首页 > 最新文献

Underground Space最新文献

英文 中文
Fluid-solid coupling numerical simulation of micro-disturbance grouting treatment for excessive deformation of shield tunnel 流固耦合数值模拟微扰动注浆处理盾构隧道过大变形
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-05-28 DOI: 10.1016/j.undsp.2024.02.003
Yanjie Zhang , Zheng Cao , Chun Liu , Hongwei Huang

Micro-disturbance grouting is a recovery technique to reduce the excessive deformation of operational shield tunnels in urban areas. The grout mass behaves as a fluid in the ground before hardening to form a grout–soil mixture, which highlights the necessity of using fluid–solid coupling method in the simulation of grouting process. Within a discrete element modeling environment, this paper proposes a novel fluid-solid coupling method based on the pore density flow calculation. To demonstrate the effectiveness of this method, it is applied to numerical simulation of micro-disturbance grouting process for treatment of large transverse deformation of a shield tunnel in Shanghai Metro, China. The simulation results reveal the mechanism of recovering tunnel convergence by micro-disturbance grouting in terms of compaction and fracture of soil, energy analysis during grouting, and mechanical response of soil-tunnel interaction system. Furthermore, the influence of the three main grouting parameters (i.e., grouting pressure, grouting distance, and grouting height) on tunnel deformation recovery efficiency is evaluated through parametric analysis. In order to efficiently recover large transverse deformation of shield tunnel in Shanghai Metro, it is suggested that the grouting pressure should be about 0.55 MPa, the grouting height should be in the range of 6.2–7.0 m, and the grouting distance should be in the range of 3.0–3.6 m. The results provide a valuable reference for grouting treatment projects of over-deformed shield tunnel in soft soil areas.

微扰动注浆是减少城市地区运营中的盾构隧道过度变形的一种恢复技术。在硬化形成灌浆土混合物之前,灌浆体在地层中表现为流体,这凸显了在模拟灌浆过程中使用流固耦合方法的必要性。在离散元建模环境下,本文提出了一种基于孔隙密度流计算的新型流固耦合方法。为了证明该方法的有效性,本文将其应用于数值模拟微扰动注浆过程,以处理中国上海地铁盾构隧道的大横向变形。模拟结果从土体的压实和断裂、注浆过程中的能量分析、土-隧道相互作用系统的力学响应等方面揭示了微扰动注浆恢复隧道收敛的机理。此外,还通过参数分析评估了三个主要注浆参数(即注浆压力、注浆距离和注浆高度)对隧道变形恢复效率的影响。为了有效恢复上海地铁盾构隧道的大横向变形,建议注浆压力在 0.55 MPa 左右,注浆高度在 6.2-7.0 m 之间,注浆距离在 3.0-3.6 m 之间。
{"title":"Fluid-solid coupling numerical simulation of micro-disturbance grouting treatment for excessive deformation of shield tunnel","authors":"Yanjie Zhang ,&nbsp;Zheng Cao ,&nbsp;Chun Liu ,&nbsp;Hongwei Huang","doi":"10.1016/j.undsp.2024.02.003","DOIUrl":"https://doi.org/10.1016/j.undsp.2024.02.003","url":null,"abstract":"<div><p>Micro-disturbance grouting is a recovery technique to reduce the excessive deformation of operational shield tunnels in urban areas. The grout mass behaves as a fluid in the ground before hardening to form a grout–soil mixture, which highlights the necessity of using fluid–solid coupling method in the simulation of grouting process. Within a discrete element modeling environment, this paper proposes a novel fluid-solid coupling method based on the pore density flow calculation. To demonstrate the effectiveness of this method, it is applied to numerical simulation of micro-disturbance grouting process for treatment of large transverse deformation of a shield tunnel in Shanghai Metro, China. The simulation results reveal the mechanism of recovering tunnel convergence by micro-disturbance grouting in terms of compaction and fracture of soil, energy analysis during grouting, and mechanical response of soil-tunnel interaction system. Furthermore, the influence of the three main grouting parameters (i.e., grouting pressure, grouting distance, and grouting height) on tunnel deformation recovery efficiency is evaluated through parametric analysis. In order to efficiently recover large transverse deformation of shield tunnel in Shanghai Metro, it is suggested that the grouting pressure should be about 0.55 MPa, the grouting height should be in the range of 6.2–7.0 m, and the grouting distance should be in the range of 3.0–3.6 m. The results provide a valuable reference for grouting treatment projects of over-deformed shield tunnel in soft soil areas.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"19 ","pages":"Pages 87-100"},"PeriodicalIF":8.2,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000552/pdfft?md5=590c2b4b01dba8815bf84a19e0f67fe1&pid=1-s2.0-S2467967424000552-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid profiling rock mass quality underneath tunnel face for Sichuan-Xizang Railway 川藏铁路隧道工作面下岩体质量快速剖面图
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-05-26 DOI: 10.1016/j.undsp.2024.02.004
Siyuan Wu , Min Qiu , Zhao Yang , Fuquan Ji , Zhongqi Quentin Yue

