Pub Date : 2023-03-01DOI: 10.1016/j.joes.2021.12.001
Chaudry Masood Khalique, Oke Davies Adeyemo
This paper presents analytical studies carried out explicitly on a higher-dimensional generalized Zakharov–Kuznetsov equation with dual power-law nonlinearity arising in engineering and nonlinear science. We obtain analytic solutions for the underlying equation via Lie group approach as well as direct integration method. Moreover, we engage the extended Jacobi elliptic cosine and sine amplitude functions expansion technique to seek more exact travelling wave solutions of the equation for some particular cases. Consequently, we secure, singular and nonsingular (periodic) soliton solutions, cnoidal, snoidal as well as dnoidal wave solutions. Besides, we depict the dynamics of the solutions using suitable graphs. The application of obtained results in various fields of sciences and engineering are presented. In conclusion, we construct conserved currents of the aforementioned equation via Noether’s theorem (with Helmholtz criteria) and standard multiplier technique through the homotopy formula.
{"title":"Langrangian formulation and solitary wave solutions of a generalized Zakharov–Kuznetsov equation with dual power-law nonlinearity in physical sciences and engineering","authors":"Chaudry Masood Khalique, Oke Davies Adeyemo","doi":"10.1016/j.joes.2021.12.001","DOIUrl":"https://doi.org/10.1016/j.joes.2021.12.001","url":null,"abstract":"<div><p>This paper presents analytical studies carried out explicitly on a higher-dimensional generalized Zakharov–Kuznetsov equation with dual power-law nonlinearity arising in engineering and nonlinear science. We obtain analytic solutions for the underlying equation via Lie group approach as well as direct integration method. Moreover, we engage the extended Jacobi elliptic cosine and sine amplitude functions expansion technique to seek more exact travelling wave solutions of the equation for some particular cases. Consequently, we secure, singular and nonsingular (periodic) soliton solutions, cnoidal, snoidal as well as dnoidal wave solutions. Besides, we depict the dynamics of the solutions using suitable graphs. The application of obtained results in various fields of sciences and engineering are presented. In conclusion, we construct conserved currents of the aforementioned equation via Noether’s theorem (with Helmholtz criteria) and standard multiplier technique through the homotopy formula.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 2","pages":"Pages 152-168"},"PeriodicalIF":7.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50189126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.joes.2022.01.001
Mianjin Wang , Shikun Pang , Kefan Jin , Xiaofeng Liang , Hongdong Wang , Hong Yi
With the acceleration of the investigation and development of marine resources, the detection and location of submarine pipelines have become a necessary part of modern marine engineering. Submarine pipelines are a typical weak magnetic anomaly target, and their magnetic anomaly detection can only be realized within a certain distance. At present, a towfish or an autonomous underwater vehicle (AUV) is mainly used as the platform to equip magnetometers close to the submarine pipelines for magnetic anomaly detection. However, the mother ship directly affects the towfish, thus causing control interference. The AUV cannot detect in real time, which affects the magnetic anomaly detection and creates problems regarding detection efficiency. Meanwhile, a two-part towed platform has convenient control, thus reducing the interference of the towed mother ship and real-time detection. If the platform can maintain constant altitude sailing through the controller, the data accuracy in the actual magnetic anomaly detection can be guaranteed. On the basis of a two-part towed platform, a magnetic detection system with constant altitude sailing ability for submarine pipelines was constructed in this study. In addition, experimental verification was conducted. The experimental verification research shows that the constant altitude sailing experiment of the two-part towed platform verifies that the platform has good constant altitude sailing ability in both a hydrostatic environment and the actual marine environment. Meanwhile, the offshore magnetic anomaly detection experiment of submarine pipelines verifies the stable measurement function of the magnetic field and the function of the system to detect magnetic anomaly of submarine pipelines.
