This study aims to develop a rational theoretical model for cutterhead-soil interaction. The cutterhead-soil interaction mechanism is divided into two components: the cutting action of the cutter on the soil and the extrusion of the cutterhead on the soil. By enhancing the Mckyes–Ali model, we analyze and deduce the force state of the cutter during shield tunneling, obtaining a calculation method for determining the force on the cutter. Additionally, we conduct an in-depth analysis of the extrusion effect of the cutterhead on the soil during shield tunneling, utilizing the fundamental solution of the Kelvin problem. Based on these theoretical calculations, we validate the tunneling thrust and cutterhead torque of the shield using our self-developed multi-functional large-scale shield tunneling test platform. The test results demonstrate that the tunneling thrust and cutterhead torque derived from the established cutterhead-soil interaction model in this paper are relatively close to the experimental monitoring values. This provides a theoretical foundation for establishing reasonable shield tunneling loads.
Excessive underground train-induced vibration becomes a serious environmental problem in cities. To investigate the vibration transfer from an underground train to a building nearby, an explicit-integration time-domain, three-dimensional finite element model is developed. The underground train, track, tunnel, soil layers and a typical multi-story building nearby are all fully coupled in this model. The complex geometries involving the track components and the building are all modelled in detail, which makes the simulation of vibration transfer more realistic from the underground train to the building. The model is validated with in-situ tests data and good agreements have been achieved between the numerical results and the experimental results both in time domain and frequency domain. The proposed model is applied to investigate the vibration transfer along the floors in the building and the influences of the soil stiffness on the vibration characteristics of the track-tunnel-soil-building system. It is found that the building vibration induced by an underground train is dominant at the frequency determined by the P2 resonance and influenced by the vibration modes of the building. The vertical vibration in the building decreases in a fluctuant pattern from the foundation to the top floor due to loss of high frequency contents and local modes. The vibration levels in different rooms at a same floor can be different due to the different local stiffness. A room with larger space thus smaller local stiffness usually has higher vibration level. Softer soil layers make the tunnel lining and the building have more low frequency vibration. The influence of the soil stiffness on the amplification scale along the floors of the building is found to be nonlinear and frequency-dependent, which needs to be further investigated.
Subways, underground logistics systems and underground parking, as the primary facilities types of underground, contribute significantly to the achievement of carbon–neutral cities by moving surface transportation to underground, thereby releasing surface space for the creation of more urban blue-green space for carbon sink. Therefore, in-depth studies on carbon neutrality strategies as well as reliable layout optimization solutions of these three types of underground facilities are required. This study proposes a spatial layout optimization strategy for carbon neutrality using underground hydrogen storage and geothermal energy for these three types of underground facilities employing a multi-agent system model. First, three spatial layout relationships, competition, coordination, and followership, between five underground facilities that contribute to emission reduction were investigated. Second, the implementation steps for optimizing the spatial layout of underground facilities were determined by defining the behavioral guidelines for spatial environment, underground facility, and synergistic agent. Finally, using the Tianfu New District in Chengdu City, China, as a case study, layouts of underground facilities under three different underground space development scenarios were simulated to verify the model. The findings of this study address the gap in the research on underground spatial facilities and their layout optimization in response to emission reduction. This study provided a significant reference for the study of underground space and underground resources at the planning level to aid in achieving carbon–neutral cities.
Fracture/fault instability induced by fluid injection in deep geothermal reservoirs could not only vary the reservoir permeability but also trigger hazardous seismicity. To address this, we conducted triaxial shear experiments on granite fractures with different architected roughnesses reactivated under fluid injection, to investigate the controls on permeability evolution linked to reactivation. Our results indicate that the fracture roughness and injection strategies are two main factors affecting permeability evolution. For fractures with different roughnesses, a rougher fracture leads to a lower peak reactivated permeability (kmax), and varying the fluid injection strategy (including the confining pressure and injection rate) has a less impact on kmax, indicating that the evolution of permeability during fluid pressurization is likely to be determined by the fracture roughness along the shear direction. Both the fracture roughness and injection strategies affect the average rates of permeability change and this parameter also reflects the long-term reservoir recovery. Our results have important implications for understanding the permeability evolution and the injection-induced fracture/fault slips in granite reservoirs during the deep geothermal energy extraction.
To solve the problem that current attitude planning methods do not fully consider the interaction and constraints among the shield, segmental tunnel ring, and geology, and cannot adapt to the changes in the actual engineering environment, or provide feasible long-term and short-term attitude planning, this paper proposes autonomous intelligent dynamic trajectory planning (AI-DTP) to provide tunnel ring and centimeter-layer planning targets for a self-driving shield to meet long-term accuracy and short-term rapidity. AI-DTP introduces the Frenet coordinate system to solve the problem of inconsistent spatial representation of tunnel data, segmental tunnel ring location, and surrounding geological conditions, designs the long short-term memory attitude prediction model to accurately predict shield attitude change trend based on shield, tunnel, and geology, and uses a heuristic algorithm for trajectory optimization. AI-DTP provides ring-layer and centimeter-layer planning objectives that meet the needs of long-term accuracy and short-term correction of shield attitude control. In the Hangzhou-Shaoxing Intercity Railroad Tunnel Project in China, the “Zhiyu” shield equipped with the AI-DTP system was faster and more accurate than the manually controlled shield, with a smoother process and better quality of the completed tunnel.