The Sichuan-Xizang Railway is a global challenge, surpassing other known railway projects in terms of geological and topographical complexity. This paper presents an approach for rapidly profiling rock mass quality underneath tunnel face for the ongoing construction of the Sichuan-Xizang Railway. It adopts the time-series method and carries out the quantitative analysis of the rock mass quality using the depth-series measurement-while-drilling (MWD) data associated with drilling of blastholes. A tunnel face with 15 blastholes is examined for illustration. The results include identification of the boundary of homogeneous geomaterial by plotting the blasthole depth against the net drilling time, as well as quantification of rock mass quality through the recalculation of the new specific energy. The new specific energy profile is compared and highly consistent with laboratory test, manual logging and tunnel seismic prediction results. This consistency can enhance the blasthole pattern design and facilitate the dynamic determination of charge placement and amount. This paper highlights the importance of digital monitoring during blasthole drilling for rapidly profiling rock mass quality underneath and ahead of tunnel face. It upgrades the MWD technique for rapid profiling rock mass quality in drilling and blasting tunnels.

川藏铁路是一项全球性挑战,其地质和地形复杂程度超过了其他已知的铁路项目。本文提出了一种快速剖析隧道工作面下岩体质量的方法,用于正在进行的川藏铁路建设。该方法采用时间序列法,利用与钻孔相关的边钻边测深(MWD)数据对岩体质量进行定量分析。以一个有 15 个爆破孔的隧道工作面为例进行说明。结果包括通过绘制爆破孔深度与净钻进时间的对比图来确定均质岩土材料的边界,以及通过重新计算新的比能量来量化岩体质量。新的比能量曲线与实验室测试、人工测井和隧道地震预测结果进行了比较,结果高度一致。这种一致性可以增强爆破孔模式设计,并有助于动态确定装药位置和数量。本文强调了在爆破钻孔过程中进行数字监测以快速剖析隧道工作面下方和前方岩体质量的重要性。它提升了 MWD 技术在隧道钻孔和爆破中快速分析岩体质量的能力。
{"title":"Rapid profiling rock mass quality underneath tunnel face for Sichuan-Xizang Railway","authors":"Siyuan Wu ,&nbsp;Min Qiu ,&nbsp;Zhao Yang ,&nbsp;Fuquan Ji ,&nbsp;Zhongqi Quentin Yue","doi":"10.1016/j.undsp.2024.02.004","DOIUrl":"https://doi.org/10.1016/j.undsp.2024.02.004","url":null,"abstract":"<div><p>The Sichuan-Xizang Railway is a global challenge, surpassing other known railway projects in terms of geological and topographical complexity. This paper presents an approach for rapidly profiling rock mass quality underneath tunnel face for the ongoing construction of the Sichuan-Xizang Railway. It adopts the time-series method and carries out the quantitative analysis of the rock mass quality using the depth-series measurement-while-drilling (MWD) data associated with drilling of blastholes. A tunnel face with 15 blastholes is examined for illustration. The results include identification of the boundary of homogeneous geomaterial by plotting the blasthole depth against the net drilling time, as well as quantification of rock mass quality through the recalculation of the new specific energy. The new specific energy profile is compared and highly consistent with laboratory test, manual logging and tunnel seismic prediction results. This consistency can enhance the blasthole pattern design and facilitate the dynamic determination of charge placement and amount. This paper highlights the importance of digital monitoring during blasthole drilling for rapidly profiling rock mass quality underneath and ahead of tunnel face. It upgrades the MWD technique for rapid profiling rock mass quality in drilling and blasting tunnels.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"19 ","pages":"Pages 138-152"},"PeriodicalIF":8.2,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000564/pdfft?md5=b3d83179fdbfcf74dc872ec52a98e31d&pid=1-s2.0-S2467967424000564-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-based offline reinforcement learning framework for optimizing tunnel boring machine operation 优化隧道掘进机运行的基于模型的离线强化学习框架
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-05-18 DOI: 10.1016/j.undsp.2024.01.008
Yupeng Cao , Wei Luo , Yadong Xue , Weiren Lin , Feng Zhang

