首页 > 最新文献

Underground Space最新文献

英文 中文
Experimental study on the performance of shield tunnel tail grout in ground 盾构隧道尾部注浆在地层中的性能试验研究
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-08-29 DOI: 10.1016/j.undsp.2024.07.001
Jiaxin Liang , Wei Liu , Xinsheng Yin , Wentao Li , Zhe Yang , Jichen Yang
Shield tail grouting is an important measure to control tunnelling-induced ground deformation by injecting prepared grouting materials to fill the tail gap. The working performance of grout is usually invisible and hard to obtain in construction. This paper carries out an experimental study to investigate the tail grout behavior in ground. In the current research, a testing device is developed to explore the grout behavior in varying soils. The grout working performance is evaluated not only by the liquid grout properties such as fluidity, consistency, bleeding rate, stone rate and compressed deformation but also solid grout properties such as unconfined compressive strength and permeability. Three typical grouts are chosen and their behaviors in the various soils are observed. To take an insight on the behaviors, scanning electron microscopy and mercury intrusion porosimetry analysis are employed. The microstructure of solid grout is a sign of its working performance. The observation shows that the solid grout micro-structure is influenced by grout proportions, pressure, and ground permeabilities. The experimental results are applied in the case of Beijing Metro Line 12 for validation and as a result, the ground movement is inhibited due to high performance of tail grout.
盾尾注浆是通过注入配制好的注浆材料来填充盾尾间隙,从而控制掘进引起的地面变形的一项重要措施。灌浆料的工作性能通常是不可见的,在施工中很难获得。本文通过实验研究了尾部注浆在地层中的行为。在当前的研究中,开发了一种测试装置来探索灌浆材料在不同土壤中的行为。灌浆料的工作性能不仅通过液体灌浆料的流动性、稠度、出血率、结石率和压缩变形等性能进行评估,还通过固体灌浆料的无侧限抗压强度和渗透性等性能进行评估。我们选择了三种典型的灌浆料,并观察了它们在不同土壤中的表现。为了深入了解这些行为,采用了扫描电子显微镜和汞侵入孔隙模拟分析。固体灌浆料的微观结构是其工作性能的标志。观察结果表明,固体灌浆料的微观结构受灌浆料比例、压力和地层渗透性的影响。实验结果应用于北京地铁 12 号线进行验证,结果表明,由于尾部灌浆料的高性能,地面运动受到抑制。
{"title":"Experimental study on the performance of shield tunnel tail grout in ground","authors":"Jiaxin Liang ,&nbsp;Wei Liu ,&nbsp;Xinsheng Yin ,&nbsp;Wentao Li ,&nbsp;Zhe Yang ,&nbsp;Jichen Yang","doi":"10.1016/j.undsp.2024.07.001","DOIUrl":"10.1016/j.undsp.2024.07.001","url":null,"abstract":"<div><div>Shield tail grouting is an important measure to control tunnelling-induced ground deformation by injecting prepared grouting materials to fill the tail gap. The working performance of grout is usually invisible and hard to obtain in construction. This paper carries out an experimental study to investigate the tail grout behavior in ground. In the current research, a testing device is developed to explore the grout behavior in varying soils. The grout working performance is evaluated not only by the liquid grout properties such as fluidity, consistency, bleeding rate, stone rate and compressed deformation but also solid grout properties such as unconfined compressive strength and permeability. Three typical grouts are chosen and their behaviors in the various soils are observed. To take an insight on the behaviors, scanning electron microscopy and mercury intrusion porosimetry analysis are employed. The microstructure of solid grout is a sign of its working performance. The observation shows that the solid grout micro-structure is influenced by grout proportions, pressure, and ground permeabilities. The experimental results are applied in the case of Beijing Metro Line 12 for validation and as a result, the ground movement is inhibited due to high performance of tail grout.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 277-292"},"PeriodicalIF":8.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel multifractal-based classification model for the quality grades of surrounding rock within tunnels 基于多分形的隧道围岩质量等级分类新模型
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-08-29 DOI: 10.1016/j.undsp.2024.06.002
Junjie Ma , Tianbin Li , Zhen Zhang , Roohollah Shirani Faradonbeh , Mostafa Sharifzadeh , Chunchi Ma
Understanding the variation patterns of tunnel boring machine (TBM) operational parameters is crucial for assessing engineering geological conditions and quality grades of surrounding rock within tunnels. Studying the multifractal characteristics of the TBM operational parameters can help identify the patterns, but the relevant research has not yet been explored. This paper proposed a novel classification model for quality grades of surrounding rock in TBM tunnels based on multifractal analysis theory. Initially, the statistical characteristics of eight TBM cycle data with different grades of surrounding rock were explored. Subsequently, the method of calculating and analyzing the multifractal characteristic parameters of the TBM operational data was deduced and summarized. The research results showed that the TBM operational parameters of cutterhead torque, total thrust, advance rate, and cutterhead rotation speed have significant multifractal characteristics. Its multifractal dimension, midpoint slope of the generalized fractal spectrum, and singularity strength range can be used to evaluate the surrounding rock grades of the tunnel. Finally, a novel classification model for the tunnel surrounding rocks based on the multifractal characteristic parameters was proposed using the multiple linear regression method, and the model was verified through four TBM cycle data containing different surrounding rock grades. The results showed that the proposed multifractal-based classification model for tunnel surrounding rocks has high accuracy and applicability. This study not only achieves multifractal feature representation and surrounding rock classification for TBM operational parameters but also holds the potential for adaptive adjustment of TBM operational parameters and automated tunneling applications.
