和治疗方案。
{"title":"Mechanistic in silico explorations of the immunogenic and synergistic effects of radiotherapy and immunotherapy: a critical review.","authors":"Allison M Ng, Kelly M MacKinnon, Alistair A Cook, Rebecca A D'Alonzo, Pejman Rowshanfarzad, Anna K Nowak, Suki Gill, Martin A Ebert","doi":"10.1007/s13246-024-01458-1","DOIUrl":"https://doi.org/10.1007/s13246-024-01458-1","url":null,"abstract":"<p><p>Immunotherapy is a rapidly evolving field, with many models attempting to describe its impact on the immune system, especially when paired with radiotherapy. Tumor response to this combination involves a complex spatiotemporal dynamic which makes either clinical or pre-clinical in vivo investigation across the resulting extensive solution space extremely difficult. In this review, several in silico models of the interaction between radiotherapy, immunotherapy, and the patient's immune system are examined. The study included only mathematical models published in English that investigated the effects of radiotherapy on the immune system, or the effect of immuno-radiotherapy with immune checkpoint inhibitors. The findings indicate that treatment efficacy was predicted to improve when both radiotherapy and immunotherapy were administered, compared to radiotherapy or immunotherapy alone. However, the models do not agree on the optimal schedule and fractionation of radiotherapy and immunotherapy. This corresponds to relevant clinical trials, which report an improved treatment efficacy with combination therapy, however, the optimal scheduling varies between clinical trials. This discrepancy between the models can be attributed to the variation in model approach and the specific cancer types modeled, making the determination of the optimum general treatment schedule and model challenging. Further research needs to be conducted with similar data sets to evaluate the best model and treatment schedule for a specific cancer type and stage.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141628112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite element simulation of treatment with locking plate for distal fibula fractures. 用锁定钢板治疗腓骨远端骨折的有限元模拟。
IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-15 DOI: 10.1007/s13246-024-01456-3
Yafeng Li, Zichun Zou, Peng Yi, Chen Xu, Zhifeng Tian, Xi Zhang, Jing Zhang

An improved Finite Element Model(FEM) is applied to compare the biomechanical stability of plates with three different options in the treatment of distal fibula fractures in this study. The Computed Tomography(CT) scan of the knee to ankle segment of a volunteer was performed. A 3D fibula FEM was reconstructed based on the CT data. Three different loads (uni-pedal standing, torsion, and twisting) were applied, the same as in the experiments in the literature. The stresses and strains of the three options were compared under the same loads, using a 4-hole locking plate (Option A), a 5-hole locking plate (Option B), and a 6-hole locking plate (Option C) in a standard plate for lateral internal fixation. The simulation results show that all three options showed a stress masking effect. Option C had the best overall biomechanical performance and could effectively distribute the transferred weight. This is because option C has greater torsional stiffness and better biomechanical stability than options A and B, and therefore, option C is the recommended internal fixation method for distal fibula fractures. The Finite Element Analysis(FEA) method developed in this work applies to the stress analysis of fracture treatment options in other body parts.