Research on automation and intelligent operation of tunnel boring machine (TBM) is receiving more and more attention, benefiting from the increasing construction data. However, most studies on TBM operations optimization were trained by the labels of human drivers’ decisions, which were subjective and stochastic. As a result, the control parameters suggested by these models could hardly surpass the performance of a human driver, even the possibility of subjective incorrect decisions. Considering that the geomechanical feedback to TBM under drivers’ actions is objective, in this paper, a transformer-based model called the geological response for tunnel boring machine (GRTBM), is proposed to learn the relationship between operation-adjust and TBM monitoring changes. Additionally, with the model-based offline reinforcement learning, this paper provided a novel approach to optimizing the TBM excavation operations. The decision processes, recorded in the Yin-song TBM project for a waterway tunnel in Jilin Province of China, were used for the validation of the model. By adopting an implicit perception of geological conditions in the GRTBM model, the suggested method achieved the desired state within a single action, greatly outperformed the practical adjustments where 500 s were taken, revealing the fact that the proposed model has the potential to surpass the capability of human beings.

得益于不断增加的施工数据,隧道掘进机(TBM)的自动化和智能化操作研究正受到越来越多的关注。然而,大多数有关隧道掘进机操作优化的研究都是根据人类驾驶员的决策标签进行训练的,而这些决策标签具有主观性和随机性。因此,这些模型建议的控制参数很难超越人类驾驶员的表现,甚至可能出现主观错误决策。考虑到驾驶员行为对隧道掘进机的地质力学反馈是客观的,本文提出了基于变压器的隧道掘进机地质响应(GRTBM)模型,以学习操作调整与隧道掘进机监测变化之间的关系。此外,通过基于模型的离线强化学习,本文提供了一种优化隧道掘进机挖掘作业的新方法。模型的验证采用了中国吉林省银松水道隧道 TBM 项目中记录的决策过程。通过在 GRTBM 模型中采用对地质条件的隐式感知,所建议的方法在一次操作中就达到了预期状态,大大优于实际调整所需的 500 秒,揭示了所建议的模型具有超越人类能力的潜力。
{"title":"Model-based offline reinforcement learning framework for optimizing tunnel boring machine operation","authors":"Yupeng Cao ,&nbsp;Wei Luo ,&nbsp;Yadong Xue ,&nbsp;Weiren Lin ,&nbsp;Feng Zhang","doi":"10.1016/j.undsp.2024.01.008","DOIUrl":"10.1016/j.undsp.2024.01.008","url":null,"abstract":"<div><p>Research on automation and intelligent operation of tunnel boring machine (TBM) is receiving more and more attention, benefiting from the increasing construction data. However, most studies on TBM operations optimization were trained by the labels of human drivers’ decisions, which were subjective and stochastic. As a result, the control parameters suggested by these models could hardly surpass the performance of a human driver, even the possibility of subjective incorrect decisions. Considering that the geomechanical feedback to TBM under drivers’ actions is objective, in this paper, a transformer-based model called the geological response for tunnel boring machine (GRTBM), is proposed to learn the relationship between operation-adjust and TBM monitoring changes. Additionally, with the model-based offline reinforcement learning, this paper provided a novel approach to optimizing the TBM excavation operations. The decision processes, recorded in the Yin-song TBM project for a waterway tunnel in Jilin Province of China, were used for the validation of the model. By adopting an implicit perception of geological conditions in the GRTBM model, the suggested method achieved the desired state within a single action, greatly outperformed the practical adjustments where 500 s were taken, revealing the fact that the proposed model has the potential to surpass the capability of human beings.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"19 ","pages":"Pages 47-71"},"PeriodicalIF":8.2,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000540/pdfft?md5=12e60e379c29962c638a0fecd8e75a42&pid=1-s2.0-S2467967424000540-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141134123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-scale mechanical softening of Marcellus shale induced by CO2-water–rock interactions using nanoindentation and accurate grain-based modeling 利用纳米压痕技术和基于晶粒的精确建模,研究二氧化碳-水-岩石相互作用诱发的马塞勒斯页岩跨尺度机械软化现象
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-05-18 DOI: 10.1016/j.undsp.2024.02.001
Yiwei Liu , Quansheng Liu , Zhijun Wu , Shimin Liu , Yong Kang , Xuhai Tang