了解隧道掘进机(TBM)运行参数的变化规律对于评估隧道内的工程地质条件和围岩质量等级至关重要。研究隧道掘进机运行参数的多分形特征有助于识别其变化规律,但相关研究尚未开展。本文基于多分形分析理论,提出了一种新型的 TBM 隧道围岩质量等级分类模型。首先,探讨了不同围岩等级的 8 个 TBM 循环数据的统计特征。随后,推导并总结了 TBM 运行数据多分形特征参数的计算和分析方法。研究结果表明,刀盘扭矩、总推力、进尺率和刀盘转速等 TBM 运行参数具有显著的多分形特征。其多分形维度、广义分形谱中点斜率和奇异强度范围可用于评估隧道围岩等级。最后,利用多元线性回归方法提出了基于多分形特征参数的隧道围岩分类模型,并通过包含不同围岩等级的四个 TBM 循环数据对模型进行了验证。结果表明,所提出的基于多分形的隧道围岩分类模型具有较高的准确性和适用性。该研究不仅实现了 TBM 运行参数的多分形特征表示和围岩分类,还为 TBM 运行参数的自适应调整和自动化隧道应用提供了可能。
{"title":"Novel multifractal-based classification model for the quality grades of surrounding rock within tunnels","authors":"Junjie Ma ,&nbsp;Tianbin Li ,&nbsp;Zhen Zhang ,&nbsp;Roohollah Shirani Faradonbeh ,&nbsp;Mostafa Sharifzadeh ,&nbsp;Chunchi Ma","doi":"10.1016/j.undsp.2024.06.002","DOIUrl":"10.1016/j.undsp.2024.06.002","url":null,"abstract":"<div><div>Understanding the variation patterns of tunnel boring machine (TBM) operational parameters is crucial for assessing engineering geological conditions and quality grades of surrounding rock within tunnels. Studying the multifractal characteristics of the TBM operational parameters can help identify the patterns, but the relevant research has not yet been explored. This paper proposed a novel classification model for quality grades of surrounding rock in TBM tunnels based on multifractal analysis theory. Initially, the statistical characteristics of eight TBM cycle data with different grades of surrounding rock were explored. Subsequently, the method of calculating and analyzing the multifractal characteristic parameters of the TBM operational data was deduced and summarized. The research results showed that the TBM operational parameters of cutterhead torque, total thrust, advance rate, and cutterhead rotation speed have significant multifractal characteristics. Its multifractal dimension, midpoint slope of the generalized fractal spectrum, and singularity strength range can be used to evaluate the surrounding rock grades of the tunnel. Finally, a novel classification model for the tunnel surrounding rocks based on the multifractal characteristic parameters was proposed using the multiple linear regression method, and the model was verified through four TBM cycle data containing different surrounding rock grades. The results showed that the proposed multifractal-based classification model for tunnel surrounding rocks has high accuracy and applicability. This study not only achieves multifractal feature representation and surrounding rock classification for TBM operational parameters but also holds the potential for adaptive adjustment of TBM operational parameters and automated tunneling applications.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 140-156"},"PeriodicalIF":8.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solute transport in stochastic discrete fracture-matrix systems: Impact of network structure 随机离散断裂-基质系统中的溶质迁移:网络结构的影响
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-08-24 DOI: 10.1016/j.undsp.2024.05.002
Yingtao Hu , Liangchao Zou , Wenjie Xu , Liangtong Zhan , Peng Xia , Duanyang Zhuang

Obtaining a comprehensive understanding of solute transport in fractured rocks is crucial for various geoengineering applications, including waste disposal and construction of geo-energy infrastructure. It was realized that solute transport in fractured rocks is controlled by stochastic discrete fracture-matrix systems. However, the impacts and specific uncertainty caused by fracture network structures on solute transport in discrete fracture-matrix systems have yet not been fully understood. In this article, we aim to investigate the influence of fracture network structure on solute transport in stochastic discrete fracture-matrix systems. The fluid flow and solute transport are simulated using a three-dimensional discrete fracture matrix model with considering various values of fracture density and size (i.e., radius). The obtained results reveal that as the fracture density or minimum fracture radius increases, the corresponding fluid flow and solute transport channels increase, and the solute concentration distribution range expands in the matrix. This phenomenon, attributed to the enhanced connectivity of the fracture network, leads to a rise in the effluent solute concentration mean value from 0.422 to 0.704, or from 0.496 to 0.689. Furthermore, when solute transport reached a steady state, the coefficient of variation of effluent concentration decreases with the increasing fracture density or minimum fracture radius in different scenarios, indicating an improvement in the homogeneity of solute transport results. The presented analysis results of solute transport in stochastic discrete fracture-matrix systems can be helpful for uncertainty management in the geological disposal of high-level radioactive waste.