本研究采用改进的有限元模型(FEM)来比较三种不同选择的钢板在治疗腓骨远端骨折时的生物力学稳定性。研究人员对一名志愿者的膝盖至脚踝部位进行了计算机断层扫描(CT)。根据 CT 数据重建了三维腓骨有限元模型。应用了三种不同的载荷(单蹄站立、扭转和扭转),与文献中的实验相同。在相同载荷下,比较了三种方案的应力和应变,分别使用 4 孔锁定钢板(方案 A)、5 孔锁定钢板(方案 B)和 6 孔锁定钢板(方案 C)作为侧向内固定的标准钢板。模拟结果显示,三种方案都显示出应力掩蔽效应。方案 C 的整体生物力学性能最佳,能有效分散转移的重量。这是因为与方案 A 和 B 相比,方案 C 具有更大的扭转刚度和更好的生物力学稳定性,因此,方案 C 是腓骨远端骨折的推荐内固定方法。本研究开发的有限元分析方法适用于身体其他部位骨折治疗方案的应力分析。
{"title":"Finite element simulation of treatment with locking plate for distal fibula fractures.","authors":"Yafeng Li, Zichun Zou, Peng Yi, Chen Xu, Zhifeng Tian, Xi Zhang, Jing Zhang","doi":"10.1007/s13246-024-01456-3","DOIUrl":"https://doi.org/10.1007/s13246-024-01456-3","url":null,"abstract":"<p><p>An improved Finite Element Model(FEM) is applied to compare the biomechanical stability of plates with three different options in the treatment of distal fibula fractures in this study. The Computed Tomography(CT) scan of the knee to ankle segment of a volunteer was performed. A 3D fibula FEM was reconstructed based on the CT data. Three different loads (uni-pedal standing, torsion, and twisting) were applied, the same as in the experiments in the literature. The stresses and strains of the three options were compared under the same loads, using a 4-hole locking plate (Option A), a 5-hole locking plate (Option B), and a 6-hole locking plate (Option C) in a standard plate for lateral internal fixation. The simulation results show that all three options showed a stress masking effect. Option C had the best overall biomechanical performance and could effectively distribute the transferred weight. This is because option C has greater torsional stiffness and better biomechanical stability than options A and B, and therefore, option C is the recommended internal fixation method for distal fibula fractures. The Finite Element Analysis(FEA) method developed in this work applies to the stress analysis of fracture treatment options in other body parts.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dosimetric characteristics of self-expandable metallic and plastic stents for transpapillary biliary decompression in external beam radiotherapy. 用于外照射胆道减压的自膨胀金属和塑料支架的剂量特性
IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-08 DOI: 10.1007/s13246-024-01447-4
Yoshihiro Ueda, Kenji Ikezawa, Tomohiro Sagawa, Masaru Isono, Shingo Ohira, Masayoshi Miyazaki, Ryoji Takada, Takuo Yamai, Kazuyoshi Ohkawa, Teruki Teshima, Koji Konishi

There is little evidence regarding radiation dose perturbation caused by the self-expandable metallic stents (SEMSs) used for transpapillary biliary decompression. We aimed to compare SEMSs with plastic stents (PSs) and clarify their dosimetric characteristics. Fifteen SEMSs (10 braided and 5 lasercut type) and six PSs (diameter: 2.3-3.3 mm) were inserted into a water-equivalent solid phantom. In total, 13 SEMSs had radiopaque markers, whereas the other two did not. Using radiochromic films, the dose difference adjacent to the stents at locations proximal, distal, and arc delivery to the radiation source was evaluated based on comparison to measurement of the dose delivery in phantom without any stent in place. The median values of the dose difference for each stent were used to compare the SEMS and PS groups.Results: The dose difference (median (minimum/maximum)) was as follows: proximal, SEMSs + 2.1% (1.8 / 4.7) / PSs + 5.4% (4.1 / 6.3) (p < 0.001); distal, SEMSs -1.0% (-1.6 /-0.4) / PSs -8.9% (-11.7 / -7.4) (p < 0.001); arc delivery, SEMSs 1.2% (0.9 / 2.3) / PSs 2.2% (1.6 / 3.6) (p = 0.005). These results demonstrated that the dose differences of SEMSs were significantly smaller than those of PSs. On the other hand, the dose difference was large at surface of the radiopaque markers for SEMSs: proximal, 10.3% (7.2 / 20.9); distal, -8.4% (-16.3 / -4.2); arc delivery, 5.5% (4.2 / 9.2). SEMSs for biliary decompression can be safely used in patients undergoing radiotherapy, by focusing on the dose distribution around the stents and by paying attention to local changes in the dose distribution of radiopaque markers.