Mechanical softening behaviors of shale in CO2-water–rock interaction are critical for shale gas exploitation and CO2 sequestration. This work investigated the cross-scale mechanical softening of shale triggered by CO2-water–rock interaction. Initially, the mechanical softening of shale following 30 d of exposure to CO2 and water was assessed at the rock-forming mineral scale using nanoindentation. The mechanical alterations of rock-forming minerals, including quartz, muscovite, chlorite, and kaolinite, were analyzed and compared. Subsequently, an accurate grain-based modeling (AGBM) was proposed to upscale the nanoindentation results. Numerical models were generated based on the real microstructure of shale derived from TESCAN integrated minerals analyzer (TIMA) digital images. Mechanical parameters of shale minerals determined by nanoindentation served as input material properties for AGBMs. Finally, numerical simulations of uniaxial compression tests were conducted to investigate the impact of mineral softening on the macroscopic Young’s modulus and uniaxial compressive strength (UCS) of shale. The results present direct evidence of shale mineral softening during CO2-water–rock interaction and explore its influence on the upscale mechanical properties of shale. This paper offers a microscopic perspective for comprehending CO2-water-shale interactions and contributes to the development of a cross-scale mechanical model for shale.

页岩在二氧化碳-水-岩石相互作用中的机械软化行为对页岩气开采和二氧化碳封存至关重要。这项研究调查了二氧化碳-水-岩石相互作用引发的页岩跨尺度机械软化。首先,使用纳米压痕法在成岩矿物尺度上评估了页岩暴露于二氧化碳和水 30 天后的机械软化。分析和比较了成岩矿物(包括石英、白云母、绿泥石和高岭石)的机械变化。随后,提出了一种基于晶粒的精确建模(AGBM),以提升纳米压痕结果。根据 TESCAN 集成矿物分析仪(TIMA)数字图像得出的页岩真实微观结构生成了数值模型。通过纳米压痕确定的页岩矿物力学参数作为 AGBM 的输入材料属性。最后,对单轴压缩试验进行了数值模拟,以研究矿物软化对页岩宏观杨氏模量和单轴压缩强度(UCS)的影响。结果提供了页岩矿物在二氧化碳-水-岩石相互作用过程中发生软化的直接证据,并探讨了软化对页岩宏观力学性能的影响。本文为理解二氧化碳-水-页岩相互作用提供了一个微观视角,并有助于开发页岩的跨尺度力学模型。
{"title":"Cross-scale mechanical softening of Marcellus shale induced by CO2-water–rock interactions using nanoindentation and accurate grain-based modeling","authors":"Yiwei Liu ,&nbsp;Quansheng Liu ,&nbsp;Zhijun Wu ,&nbsp;Shimin Liu ,&nbsp;Yong Kang ,&nbsp;Xuhai Tang","doi":"10.1016/j.undsp.2024.02.001","DOIUrl":"10.1016/j.undsp.2024.02.001","url":null,"abstract":"<div><p>Mechanical softening behaviors of shale in CO<sub>2</sub>-water–rock interaction are critical for shale gas exploitation and CO<sub>2</sub> sequestration. This work investigated the cross-scale mechanical softening of shale triggered by CO<sub>2</sub>-water–rock interaction. Initially, the mechanical softening of shale following 30 d of exposure to CO<sub>2</sub> and water was assessed at the rock-forming mineral scale using nanoindentation. The mechanical alterations of rock-forming minerals, including quartz, muscovite, chlorite, and kaolinite, were analyzed and compared. Subsequently, an accurate grain-based modeling (AGBM) was proposed to upscale the nanoindentation results. Numerical models were generated based on the real microstructure of shale derived from TESCAN integrated minerals analyzer (TIMA) digital images. Mechanical parameters of shale minerals determined by nanoindentation served as input material properties for AGBMs. Finally, numerical simulations of uniaxial compression tests were conducted to investigate the impact of mineral softening on the macroscopic Young’s modulus and uniaxial compressive strength (UCS) of shale. The results present direct evidence of shale mineral softening during CO<sub>2</sub>-water–rock interaction and explore its influence on the upscale mechanical properties of shale. This paper offers a microscopic perspective for comprehending CO<sub>2</sub>-water-shale interactions and contributes to the development of a cross-scale mechanical model for shale.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"19 ","pages":"Pages 26-46"},"PeriodicalIF":8.2,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000527/pdfft?md5=5ddef8fd3ef4b2908943813aab1854a4&pid=1-s2.0-S2467967424000527-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141142106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic and vibration control of segmented isolation layer in underground structure-diaphragm wall system 地下结构-地下连续墙系统中分段隔离层的抗震和振动控制
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-05-17 DOI: 10.1016/j.undsp.2024.02.002
Zhidong Gao , Mingbo Li , Mi Zhao , Xiuli Du