全面了解裂隙岩中的溶质运移对于各种地质工程应用(包括废物处理和地质能源基础设施建设)至关重要。人们认识到,裂隙岩中的溶质运移受随机离散裂隙-基质系统控制。然而,断裂网络结构对离散断裂-基质系统中溶质迁移的影响和具体的不确定性尚未得到充分了解。本文旨在研究随机离散断裂-基质系统中断裂网结构对溶质迁移的影响。我们使用三维离散断裂基质模型模拟了流体流动和溶质迁移,并考虑了不同的断裂密度和尺寸(即半径)值。结果表明,随着断裂密度或最小断裂半径的增加,相应的流体流动和溶质迁移通道也会增加,基质中的溶质浓度分布范围也会扩大。这一现象归因于断裂网络的连通性增强,导致出水溶质浓度平均值从 0.422 上升到 0.704,或从 0.496 上升到 0.689。此外,当溶质运移达到稳定状态时,在不同情况下,流出浓度的变异系数随着裂缝密度或最小裂缝半径的增加而减小,表明溶质运移结果的均匀性有所改善。本文介绍的随机离散断裂-基质系统中溶质迁移的分析结果有助于高放射性废物地质处置过程中的不确定性管理。
{"title":"Solute transport in stochastic discrete fracture-matrix systems: Impact of network structure","authors":"Yingtao Hu ,&nbsp;Liangchao Zou ,&nbsp;Wenjie Xu ,&nbsp;Liangtong Zhan ,&nbsp;Peng Xia ,&nbsp;Duanyang Zhuang","doi":"10.1016/j.undsp.2024.05.002","DOIUrl":"10.1016/j.undsp.2024.05.002","url":null,"abstract":"<div><p>Obtaining a comprehensive understanding of solute transport in fractured rocks is crucial for various geoengineering applications, including waste disposal and construction of geo-energy infrastructure. It was realized that solute transport in fractured rocks is controlled by stochastic discrete fracture-matrix systems. However, the impacts and specific uncertainty caused by fracture network structures on solute transport in discrete fracture-matrix systems have yet not been fully understood. In this article, we aim to investigate the influence of fracture network structure on solute transport in stochastic discrete fracture-matrix systems. The fluid flow and solute transport are simulated using a three-dimensional discrete fracture matrix model with considering various values of fracture density and size (i.e., radius). The obtained results reveal that as the fracture density or minimum fracture radius increases, the corresponding fluid flow and solute transport channels increase, and the solute concentration distribution range expands in the matrix. This phenomenon, attributed to the enhanced connectivity of the fracture network, leads to a rise in the effluent solute concentration mean value from 0.422 to 0.704, or from 0.496 to 0.689. Furthermore, when solute transport reached a steady state, the coefficient of variation of effluent concentration decreases with the increasing fracture density or minimum fracture radius in different scenarios, indicating an improvement in the homogeneity of solute transport results. The presented analysis results of solute transport in stochastic discrete fracture-matrix systems can be helpful for uncertainty management in the geological disposal of high-level radioactive waste.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 69-82"},"PeriodicalIF":8.2,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000837/pdfft?md5=e1fe3b3631546be68a8186376f3b0a76&pid=1-s2.0-S2467967424000837-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical and mechanical response of large-diameter shield tunnel lining structure under non-uniform fire: A full-scale fire test-based study 大直径盾构隧道衬砌结构在非均匀火灾下的物理和机械响应:基于全尺寸火灾试验的研究
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-08-22 DOI: 10.1016/j.undsp.2024.06.001
Da-Long Jin , Hui Jin , Da-Jun Yuan , Pan-Pan Cheng , Dong Pan

When a fire occurs in an underground shield tunnel, it can result in substantial property damage and cause permanent harm to the tunnel lining structure. This is especially true for large-diameter shield tunnels that have numerous segments and joints, and are exposed to specific fire conditions in certain areas. This paper constructs a full-scale shield tunnel fire test platform and conducts a non-uniform fire test using the lining system of a three-ring large-diameter shield tunnel with an inner diameter of 10.5 m. Based on the tests, the temperature field distribution, high-temperature bursting, cracking phenomena, and deformation under fire conditions are observed. Furthermore, the post-fire damage forms of tunnel lining structures are obtained through the post-fire ultimate loading test, and the corresponding mechanism is explained. The test results illustrate that the radial and circumferential distribution of internal temperature within the tunnel lining, as well as the radial temperature gradient distribution on the inner surface of the lining, have non-uniform distribution characteristics. As a result, the macroscopic phenomena of lining concrete bursting and crack development during the fire test mainly occur near the fire source, where the temperature rise gradient is the highest. In addition, the lining structure has a deformation characteristic of local outward expansion and cannot recover after the fire load is removed. The ultimate form of damage after the fire is dominated by crush damage from the inside out of the lining joints in the fire-exposed area. The above results serve as a foundation for future tunnel fire safety design and evaluation.

当地下盾构隧道发生火灾时,可能会造成巨大的财产损失,并对隧道衬砌结构造成永久性伤害。尤其是对于拥有众多分段和接缝,并在某些区域暴露于特定火灾条件下的大直径盾构隧道而言,更是如此。本文构建了一个全尺寸盾构隧道火灾试验平台,并利用内径为 10.5 米的三环大直径盾构隧道的衬砌系统进行了非均匀火灾试验。根据试验,观察了火灾条件下的温度场分布、高温爆裂、开裂现象和变形。此外,还通过火灾后极限加载试验获得了隧道衬砌结构的火灾后破坏形式,并解释了相应的机理。试验结果表明,隧道衬砌内部温度的径向和圆周分布以及衬砌内表面的径向温度梯度分布具有非均匀分布特征。因此,在火灾试验中,衬砌混凝土爆裂和裂缝发展的宏观现象主要发生在温度上升梯度最大的火源附近。此外,衬砌结构具有局部向外膨胀的变形特征,在火灾荷载卸除后无法恢复。火灾后的最终破坏形式主要是火灾暴露区域内衬接缝处由内向外的挤压破坏。上述结果为今后的隧道防火设计和评估奠定了基础。
{"title":"Physical and mechanical response of large-diameter shield tunnel lining structure under non-uniform fire: A full-scale fire test-based study","authors":"Da-Long Jin ,&nbsp;Hui Jin ,&nbsp;Da-Jun Yuan ,&nbsp;Pan-Pan Cheng ,&nbsp;Dong Pan","doi":"10.1016/j.undsp.2024.06.001","DOIUrl":"10.1016/j.undsp.2024.06.001","url":null,"abstract":"<div><p>When a fire occurs in an underground shield tunnel, it can result in substantial property damage and cause permanent harm to the tunnel lining structure. This is especially true for large-diameter shield tunnels that have numerous segments and joints, and are exposed to specific fire conditions in certain areas. This paper constructs a full-scale shield tunnel fire test platform and conducts a non-uniform fire test using the lining system of a three-ring large-diameter shield tunnel with an inner diameter of 10.5 m. Based on the tests, the temperature field distribution, high-temperature bursting, cracking phenomena, and deformation under fire conditions are observed. Furthermore, the post-fire damage forms of tunnel lining structures are obtained through the post-fire ultimate loading test, and the corresponding mechanism is explained. The test results illustrate that the radial and circumferential distribution of internal temperature within the tunnel lining, as well as the radial temperature gradient distribution on the inner surface of the lining, have non-uniform distribution characteristics. As a result, the macroscopic phenomena of lining concrete bursting and crack development during the fire test mainly occur near the fire source, where the temperature rise gradient is the highest. In addition, the lining structure has a deformation characteristic of local outward expansion and cannot recover after the fire load is removed. The ultimate form of damage after the fire is dominated by crush damage from the inside out of the lining joints in the fire-exposed area. The above results serve as a foundation for future tunnel fire safety design and evaluation.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 1-16"},"PeriodicalIF":8.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000825/pdfft?md5=8e388e786b80d4a679e702694beefa95&pid=1-s2.0-S2467967424000825-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid deep learning approach for rock tunnel deformation prediction based on spatio-temporal patterns 基于时空模式的岩石隧道变形预测混合深度学习方法