关于用于经胆管胆道减压的自膨胀金属支架(SEMS)所造成的辐射剂量扰动,目前还没有什么证据。我们的目的是比较 SEMS 与塑料支架(PS),并明确它们的剂量特性。我们将 15 个 SEMS(10 个编织型和 5 个激光切割型)和 6 个 PS(直径:2.3-3.3 毫米)插入水当量固体模型中。共有 13 个 SEMS 带有不透射线标记,而另外两个则没有。使用放射性变色胶片,通过与未安装任何支架的模型中的剂量传输测量结果进行比较,评估了支架附近的近端、远端和弧形辐射源传输位置的剂量差。每个支架的剂量差中位值用于比较 SEMS 组和 PS 组:剂量差(中位数(最小值/最大值))如下:近端,SEMSs + 2.1% (1.8 / 4.7) / PSs + 5.4% (4.1 / 6.3) (p
{"title":"Dosimetric characteristics of self-expandable metallic and plastic stents for transpapillary biliary decompression in external beam radiotherapy.","authors":"Yoshihiro Ueda, Kenji Ikezawa, Tomohiro Sagawa, Masaru Isono, Shingo Ohira, Masayoshi Miyazaki, Ryoji Takada, Takuo Yamai, Kazuyoshi Ohkawa, Teruki Teshima, Koji Konishi","doi":"10.1007/s13246-024-01447-4","DOIUrl":"https://doi.org/10.1007/s13246-024-01447-4","url":null,"abstract":"<p><p>There is little evidence regarding radiation dose perturbation caused by the self-expandable metallic stents (SEMSs) used for transpapillary biliary decompression. We aimed to compare SEMSs with plastic stents (PSs) and clarify their dosimetric characteristics. Fifteen SEMSs (10 braided and 5 lasercut type) and six PSs (diameter: 2.3-3.3 mm) were inserted into a water-equivalent solid phantom. In total, 13 SEMSs had radiopaque markers, whereas the other two did not. Using radiochromic films, the dose difference adjacent to the stents at locations proximal, distal, and arc delivery to the radiation source was evaluated based on comparison to measurement of the dose delivery in phantom without any stent in place. The median values of the dose difference for each stent were used to compare the SEMS and PS groups.Results: The dose difference (median (minimum/maximum)) was as follows: proximal, SEMSs + 2.1% (1.8 / 4.7) / PSs + 5.4% (4.1 / 6.3) (p < 0.001); distal, SEMSs -1.0% (-1.6 /-0.4) / PSs -8.9% (-11.7 / -7.4) (p < 0.001); arc delivery, SEMSs 1.2% (0.9 / 2.3) / PSs 2.2% (1.6 / 3.6) (p = 0.005). These results demonstrated that the dose differences of SEMSs were significantly smaller than those of PSs. On the other hand, the dose difference was large at surface of the radiopaque markers for SEMSs: proximal, 10.3% (7.2 / 20.9); distal, -8.4% (-16.3 / -4.2); arc delivery, 5.5% (4.2 / 9.2). SEMSs for biliary decompression can be safely used in patients undergoing radiotherapy, by focusing on the dose distribution around the stents and by paying attention to local changes in the dose distribution of radiopaque markers.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous reach-to-grasp motion recognition based on an extreme learning machine algorithm using sEMG signals. 基于极端学习机算法的连续伸手抓握动作识别(使用 sEMG 信号)。
IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-02 DOI: 10.1007/s13246-024-01454-5
Cristian D Guerrero-Mendez, Alberto Lopez-Delis, Cristian F Blanco-Diaz, Teodiano F Bastos-Filho, Sebastian Jaramillo-Isaza, Andres F Ruiz-Olaya

Recognizing user intention in reach-to-grasp motions is a critical challenge in rehabilitation engineering. To address this, a Machine Learning (ML) algorithm based on the Extreme Learning Machine (ELM) was developed for identifying motor actions using surface Electromyography (sEMG) during continuous reach-to-grasp movements, involving multiple Degrees of Freedom (DoFs). This study explores feature extraction methods based on time domain and autoregressive models to evaluate ELM performance under different conditions. The experimental setup encompassed variations in neuron size, time windows, validation with each muscle, increase in the number of features, comparison with five conventional ML-based classifiers, inter-subjects variability, and temporal dynamic response. To evaluate the efficacy of the proposed ELM-based method, an openly available sEMG dataset containing data from 12 participants was used. Results highlight the method's performance, achieving Accuracy above 85%, F-score above 90%, Recall above 85%, Area Under the Curve of approximately 84% and compilation times (computational cost) of less than 1 ms. These metrics significantly outperform standard methods (p < 0.05). Additionally, specific trends were found in increasing and decreasing performance in identifying specific tasks, as well as variations in the continuous transitions in the temporal dynamics response. Thus, the ELM-based method effectively identifies continuous reach-to-grasp motions through myoelectric data. These findings hold promise for practical applications. The method's success prompts future research into implementing it for more reliable and effective Human-Machine Interface (HMI) control. This can revolutionize real-time upper limb rehabilitation, enabling natural and complex Activities of Daily Living (ADLs) like object manipulation. The robust results encourages further research and innovative solutions to improve people's quality of life through more effective interventions.