In this paper, a seismic and vibration reduction measure of subway station is developed by setting a segmented isolation layer between the sidewall of structure and the diaphragm wall. The segmented isolation layer consists of a rigid layer and a flexible layer. The rigid layer is installed at the joint section between the structural sidewall and slab, and the flexible layer is installed at the remaining sections. A diaphragm wall-segmented isolation layer-subway station structure system is constructed. Seismic and vibration control performance of the diaphragm wall-segmented isolation layer-subway station structure system is evaluated by the detailed numerical analysis. Firstly, a three-dimensional nonlinear time-history analysis is carried out to study the seismic response of the station structure by considering the effect of different earthquake motions and stiffness of segmented isolation layer. Subsequently, the vibration response of site under training loading is also studied by considering the influence of different train velocities and stiffness of the segmented isolation layer. Numerical results demonstrate that the diaphragm wall-segmented isolation layer-subway station structure system can not only effectively reduce the lateral deformation of station structure, but also reduce the tensile damage of the roof slab. On the other hand, the developed reduction measure can also significantly reduce the vertical peak displacements of site under training loading.

本文通过在结构侧墙和地下连续墙之间设置分段隔震层,开发了一种地铁站抗震减震措施。分段隔离层由刚性层和柔性层组成。刚性层安装在结构侧墙和楼板的连接部分,柔性层安装在其余部分。地下连续墙-分段隔离层-地铁站结构系统已建成。通过详细的数值分析,对地下连续墙-分段隔离层-地铁站结构系统的抗震和振动控制性能进行了评估。首先,通过考虑不同地震运动和分段隔离层刚度的影响,对车站结构的地震响应进行了三维非线性时程分析。随后,还考虑了不同列车速度和分段隔离层刚度的影响,研究了训练荷载下的场地振动响应。数值结果表明,地下连续墙-分段隔离层-地铁车站结构系统不仅能有效减少车站结构的侧向变形,还能减少顶板的拉伸破坏。另一方面,所开发的减震措施还能显著降低训练荷载作用下场地的竖向峰值位移。
{"title":"Seismic and vibration control of segmented isolation layer in underground structure-diaphragm wall system","authors":"Zhidong Gao ,&nbsp;Mingbo Li ,&nbsp;Mi Zhao ,&nbsp;Xiuli Du","doi":"10.1016/j.undsp.2024.02.002","DOIUrl":"10.1016/j.undsp.2024.02.002","url":null,"abstract":"<div><p>In this paper, a seismic and vibration reduction measure of subway station is developed by setting a segmented isolation layer between the sidewall of structure and the diaphragm wall. The segmented isolation layer consists of a rigid layer and a flexible layer. The rigid layer is installed at the joint section between the structural sidewall and slab, and the flexible layer is installed at the remaining sections. A diaphragm wall-segmented isolation layer-subway station structure system is constructed. Seismic and vibration control performance of the diaphragm wall-segmented isolation layer-subway station structure system is evaluated by the detailed numerical analysis. Firstly, a three-dimensional nonlinear time-history analysis is carried out to study the seismic response of the station structure by considering the effect of different earthquake motions and stiffness of segmented isolation layer. Subsequently, the vibration response of site under training loading is also studied by considering the influence of different train velocities and stiffness of the segmented isolation layer. Numerical results demonstrate that the diaphragm wall-segmented isolation layer-subway station structure system can not only effectively reduce the lateral deformation of station structure, but also reduce the tensile damage of the roof slab. On the other hand, the developed reduction measure can also significantly reduce the vertical peak displacements of site under training loading.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"19 ","pages":"Pages 72-86"},"PeriodicalIF":8.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000539/pdfft?md5=24e30c9c07258b082f76dad6e5a6eda3&pid=1-s2.0-S2467967424000539-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141034395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creep damage constitutive model of rock based on the mechanisms of crack-initiated damage and extended damage 基于裂缝引发损伤和扩展损伤机制的岩石蠕变损伤构成模型
IF 6.4 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-05-13 DOI: 10.1016/j.undsp.2023.12.008
Tianbin Li , Chao Chen , Feng Peng , Chunchi Ma , Mou Li , Yixiang Wang