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-08-17 DOI: 10.1016/j.undsp.2024.04.008
Junfeng Sun , Yong Fang , Hu Luo , Zhigang Yao , Long Xiang , Jianfeng Wang , Yubo Wang , Yifan Jiang

The ability to predict tunnel deformation holds great significance for ensuring the reliability, safety, and sustainability of tunnel structures. However, existing deformation prediction models often simplify or overlook the impact of spatial characteristics on deformation by treating it as a time series prediction issue. This study utilizes monitoring data from the Grand Canyon Tunnel and introduces an effective data-driven method for predicting tunnel deformation based on the spatio-temporal characteristics of the historical deformation of adjacent sections. The proposed model, a combination of graph attention network (GAT) and bidirectional long and short-term memory network (Bi-LSTM), is equipped with robust spatio-temporal predictive capabilities. Additionally, the study explores other possible spatial connections and the scalability of the model. The results indicate that the proposed model outperforms other deep learning models, achieving favorable root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) values of 0.34 mm, 0.23 mm, and 0.94, respectively. The graph structure based on intuitive spatial connections proves more suitable for meeting the challenges of predicting deformation. Integrating GAT-LSTM with transfer learning technology, remains stable performance when extended to other tunnels with limited data.

预测隧道变形的能力对于确保隧道结构的可靠性、安全性和可持续性具有重要意义。然而,现有的变形预测模型往往将空间特征作为时间序列预测问题来处理,从而简化或忽略了空间特征对变形的影响。本研究利用大峡谷隧道的监测数据,基于相邻地段历史变形的时空特征,引入了一种有效的数据驱动型隧道变形预测方法。所提出的模型是图注意网络(GAT)和双向长短期记忆网络(Bi-LSTM)的结合,具有强大的时空预测能力。此外,研究还探讨了其他可能的空间连接和模型的可扩展性。结果表明,所提出的模型优于其他深度学习模型,其均方根误差(RMSE)、平均绝对误差(MAE)和判定系数(R2)值分别为 0.34 mm、0.23 mm 和 0.94。事实证明,基于直观空间连接的图结构更适合应对预测变形的挑战。将 GAT-LSTM 与迁移学习技术相结合,当扩展到其他数据有限的隧道时,仍能保持稳定的性能。
{"title":"Hybrid deep learning approach for rock tunnel deformation prediction based on spatio-temporal patterns","authors":"Junfeng Sun ,&nbsp;Yong Fang ,&nbsp;Hu Luo ,&nbsp;Zhigang Yao ,&nbsp;Long Xiang ,&nbsp;Jianfeng Wang ,&nbsp;Yubo Wang ,&nbsp;Yifan Jiang","doi":"10.1016/j.undsp.2024.04.008","DOIUrl":"10.1016/j.undsp.2024.04.008","url":null,"abstract":"<div><p>The ability to predict tunnel deformation holds great significance for ensuring the reliability, safety, and sustainability of tunnel structures. However, existing deformation prediction models often simplify or overlook the impact of spatial characteristics on deformation by treating it as a time series prediction issue. This study utilizes monitoring data from the Grand Canyon Tunnel and introduces an effective data-driven method for predicting tunnel deformation based on the spatio-temporal characteristics of the historical deformation of adjacent sections. The proposed model, a combination of graph attention network (GAT) and bidirectional long and short-term memory network (Bi-LSTM), is equipped with robust spatio-temporal predictive capabilities. Additionally, the study explores other possible spatial connections and the scalability of the model. The results indicate that the proposed model outperforms other deep learning models, achieving favorable root mean square error (<span><math><mrow><mi>RMSE</mi></mrow></math></span>), mean absolute error (<span><math><mrow><mi>MAE</mi></mrow></math></span>), and coefficient of determination (<span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>) values of 0.34 mm, 0.23 mm, and 0.94, respectively. The graph structure based on intuitive spatial connections proves more suitable for meeting the challenges of predicting deformation. Integrating GAT-LSTM with transfer learning technology, remains stable performance when extended to other tunnels with limited data.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 100-118"},"PeriodicalIF":8.2,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000813/pdfft?md5=553352262c269f7f53faaab720bd548a&pid=1-s2.0-S2467967424000813-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on instability mechanism and control of abandoned roadways in coal pillars recovery face: A case study 煤柱回采工作面废弃巷道失稳机理及控制研究:案例研究
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-08-12 DOI: 10.1016/j.undsp.2024.05.001
Dong Zhang , Jianbiao Bai , Rui Wang , Min Deng , Shui Yan , Qiancheng Zhu , Hao Fu
The abandoned roadways (ARs) in front of the longwall face catastrophic instability will seriously hamper mining progress, which is a complicated process related to the stress environment, the roadway section, and the mechanical properties of the surrounding rock. The cusp catastrophe theory is employed to establish a state identification model for the irregular coal pillar-roof system (CPRS) formed by the ARs and re-mining entries. To begin, the state discrimination equation (Δp) for the gradual CPRS is derived, and the critical value at which the system transitions into an unstable state under quasi-static conditions is determined. The results indicated that when 16.49 m ≤ L ≤ 22.63 m (L denotes the equivalent span of the intersection roof) and 0 < Re ≤ 2.61 m (Re denotes the width of the elastic zone within the triangular coal pillar), the triangular CPRS is inherently unstable. Similarly, for trapezoidal CPRS configurations where the length Lm (the span of the right-angled trapezoid roof in the propulsion direction) varies from 4.0 to 12.60 m, the system is unstable as well. Subsequently, the model was further enhanced by accounting for the impact of the Pc (advance stress increment load), where a critical criterion for the catastrophic instability of the CPRS was proposed, which represented the external energy required to transition the CPRS from an unstable state to catastrophic instability in different mining stages. After that, the stability degree of the irregular coal pillar was categorized, and a coupling zoning control technology was applied to CPR operations. Field monitoring results demonstrated the effectiveness of the zoning control technology, providing valuable guidance for similar mining practices.