在伸手抓握动作中识别用户意图是康复工程中的一项重要挑战。为了解决这个问题,我们开发了一种基于极限学习机(ELM)的机器学习(ML)算法,用于在涉及多个自由度(DoFs)的连续伸抓动作中使用表面肌电图(sEMG)识别运动动作。本研究探讨了基于时域和自回归模型的特征提取方法,以评估 ELM 在不同条件下的性能。实验设置包括神经元大小、时间窗口、每块肌肉的验证、特征数量的增加、与五种基于 ML 的传统分类器的比较、受试者之间的变化以及时间动态响应的变化。为了评估所提出的基于 ELM 的方法的有效性,我们使用了一个公开的 sEMG 数据集,其中包含 12 名参与者的数据。结果凸显了该方法的性能,准确率超过 85%,F 分数超过 90%,召回率超过 85%,曲线下面积约为 84%,编译时间(计算成本)小于 1 毫秒。这些指标明显优于标准方法(p
{"title":"Continuous reach-to-grasp motion recognition based on an extreme learning machine algorithm using sEMG signals.","authors":"Cristian D Guerrero-Mendez, Alberto Lopez-Delis, Cristian F Blanco-Diaz, Teodiano F Bastos-Filho, Sebastian Jaramillo-Isaza, Andres F Ruiz-Olaya","doi":"10.1007/s13246-024-01454-5","DOIUrl":"https://doi.org/10.1007/s13246-024-01454-5","url":null,"abstract":"<p><p>Recognizing user intention in reach-to-grasp motions is a critical challenge in rehabilitation engineering. To address this, a Machine Learning (ML) algorithm based on the Extreme Learning Machine (ELM) was developed for identifying motor actions using surface Electromyography (sEMG) during continuous reach-to-grasp movements, involving multiple Degrees of Freedom (DoFs). This study explores feature extraction methods based on time domain and autoregressive models to evaluate ELM performance under different conditions. The experimental setup encompassed variations in neuron size, time windows, validation with each muscle, increase in the number of features, comparison with five conventional ML-based classifiers, inter-subjects variability, and temporal dynamic response. To evaluate the efficacy of the proposed ELM-based method, an openly available sEMG dataset containing data from 12 participants was used. Results highlight the method's performance, achieving Accuracy above 85%, F-score above 90%, Recall above 85%, Area Under the Curve of approximately 84% and compilation times (computational cost) of less than 1 ms. These metrics significantly outperform standard methods (p < 0.05). Additionally, specific trends were found in increasing and decreasing performance in identifying specific tasks, as well as variations in the continuous transitions in the temporal dynamics response. Thus, the ELM-based method effectively identifies continuous reach-to-grasp motions through myoelectric data. These findings hold promise for practical applications. The method's success prompts future research into implementing it for more reliable and effective Human-Machine Interface (HMI) control. This can revolutionize real-time upper limb rehabilitation, enabling natural and complex Activities of Daily Living (ADLs) like object manipulation. The robust results encourages further research and innovative solutions to improve people's quality of life through more effective interventions.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical and Engineering Sciences in Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1