Since the classical element model cannot describe the nonlinear characteristics of rock during the entire compressive creep process, nonlinear elements and creep damage are generally introduced in the model to resolve this issue. However, several previous studies have reckoned that creep damage in rock only occurs in the accelerated creep stage and is only described by the Weibull distribution. Nevertheless, the creep damage mechanism of rocks is still not clearly understood. In this study, a reasonable representation of the damage variables of solid materials is presented. Specifically, based on the Gurson damage model, the damage state functions reflecting the constant creep stage and accelerated creep stage of rock are established. Further, the one-dimensional and three-dimensional creep damage constitutive equations of rock are derived by modifying the Nishihara model. Finally, the creep-acoustic emission tests of phyllite under different confining pressures are conducted to examine the creep damage characteristics of phyllite. And the proposed constitutive model is verified by analyzing the results of creep tests performed on saturated phyllite. Overall, this study reveals the relationship between the creep characteristics of rocks and the corresponding damage evolution pattern, which bridges the gap between the traditional theory and the quantitative analysis of rock creep and its damage pattern.

由于经典元素模型无法描述岩石在整个压缩蠕变过程中的非线性特征,因此一般会在模型中引入非线性元素和蠕变损伤来解决这一问题。然而,之前的一些研究认为,岩石的蠕变损伤只发生在加速蠕变阶段,并且只能用 Weibull 分布来描述。尽管如此,人们对岩石的蠕变破坏机理仍不甚了解。本研究提出了固体材料损伤变量的合理表示方法。具体来说,基于 Gurson 损伤模型,建立了反映岩石恒定蠕变阶段和加速蠕变阶段的损伤状态函数。此外,通过修改 Nishihara 模型,推导出了岩石的一维和三维蠕变损伤构成方程。最后,进行了不同约束压力下辉绿岩的蠕变声发射试验,以研究辉绿岩的蠕变损伤特征。通过分析饱和辉绿岩的蠕变试验结果,验证了所提出的构成模型。总之,本研究揭示了岩石蠕变特性与相应的损伤演化模式之间的关系,弥补了传统理论与岩石蠕变及其损伤模式定量分析之间的差距。
{"title":"Creep damage constitutive model of rock based on the mechanisms of crack-initiated damage and extended damage","authors":"Tianbin Li ,&nbsp;Chao Chen ,&nbsp;Feng Peng ,&nbsp;Chunchi Ma ,&nbsp;Mou Li ,&nbsp;Yixiang Wang","doi":"10.1016/j.undsp.2023.12.008","DOIUrl":"10.1016/j.undsp.2023.12.008","url":null,"abstract":"<div><p>Since the classical element model cannot describe the nonlinear characteristics of rock during the entire compressive creep process, nonlinear elements and creep damage are generally introduced in the model to resolve this issue. However, several previous studies have reckoned that creep damage in rock only occurs in the accelerated creep stage and is only described by the Weibull distribution. Nevertheless, the creep damage mechanism of rocks is still not clearly understood. In this study, a reasonable representation of the damage variables of solid materials is presented. Specifically, based on the Gurson damage model, the damage state functions reflecting the constant creep stage and accelerated creep stage of rock are established. Further, the one-dimensional and three-dimensional creep damage constitutive equations of rock are derived by modifying the Nishihara model. Finally, the creep-acoustic emission tests of phyllite under different confining pressures are conducted to examine the creep damage characteristics of phyllite. And the proposed constitutive model is verified by analyzing the results of creep tests performed on saturated phyllite. Overall, this study reveals the relationship between the creep characteristics of rocks and the corresponding damage evolution pattern, which bridges the gap between the traditional theory and the quantitative analysis of rock creep and its damage pattern.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"18 ","pages":"Pages 295-313"},"PeriodicalIF":6.4,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000515/pdfft?md5=9a4e987ccdd5acd23ff59fffe64e8457&pid=1-s2.0-S2467967424000515-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141025683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of double-arch tunnels under internal BLEVE 内部 BLEVE 条件下的双拱隧道性能
IF 6.4 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-05-11 DOI: 10.1016/j.undsp.2024.01.006
Ruishan Cheng , Wensu Chen , Hong Hao