长壁工作面前的废弃巷道(ARs)灾难性失稳将严重阻碍开采进度,这是一个与应力环境、巷道断面和围岩力学特性有关的复杂过程。本文采用顶板灾害理论,建立了由AR和回采入口形成的不规则煤柱-顶板系统(CPRS)的状态识别模型。首先,推导了渐变煤柱顶板系统的状态辨识方程(Δp),并确定了准静态条件下系统过渡到不稳定状态的临界值。结果表明,当 16.49 m ≤ L ≤ 22.63 m(L 表示交叉顶板的等效跨度)和 0 < Re ≤ 2.61 m(Re 表示三角形煤柱内弹性区的宽度)时,三角形 CPRS 固有不稳定。同样,梯形 CPRS 配置的长度 Lm(直角梯形顶板在推进方向上的跨度)从 4.0 米到 12.60 米不等,系统也不稳定。随后,通过考虑 Pc(超前应力增量载荷)的影响,对模型进行了进一步改进,提出了 CPRS 灾难性失稳的临界标准,即在不同开采阶段 CPRS 从不稳定性状态过渡到灾难性失稳所需的外部能量。随后,对不规则煤柱的稳定程度进行了分类,并将耦合分区控制技术应用于 CPR 作业。现场监测结果证明了分区控制技术的有效性,为类似的采矿实践提供了宝贵的指导。
{"title":"Investigation on instability mechanism and control of abandoned roadways in coal pillars recovery face: A case study","authors":"Dong Zhang ,&nbsp;Jianbiao Bai ,&nbsp;Rui Wang ,&nbsp;Min Deng ,&nbsp;Shui Yan ,&nbsp;Qiancheng Zhu ,&nbsp;Hao Fu","doi":"10.1016/j.undsp.2024.05.001","DOIUrl":"10.1016/j.undsp.2024.05.001","url":null,"abstract":"<div><div>The abandoned roadways (ARs) in front of the longwall face catastrophic instability will seriously hamper mining progress, which is a complicated process related to the stress environment, the roadway section, and the mechanical properties of the surrounding rock. The cusp catastrophe theory is employed to establish a state identification model for the irregular coal pillar-roof system (CPRS) formed by the ARs and re-mining entries. To begin, the state discrimination equation (<em>Δp</em>) for the gradual CPRS is derived, and the critical value at which the system transitions into an unstable state under quasi-static conditions is determined. The results indicated that when 16.49 m ≤ <em>L</em> ≤ 22.63 m (<em>L</em> denotes the equivalent span of the intersection roof) and 0 &lt; <em>R</em><sub>e</sub> ≤ 2.61 m (<em>R</em><sub>e</sub> denotes the width of the elastic zone within the triangular coal pillar), the triangular CPRS is inherently unstable. Similarly, for trapezoidal CPRS configurations where the length <em>L</em><sub>m</sub> (the span of the right-angled trapezoid roof in the propulsion direction) varies from 4.0 to 12.60 m, the system is unstable as well. Subsequently, the model was further enhanced by accounting for the impact of the <em>P</em><sub>c</sub> (advance stress increment load), where a critical criterion for the catastrophic instability of the CPRS was proposed, which represented the external energy required to transition the CPRS from an unstable state to catastrophic instability in different mining stages. After that, the stability degree of the irregular coal pillar was categorized, and a coupling zoning control technology was applied to CPR operations. Field monitoring results demonstrated the effectiveness of the zoning control technology, providing valuable guidance for similar mining practices.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 119-139"},"PeriodicalIF":8.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000801/pdfft?md5=da5b193741033ceb8356d3acd410aa05&pid=1-s2.0-S2467967424000801-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radial flow behaviors of a rough Beishan granite fracture under normal and thermal loadings 粗糙北山花岗岩断裂在法向载荷和热载荷作用下的径向流动行为
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-07-31 DOI: 10.1016/j.undsp.2024.04.006
Xingguang Zhao , Dongjue Fan , Zhihong Zhao , Liang Chen , Ju Wang

During the operation of a deep geological repository in crystalline rocks for disposal of high-level radioactive waste, understanding the seepage behaviors of fractured crystalline rocks under coupled thermo-hydro-mechanical conditions is essential for the performance assessment of deep geological repositories. In this study, radial flow tests on cylindrical Beishan granite specimens with a single artificial fracture were conducted using the MTS 815 rock mechanics testing system to investigate the influence of normal stress and temperature on radial flow behaviors of rough rock fractures. Steady state method was used to measure fracture permeability, and an axial extensometer was used to measure fracture deformation during compression. A three-dimensional blue light scanner was used to characterize fracture surface morphology. Experimental results indicate that fracture permeability decreases nonlinearly with the increase of normal stress or temperature, and normal stress has a more significant influence on fracture permeability than temperature. The evolution of three-dimensional non-uniform distribution of voids under compression was numerically obtained, and the variogram was employed to quantify the non-uniform distribution characteristics of mechanical apertures. In addition, a radial flow model considering non-uniform distribution of apertures is proposed to predict the normal stress- and temperature-dependent seepage behaviors of rock fractures, and the predictions were found to be in good agreement with experimental data.