Rockburst has always been a challenge for the safe construction of deep underground engineering. This study investigated the rockburst characteristics in highly-stressed D-shape tunnels under impact loads from rock blasting and other mining-related dynamics disturbances. The biaxial Hopkinson pressure bar was utilized to apply varying biaxial prestress and the same impact loads to cube specimens with D-shape hole. High-speed camera and digital image correlation (DIC) were used to capture the failure process and strain field of specimen. The test results demonstrate that the D-shape hole specimen experience rockburst under coupled static stress and impact load. Under this circumstance, the rockburst mechanism of the D-shaped hole specimens involves spalling in sidewall induced by impact load, indicating dynamic tensile failure. The high static prestress provides the initial stress field, while the impact load disrupts the stress equilibrium, result in the stress or strain concentration in the sidewall of the D-shape hole, inducing rockburst. Moreover, the rockburst process can be divided into (1) calm stage, (2) crack initiation, propagation, and coalesce stage, (3) spalling stage and (4) rock fragments ejection stage. Impact load triggers rockburst occurrence, while vertical stress further determines the rockburst characteristics. The influence range and magnitude of strain concentration zone and displacement deformation of the tunnel surrounding rock increases with increasing vertical stress, thus inducing more severe rockburst.
Rockburst is a frequently encountered hazard during the production of deep gold mines. Accurate prediction of rockburst is an important measure to prevent rockburst in gold mines. This study considers seven indicators to evaluate rockburst at four deep gold mines. Field research and rock tests were performed at two gold mines in China to collect these seven indicators and rockburst cases. The collected database was oversampled by the synthetic minority oversampling technique (SMOTE) to balance the categories of rockburst datasets. Stacking models combining tree-based models and logistic regression (LR) were established by the balanced database. Rockburst datasets from another two deep gold mines were implemented to verify the applicability of the predictive models. The stacking model combining extremely randomized trees and LR based on SMOTE (SMOTE-ERT-LR) was the best model, and it obtained a training accuracy of 100% and an evaluation accuracy of 100%. Moreover, model evaluation suggested that SMOTE can enhance the prediction performance for weak rockburst, thereby improving the overall performance. Finally, sensitivity analysis was performed for SMOTE-ERT-LR. The results indicated that the SMOTE-ERT-LR model can achieve satisfactory performance when only depth, maximum tangential stress index, and linear elastic energy index were available.
Rockburst is a major challenge to hard rock engineering at great depth. Accurate and timely assessment of rockburst risk can avoid unnecessary casualties and property losses. Despite the existence of various methods for rockburst assessment, there remains an urgent need for a comprehensive and reliable criterion that is easy to both apply and interpret. Developing a new rockburst criterion based on simple parameters can potentially fill this gap. With its advantages, this criterion can facilitate a more effective and efficient prediction of rockburst potential, thereby contributing significantly to enhancing safety measures. In this paper, combined with the internal and external factors of rockburst, four control variables (i.e., integrity index, stress index, brittleness index, and elastic energy index) were selected to be incorporated into a comprehensive rockburstability index (RBSI). Based on 116 sets of rockburst cases, the rockburst potential was accurately quantified and predicted using the categorical boosting (CatBoost) model and the nature-inspired metaheuristic African vultures optimization algorithm (AVOA). In its performance validation, the criterion achieved the highest accuracy of 90.48%, verifying the reliability and effectiveness of the proposed RBSI criterion. Additionally, an interpretive method was applied to analyze the variable influence on the criterion, facilitating the explanation of predictions and the analysis of the formula’s robustness under different conditions. In general, compared with existing criterion methods involving relevant indicators, the newly proposed RBSI criterion enhances the accuracy of rockburst potential prediction, and it can effectively and swiftly evaluate the preliminary risk of rockburst. Lastly, a graphical user interface was developed to provide a clear visualization of the assessment of rockburst potential.
During dislocation, a tunnel crossing the active fault will be damaged to varying degrees due to its permanent stratum displacement. Most previous studies did not consider the influence of the tunnel’s deep burial and the high in-situ stress, so the results were not entirely practical. In this paper, the necessity of solving the anti-dislocation problem of deep-buried tunnels is systemically discussed. Through the model test of tunnels across active faults, the differences in failures between deep-buried tunnels and shallow-buried tunnels were compared, and the dislocation test of deep-buried segmental tunnels was carried out to analyze the external stress change, lining strain, and failure mode of tunnels. The results are as follows: (1) The overall deformation of deep-buried and shallow-buried tunnels is both S-shaped. The failure mode of deep-buried tunnels is primarily characterized by shear and tensile failure, resulting in significant compressive deformation and a larger damaged area. In contrast, shallow-buried tunnels mainly experience shear failure, with the tunnel being sheared apart at the fault crossing, leading to more severe damage. (2) After the segmental structure design of the deep-buried tunnel, the “S” deformation pattern is transformed into a “ladder” pattern, and the strain of the tunnel and the peak stress of the external rock mass are reduced; therefore, damages are significantly mitigated. (3) Through the analysis of the distribution of cracks in the tunnel lining, it is found that the tunnel without a segmental structure design has suffered from penetrating failure and that cracks affect the entire lining. The cracks in a flexible segmental tunnel affect about 66.6% of the entire length of the tunnel, and cracks in a tunnel with a short segmental tunnel only affect about 33.3% of the entire length of the tunnel. Therefore, a deep-buried tunnel with a short segmental tunnel can yield a better anti-dislocation effect. (4) By comparing the shallow-buried segmental tunnel in previous studies, it is concluded that the shallow-buried segmental tunnel will also suffer from deformation outside the fault zone, while the damages to the deep-buried segmental tunnel are concentrated in the fault zone, so the anti-dislocation protection measures of the deep-buried tunnel shall be provided mainly in the fault zone. The results of the above study can provide theoretical reference and technical support for the design and reinforcement measures of the tunnel crossing active fault under high in-situ stress conditions.