Double-arch tunnels, as one of the popular forms of tunnels, might be exposed to boiling liquid expanding vapour explosions (BLEVEs) associated with transported liquified petroleum gas (LPG), which could cause damage to the tunnel and even catastrophic collapse of the tunnel in extreme cases. However, very limited study has investigated the performance of double-arch tunnels when exposed to internal BLEVEs and in most analyses of tunnel responses to accidental explosions. The TNT-equivalence method was used to approximate the explosion load, which may lead to inaccurate tunnel response predictions. This study numerically investigates the response of typical double-arch tunnels to an internal BLEVE resulting from the instantaneous rupture of a 20 m3 LPG tank. Effects of various factors, including in-situ stresses, BLEVE locations, and lining configurations on tunnel responses are examined. The results show that the double-arch tunnels at their early-operation ages are more vulnerable to severe damage when exposed to the BLEVE due to the low action of in-situ stress of rock mass on the response of early-age tunnels. It is also found that directing the LPG tank to different driving lanes inside tunnels can affect the BLEVE-induced tunnel response more significantly than varying the configurations of tunnel lining. Moreover, installing section-steel arches in the mid-wall can effectively improve the blast resistance of the double-arch tunnels against the internal BLEVE. In addition, the prediction models based on multi-variate nonlinear regressions and machine learning methods are developed to predict the BLEVE-induced damage levels of the double-arch tunnels without and with section-steel arches.

双拱形隧道是常用的隧道形式之一,可能会受到与液化石油气(LPG)运输相关的沸腾液体膨胀蒸汽爆炸(BLEVE)的影响,这可能会对隧道造成破坏,甚至在极端情况下导致隧道的灾难性坍塌。然而,对双拱隧道暴露于内部 BLEVE 时的性能以及隧道对意外爆炸反应的大多数分析进行的研究非常有限。采用 TNT 等效法来近似计算爆炸荷载,这可能会导致隧道响应预测不准确。本研究以数值方法研究了典型的双拱隧道对 20 立方米液化石油气罐瞬时破裂引起的内部 BLEVE 的响应。研究了各种因素(包括原位应力、BLEVE 位置和衬砌结构)对隧道响应的影响。结果表明,由于岩体的原位应力对早期隧道响应的影响较小,因此运营初期的双拱隧道更容易受到 BLEVE 的严重破坏。研究还发现,将液化石油气罐引向隧道内不同的行车道比改变隧道衬砌结构对 BLEVE 引起的隧道响应影响更大。此外,在隧道中墙安装型钢拱可以有效提高双拱隧道对内部 BLEVE 的抗爆能力。此外,还开发了基于多变量非线性回归和机器学习方法的预测模型,用于预测无断面钢拱架和有断面钢拱架双拱隧道的 BLEVE 诱导破坏水平。
{"title":"Performance of double-arch tunnels under internal BLEVE","authors":"Ruishan Cheng ,&nbsp;Wensu Chen ,&nbsp;Hong Hao","doi":"10.1016/j.undsp.2024.01.006","DOIUrl":"10.1016/j.undsp.2024.01.006","url":null,"abstract":"<div><p>Double-arch tunnels, as one of the popular forms of tunnels, might be exposed to boiling liquid expanding vapour explosions (BLEVEs) associated with transported liquified petroleum gas (LPG), which could cause damage to the tunnel and even catastrophic collapse of the tunnel in extreme cases. However, very limited study has investigated the performance of double-arch tunnels when exposed to internal BLEVEs and in most analyses of tunnel responses to accidental explosions. The TNT-equivalence method was used to approximate the explosion load, which may lead to inaccurate tunnel response predictions. This study numerically investigates the response of typical double-arch tunnels to an internal BLEVE resulting from the instantaneous rupture of a 20 m<sup>3</sup> LPG tank. Effects of various factors, including in-situ stresses, BLEVE locations, and lining configurations on tunnel responses are examined. The results show that the double-arch tunnels at their early-operation ages are more vulnerable to severe damage when exposed to the BLEVE due to the low action of in-situ stress of rock mass on the response of early-age tunnels. It is also found that directing the LPG tank to different driving lanes inside tunnels can affect the BLEVE-induced tunnel response more significantly than varying the configurations of tunnel lining. Moreover, installing section-steel arches in the mid-wall can effectively improve the blast resistance of the double-arch tunnels against the internal BLEVE. In addition, the prediction models based on multi-variate nonlinear regressions and machine learning methods are developed to predict the BLEVE-induced damage levels of the double-arch tunnels without and with section-steel arches.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"19 ","pages":"Pages 6-25"},"PeriodicalIF":6.4,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000497/pdfft?md5=44f3da29b811f859bfbf28ac4f9ad080&pid=1-s2.0-S2467967424000497-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141028630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of fracture initiation in cohesive soils based on data mining modelling and large-scale laboratory verification 基于数据挖掘建模和大规模实验室验证的粘性土断裂起始预测
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-05-10 DOI: 10.1016/j.undsp.2024.01.007