在处置高放射性废物的结晶岩深部地质处置库运行期间,了解热-水-力学耦合条件下断裂结晶岩的渗流行为对于深部地质处置库的性能评估至关重要。本研究使用 MTS 815 岩石力学测试系统对具有单一人工裂缝的圆柱形北山花岗岩试样进行了径向流动测试,以研究法向应力和温度对粗糙岩石裂缝径向流动行为的影响。采用稳态法测量断裂渗透率,轴向拉伸仪测量压缩过程中的断裂变形。三维蓝光扫描仪用于描述裂缝表面形态。实验结果表明,随着法向应力或温度的增加,断裂渗透率呈非线性下降,法向应力比温度对断裂渗透率的影响更大。通过数值计算获得了空隙在压缩条件下三维非均匀分布的演变过程,并利用变异图量化了机械孔隙的非均匀分布特征。此外,还提出了一种考虑孔隙非均匀分布的径向流动模型,用于预测岩石裂缝的法向应力和温度依赖性渗流行为,并发现预测结果与实验数据十分吻合。
{"title":"Radial flow behaviors of a rough Beishan granite fracture under normal and thermal loadings","authors":"Xingguang Zhao ,&nbsp;Dongjue Fan ,&nbsp;Zhihong Zhao ,&nbsp;Liang Chen ,&nbsp;Ju Wang","doi":"10.1016/j.undsp.2024.04.006","DOIUrl":"10.1016/j.undsp.2024.04.006","url":null,"abstract":"<div><p>During the operation of a deep geological repository in crystalline rocks for disposal of high-level radioactive waste, understanding the seepage behaviors of fractured crystalline rocks under coupled thermo-hydro-mechanical conditions is essential for the performance assessment of deep geological repositories. In this study, radial flow tests on cylindrical Beishan granite specimens with a single artificial fracture were conducted using the MTS 815 rock mechanics testing system to investigate the influence of normal stress and temperature on radial flow behaviors of rough rock fractures. Steady state method was used to measure fracture permeability, and an axial extensometer was used to measure fracture deformation during compression. A three-dimensional blue light scanner was used to characterize fracture surface morphology. Experimental results indicate that fracture permeability decreases nonlinearly with the increase of normal stress or temperature, and normal stress has a more significant influence on fracture permeability than temperature. The evolution of three-dimensional non-uniform distribution of voids under compression was numerically obtained, and the variogram was employed to quantify the non-uniform distribution characteristics of mechanical apertures. In addition, a radial flow model considering non-uniform distribution of apertures is proposed to predict the normal stress- and temperature-dependent seepage behaviors of rock fractures, and the predictions were found to be in good agreement with experimental data.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 83-99"},"PeriodicalIF":8.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000783/pdfft?md5=71e0e86eb2a98d0130ba426bca8443ad&pid=1-s2.0-S2467967424000783-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic performance study of immersed tunnel with longitudinal limit device of flexible joint 带有柔性接头纵向限位装置的沉管隧道抗震性能研究
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-07-31 DOI: 10.1016/j.undsp.2024.04.007
Yadong Li , Junjie Lai , Yong Yang , Jinwen Zhou , Yi Shan , Jie Cui

Flexible joints represent the most vulnerable aspect of the immersed tunnel, necessitating effective waterproofing and the transmission of forces between tunnel segments. However, the role of longitudinal limit devices in the seismic behavior of immersed tunnels is frequently overlooked in contemporary research on their seismic robustness. This study develops a longitudinal force model for flexible joints that incorporates the longitudinal limit device, building upon the beam-spring model of the immersed tunnel. Concurrently, a scaled partial experiment on the immersed tunnel’s flexible joint is undertaken, and validated and compared to the theoretical model. Subsequently, this model is utilized in the seismic assessment of the Ruyifang immersed tunnel. The computational findings revealed a considerable improvement in the seismic resilience of the immersed tunnel following the integration of longitudinal limit devices. With the incorporation of these devices, the opening of flexible joints diminished by 20% to 50% compared to scenarios lacking such devices. In addition, the peak acceleration of the tunnel segments’ mid-point structural response decreased by approximately 50%, accompanied by a significant reduction in the internal force response within the tunnel segments. As proposed in this research, the longitudinal force model for flexible joints under longitudinal limit devices represents the behavior of immersed tunnels under seismic stress more accurately. These numerical simulation outcomes also offer valuable insights for designing flexible joints in immersed tunnels.