Many empirical and analytical methods have been proposed to predict fracturing pressure in cohesive soils. Most of them take into account three to four specific influencing factors and rely on the assumption of a failure mode. In this study, a novel data-mining approach based on the XGBoost algorithm is investigated for predicting fracture initiation in cohesive soils. This has the advantage of handling multiple influencing factors simultaneously, without pre-determining a failure mode. A dataset of 416 samples consisting of 14 distinct features was herein collected from past studies, and used for developing a regressor and a classifier model for fracturing pressure prediction and failure mode classification respectively. The results show that the intrinsic characteristics of the soil govern the failure mode while the fracturing pressure is more sensitive to the stress state. The XGBoost-based model was also tested against conventional approaches, as well as a similar machine learning algorithm namely random forest model. Additionally, several large-scale triaxial fracturing tests and an in-situ case study were carried out to further verify the generalization ability and applicability of the proposed data mining approach, and the results indicate a superior performance of the XGBoost model.

人们提出了许多经验和分析方法来预测粘性土的破裂压力。其中大多数都考虑了三到四个特定的影响因素,并依赖于一种破坏模式的假设。在本研究中,研究了一种基于 XGBoost 算法的新型数据挖掘方法,用于预测粘性土的断裂起始。这种方法的优点是可以同时处理多种影响因素,而无需预先确定破坏模式。本文从过去的研究中收集了由 14 个不同特征组成的 416 个样本数据集,用于开发回归器和分类器模型,分别用于压裂压力预测和失效模式分类。结果表明,土壤的固有特性决定了破坏模式,而压裂压力对应力状态更为敏感。基于 XGBoost 的模型还与传统方法以及类似的机器学习算法(即随机森林模型)进行了对比测试。此外,为了进一步验证所提出的数据挖掘方法的概括能力和适用性,还进行了几次大规模三轴压裂试验和一次现场案例研究,结果表明 XGBoost 模型的性能更优越。
{"title":"Prediction of fracture initiation in cohesive soils based on data mining modelling and large-scale laboratory verification","authors":"","doi":"10.1016/j.undsp.2024.01.007","DOIUrl":"10.1016/j.undsp.2024.01.007","url":null,"abstract":"<div><p>Many empirical and analytical methods have been proposed to predict fracturing pressure in cohesive soils. Most of them take into account three to four specific influencing factors and rely on the assumption of a failure mode. In this study, a novel data-mining approach based on the XGBoost algorithm is investigated for predicting fracture initiation in cohesive soils. This has the advantage of handling multiple influencing factors simultaneously, without pre-determining a failure mode. A dataset of 416 samples consisting of 14 distinct features was herein collected from past studies, and used for developing a regressor and a classifier model for fracturing pressure prediction and failure mode classification respectively. The results show that the intrinsic characteristics of the soil govern the failure mode while the fracturing pressure is more sensitive to the stress state. The XGBoost-based model was also tested against conventional approaches, as well as a similar machine learning algorithm namely random forest model. Additionally, several large-scale triaxial fracturing tests and an in-situ case study were carried out to further verify the generalization ability and applicability of the proposed data mining approach, and the results indicate a superior performance of the XGBoost model.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"19 ","pages":"Pages 279-300"},"PeriodicalIF":8.2,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000503/pdfft?md5=1186b98abc7e5d3abbd8dd10fd0ac771&pid=1-s2.0-S2467967424000503-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141034726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 6.4 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-05-03 DOI: 10.1016/j.undsp.2024.04.002
Dongming Zhang
{"title":"","authors":"Dongming Zhang","doi":"10.1016/j.undsp.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.undsp.2024.04.002","url":null,"abstract":"","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"19 ","pages":"Pages 4-5"},"PeriodicalIF":6.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000485/pdfft?md5=3666d9df991026caa548e21a5d4e989a&pid=1-s2.0-S2467967424000485-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to the first Jeme Tien Yow Lecture 首场 "Jeme Tien Yow 讲座 "简介
IF 6.4 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-04-29 DOI: 10.1016/j.undsp.2024.04.001
Hehua Zhu
{"title":"Introduction to the first Jeme Tien Yow Lecture","authors":"Hehua Zhu","doi":"10.1016/j.undsp.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.undsp.2024.04.001","url":null,"abstract":"","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"18 ","pages":"Pages 1-2"},"PeriodicalIF":6.4,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000473/pdfft?md5=db634661c325d435105f4e62e806e0d3&pid=1-s2.0-S2467967424000473-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140906754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Underground Space
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1