柔性接缝是沉管隧道最脆弱的部分,需要有效的防水处理,并在隧道各段之间传递力。然而,在有关沉管隧道抗震稳固性的当代研究中,纵向限位装置在沉管隧道抗震行为中的作用经常被忽视。本研究以沉管隧道的梁-弹簧模型为基础,建立了一个包含纵向限位装置的柔性接头纵向力模型。同时,还对沉管隧道的柔性接头进行了局部缩放实验,并与理论模型进行了验证和比较。随后,该模型被用于如意坊沉管隧道的抗震评估。计算结果表明,采用纵向限位装置后,沉管隧道的抗震能力大大提高。与未安装纵向限位装置的情况相比,安装了纵向限位装置后,柔性接头的开口率降低了 20% 至 50%。此外,隧道段中点结构响应的峰值加速度降低了约 50%,同时隧道段内的内力响应也显著降低。正如本研究中所提出的,纵向限位装置下柔性接头的纵向力模型更准确地反映了沉管隧道在地震应力下的行为。这些数值模拟结果也为沉管隧道中柔性接头的设计提供了宝贵的启示。
{"title":"Seismic performance study of immersed tunnel with longitudinal limit device of flexible joint","authors":"Yadong Li ,&nbsp;Junjie Lai ,&nbsp;Yong Yang ,&nbsp;Jinwen Zhou ,&nbsp;Yi Shan ,&nbsp;Jie Cui","doi":"10.1016/j.undsp.2024.04.007","DOIUrl":"10.1016/j.undsp.2024.04.007","url":null,"abstract":"<div><p>Flexible joints represent the most vulnerable aspect of the immersed tunnel, necessitating effective waterproofing and the transmission of forces between tunnel segments. However, the role of longitudinal limit devices in the seismic behavior of immersed tunnels is frequently overlooked in contemporary research on their seismic robustness. This study develops a longitudinal force model for flexible joints that incorporates the longitudinal limit device, building upon the beam-spring model of the immersed tunnel. Concurrently, a scaled partial experiment on the immersed tunnel’s flexible joint is undertaken, and validated and compared to the theoretical model. Subsequently, this model is utilized in the seismic assessment of the Ruyifang immersed tunnel. The computational findings revealed a considerable improvement in the seismic resilience of the immersed tunnel following the integration of longitudinal limit devices. With the incorporation of these devices, the opening of flexible joints diminished by 20% to 50% compared to scenarios lacking such devices. In addition, the peak acceleration of the tunnel segments’ mid-point structural response decreased by approximately 50%, accompanied by a significant reduction in the internal force response within the tunnel segments. As proposed in this research, the longitudinal force model for flexible joints under longitudinal limit devices represents the behavior of immersed tunnels under seismic stress more accurately. These numerical simulation outcomes also offer valuable insights for designing flexible joints in immersed tunnels.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 17-32"},"PeriodicalIF":8.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000795/pdfft?md5=242d717c47bdf3fc56715b83905cadb4&pid=1-s2.0-S2467967424000795-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of fracture networks on the structural deformation of lined rock caverns under high internal gas pressure 高内部气体压力下断裂网络对衬砌岩洞结构变形的影响
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-07-26 DOI: 10.1016/j.undsp.2024.03.009
Chenxi Zhao , Qinghua Lei , Zixin Zhang
In this paper, we develop a two-dimensional (2D) numerical model based on the finite element method to analyse the impact of fracture networks on the behaviour of pressurised lined rock caverns (LRCs). We use the discrete fracture network approach to represent the fracture system in rock obeying a power law length distribution. The LRC consisting of an inner steel lining and an outer reinforced concrete is situated within the rock mass characterised by spatially distributed and intersected fractures. An elasto-brittle constitutive relationship is adopted to characterise the deformation/failure of intact rocks, while the classical Mazars damage model is used to simulate the cracking of concrete linings. For pre-existing fractures in rock, a non-linear stress-displacement formulation is implemented to capture their normal and shear deformations. The 2D model, representing the horizontal cross-section of an LRC with its surrounding rock mass, is subject to a prescribed in situ stress condition. We explore various fracture network scenarios associated with different values of power law length exponent and fracture intensity. We analyse the damage evolution in rock/concrete and tangential strain in the concrete/steel linings. It is found that the damage within the rock mass mainly evolves in the form of wing cracks that emanate from the tips of pre-existing fractures. For damage development in the concrete lining, it is primarily induced by tensile cracking under cavern pressurisation. The damage emerges in the lining sections where pre-existing fractures are located in the tensile region around the cavern and either intersect with the cavern wall or could reach the cavern wall by promoting wing crack propagation. The results and insights obtained from our study have significant implications for the design optimisation and performance assessment of LRCs for sustainable hydrogen storage.
在本文中,我们基于有限元法建立了一个二维(2D)数值模型,用于分析断裂网络对加压内衬岩洞(LRCs)行为的影响。我们使用离散断裂网络方法来表示岩石中服从幂律长度分布的断裂系统。由内层钢衬里和外层钢筋混凝土组成的 LRC 位于岩体中,岩体的特征是空间分布的交错断裂。采用弹性脆性构造关系来描述完整岩石的变形/破坏,而经典的马扎斯破坏模型则用于模拟混凝土衬里的开裂。对于岩石中已存在的裂缝,则采用非线性应力-位移公式来捕捉其法线和剪切变形。二维模型代表了 LRC 及其周围岩体的水平横截面,受到规定的原位应力条件的影响。我们探索了与不同幂律长度指数值和断裂强度相关的各种断裂网络方案。我们分析了岩石/混凝土中的损伤演变以及混凝土/钢衬里中的切向应变。结果发现,岩体内部的破坏主要以翼状裂缝的形式演变,这些裂缝从预先存在的裂缝尖端处延伸出来。至于混凝土衬里的破坏发展,主要是在岩洞加压的情况下由拉伸裂缝引起的。损伤出现在衬砌部分,在这些部分,原有裂缝位于岩洞周围的拉伸区域,要么与岩洞壁相交,要么通过促进翼状裂缝扩展而到达岩洞壁。我们的研究结果和见解对用于可持续储氢的 LRC 的设计优化和性能评估具有重要意义。
{"title":"Impact of fracture networks on the structural deformation of lined rock caverns under high internal gas pressure","authors":"Chenxi Zhao ,&nbsp;Qinghua Lei ,&nbsp;Zixin Zhang","doi":"10.1016/j.undsp.2024.03.009","DOIUrl":"10.1016/j.undsp.2024.03.009","url":null,"abstract":"<div><div>In this paper, we develop a two-dimensional (2D) numerical model based on the finite element method to analyse the impact of fracture networks on the behaviour of pressurised lined rock caverns (LRCs). We use the discrete fracture network approach to represent the fracture system in rock obeying a power law length distribution. The LRC consisting of an inner steel lining and an outer reinforced concrete is situated within the rock mass characterised by spatially distributed and intersected fractures. An elasto-brittle constitutive relationship is adopted to characterise the deformation/failure of intact rocks, while the classical Mazars damage model is used to simulate the cracking of concrete linings. For pre-existing fractures in rock, a non-linear stress-displacement formulation is implemented to capture their normal and shear deformations. The 2D model, representing the horizontal cross-section of an LRC with its surrounding rock mass, is subject to a prescribed in situ stress condition. We explore various fracture network scenarios associated with different values of power law length exponent and fracture intensity. We analyse the damage evolution in rock/concrete and tangential strain in the concrete/steel linings. It is found that the damage within the rock mass mainly evolves in the form of wing cracks that emanate from the tips of pre-existing fractures. For damage development in the concrete lining, it is primarily induced by tensile cracking under cavern pressurisation. The damage emerges in the lining sections where pre-existing fractures are located in the tensile region around the cavern and either intersect with the cavern wall or could reach the cavern wall by promoting wing crack propagation. The results and insights obtained from our study have significant implications for the design optimisation and performance assessment of LRCs for sustainable hydrogen storage.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"21 ","pages":"Pages 252-269"},"PeriodicalIF":8.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141845834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal intensity measure for seismic performance assessment of shield tunnels in liquefiable and non-liquefiable soils 可液化和不可液化土壤中盾构隧道抗震性能评估的最佳烈度测量方法
IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-07-22 DOI: 10.1016/j.undsp.2024.03.008
Yiyao Shen , M. Hesham El Naggar , Dongmei Zhang , Zhongkai Huang , Xiuli Du
Relating the ground motion intensity measure (IM) and the structural engineering demand parameter is a crucial step in the performance-based earthquake engineering framework. This study investigates the selection of IM for development of probabilistic seismic demand model of urban shield tunnels subjected to earthquake ground motions in liquefiable and non-liquefiable soils. Nonlinear dynamic effective stress analyses are conducted to develop a database of the intensity measures and structural seismic responses exposed to ground shaking and soil liquefaction. Two advanced soil constitutive models (i.e., Pressure DependMultiYield03 and PressureIndependMultiYield for liquefiable and non-liquefiable soils, respectively) are employed to capture the nonlinear behavior. A suite of 23 ground motion intensity measures is selected and assessed based on the evaluation criteria of correlation, efficiency, practicality and proficiency. Eventually, the multi-level fuzzy comprehensive evaluation method is employed to comprehensively consider the four evaluation criteria and establish the optimal ground motion IM suitable for probabilistic seismic demand analysis of shield tunnel structures. The obtained results show that the sustained maximum acceleration is the optimal IM for evaluating the structural seismic response, followed by the peak ground acceleration in both liquefiable and non-liquefiable soils. Peak pseudo velocity spectrum, displacement square integral and Housner spectral intensity are found to be not suitable for the probabilistic seismic demand analysis of shield tunnel structures.
地震动烈度测量(IM)与结构工程需求参数之间的关系是基于性能的地震工程框架的关键步骤。本研究探讨了在可液化土和非可液化土的地震地面运动中,如何选择地震动烈度来建立城市盾构隧道的概率地震需求模型。通过非线性动态有效应力分析,建立了地震动和土壤液化的烈度测量和结构地震响应数据库。为捕捉非线性行为,采用了两种先进的土壤构成模型(即分别用于可液化土壤和不可液化土壤的 Pressure DependMultiYield03 和 PressureIndependMultiYield)。根据相关性、效率、实用性和熟练程度等评价标准,选择并评估了一套 23 种地面运动强度测量方法。最后,采用多层次模糊综合评价方法,综合考虑四个评价标准,建立了适用于盾构隧道结构概率地震需求分析的最优地震动 IM。结果表明,在可液化土和非可液化土中,持续最大加速度是评价结构地震反应的最优地动IM,其次是峰值地动加速度。峰值伪速度谱、位移平方积分和 Housner 频谱强度不适合盾构隧道结构的概率地震需求分析。
{"title":"Optimal intensity measure for seismic performance assessment of shield tunnels in liquefiable and non-liquefiable soils","authors":"Yiyao Shen ,&nbsp;M. Hesham El Naggar ,&nbsp;Dongmei Zhang ,&nbsp;Zhongkai Huang ,&nbsp;Xiuli Du","doi":"10.1016/j.undsp.2024.03.008","DOIUrl":"10.1016/j.undsp.2024.03.008","url":null,"abstract":"<div><div>Relating the ground motion intensity measure (IM) and the structural engineering demand parameter is a crucial step in the performance-based earthquake engineering framework. This study investigates the selection of IM for development of probabilistic seismic demand model of urban shield tunnels subjected to earthquake ground motions in liquefiable and non-liquefiable soils. Nonlinear dynamic effective stress analyses are conducted to develop a database of the intensity measures and structural seismic responses exposed to ground shaking and soil liquefaction. Two advanced soil constitutive models (i.e., Pressure DependMultiYield03 and PressureIndependMultiYield for liquefiable and non-liquefiable soils, respectively) are employed to capture the nonlinear behavior. A suite of 23 ground motion intensity measures is selected and assessed based on the evaluation criteria of correlation, efficiency, practicality and proficiency. Eventually, the multi-level fuzzy comprehensive evaluation method is employed to comprehensively consider the four evaluation criteria and establish the optimal ground motion IM suitable for probabilistic seismic demand analysis of shield tunnel structures. The obtained results show that the sustained maximum acceleration is the optimal IM for evaluating the structural seismic response, followed by the peak ground acceleration in both liquefiable and non-liquefiable soils. Peak pseudo velocity spectrum, displacement square integral and Housner spectral intensity are found to be not suitable for the probabilistic seismic demand analysis of shield tunnel structures.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"21 ","pages":"Pages 149-163"},"PeriodicalIF":8.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Underground Space
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1