{"title":"Construction and experimental verification research of a magnetic detection system for submarine pipelines based on a two-part towed platform","authors":"Mianjin Wang , Shikun Pang , Kefan Jin , Xiaofeng Liang , Hongdong Wang , Hong Yi","doi":"10.1016/j.joes.2022.01.001","DOIUrl":"10.1016/j.joes.2022.01.001","url":null,"abstract":"<div><p>With the acceleration of the investigation and development of marine resources, the detection and location of submarine pipelines have become a necessary part of modern marine engineering. Submarine pipelines are a typical weak magnetic anomaly target, and their magnetic anomaly detection can only be realized within a certain distance. At present, a towfish or an autonomous underwater vehicle (AUV) is mainly used as the platform to equip magnetometers close to the submarine pipelines for magnetic anomaly detection. However, the mother ship directly affects the towfish, thus causing control interference. The AUV cannot detect in real time, which affects the magnetic anomaly detection and creates problems regarding detection efficiency. Meanwhile, a two-part towed platform has convenient control, thus reducing the interference of the towed mother ship and real-time detection. If the platform can maintain constant altitude sailing through the controller, the data accuracy in the actual magnetic anomaly detection can be guaranteed. On the basis of a two-part towed platform, a magnetic detection system with constant altitude sailing ability for submarine pipelines was constructed in this study. In addition, experimental verification was conducted. The experimental verification research shows that the constant altitude sailing experiment of the two-part towed platform verifies that the platform has good constant altitude sailing ability in both a hydrostatic environment and the actual marine environment. Meanwhile, the offshore magnetic anomaly detection experiment of submarine pipelines verifies the stable measurement function of the magnetic field and the function of the system to detect magnetic anomaly of submarine pipelines.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 2","pages":"Pages 169-180"},"PeriodicalIF":7.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45915999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.joes.2021.12.007
Setu Rani , Sachin Kumar , Raj Kumar
In the case of negligible viscosity and surface tension, the B-KP equation shows the evolution of quasi-one-dimensional shallow-water waves, and it is growingly used in ocean physics, marine engineering, plasma physics, optical fibers, surface and internal oceanic waves, Bose-Einstein condensation, ferromagnetics, and string theory. Due to their importance and applications, many features and characteristics have been investigated. In this work, we attempt to perform Lie symmetry reductions and closed-form solutions to the weakly coupled B-Type Kadomtsev-Petviashvili equation using the Lie classical method. First, an optimal system based on one-dimensional subalgebras is constructed, and then all possible geometric vector yields are achieved. We can reduce system order by employing the one-dimensional optimal system. Furthermore, similarity reductions and exact solutions of the reduced equations, which include arbitrary independent functional parameters, have been derived. These newly established solutions can enhance our understanding of different nonlinear wave phenomena and dynamics. Several three-dimensional and two-dimensional graphical representations are used to determine the visual impact of the produced solutions with determined parameters to demonstrate their dynamical wave profiles for various examples of Lie symmetries. Various new solitary waves, kink waves, multiple solitons, stripe soliton, and singular waveforms, as well as their propagation, have been demonstrated for the weakly coupled B-Type Kadomtsev-Petviashvili equation. Lie classical method is thus a powerful, robust, and fundamental scientific tool for dealing with NPDEs. Computational simulations are also used to prove the effectiveness of the proposed approach.
{"title":"Invariance analysis for determining the closed-form solutions, optimal system, and various wave profiles for a (2+1)-dimensional weakly coupled B-Type Kadomtsev-Petviashvili equations","authors":"Setu Rani , Sachin Kumar , Raj Kumar","doi":"10.1016/j.joes.2021.12.007","DOIUrl":"10.1016/j.joes.2021.12.007","url":null,"abstract":"<div><p>In the case of negligible viscosity and surface tension, the B-KP equation shows the evolution of quasi-one-dimensional shallow-water waves, and it is growingly used in ocean physics, marine engineering, plasma physics, optical fibers, surface and internal oceanic waves, Bose-Einstein condensation, ferromagnetics, and string theory. Due to their importance and applications, many features and characteristics have been investigated. In this work, we attempt to perform Lie symmetry reductions and closed-form solutions to the weakly coupled B-Type Kadomtsev-Petviashvili equation using the Lie classical method. First, an optimal system based on one-dimensional subalgebras is constructed, and then all possible geometric vector yields are achieved. We can reduce system order by employing the one-dimensional optimal system. Furthermore, similarity reductions and exact solutions of the reduced equations, which include arbitrary independent functional parameters, have been derived. These newly established solutions can enhance our understanding of different nonlinear wave phenomena and dynamics. Several three-dimensional and two-dimensional graphical representations are used to determine the visual impact of the produced solutions with determined parameters to demonstrate their dynamical wave profiles for various examples of Lie symmetries. Various new solitary waves, kink waves, multiple solitons, stripe soliton, and singular waveforms, as well as their propagation, have been demonstrated for the weakly coupled B-Type Kadomtsev-Petviashvili equation. Lie classical method is thus a powerful, robust, and fundamental scientific tool for dealing with NPDEs. Computational simulations are also used to prove the effectiveness of the proposed approach.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 2","pages":"Pages 133-144"},"PeriodicalIF":7.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46866290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.joes.2021.12.005
Raj Kumar , Ravi Shankar Verma , Atul Kumar Tiwari
This work is devoted to get a new family of analytical solutions of the (2+1)-coupled dispersive long wave equations propagating in an infinitely long channel with constant depth, and can be observed in an open sea or in wide channels. The solutions are obtained by using the invariance property of the similarity transformations method via one-parameter Lie group theory. The repeated use of the similarity transformations method can transform the system of PDEs into system of ODEs. Under adequate restrictions, the reduced system of ODEs is solved. Numerical simulation is performed to describe the solutions in a physically meaningful way. The profiles of the solutions are simulated by taking an appropriate choice of functions and constants involved therein. In each animation, a frame for dominated behavior is captured. They exhibit elastic multisolitons, single soliton, doubly solitons, stationary, kink and parabolic nature. The results are significant since these have confirmed some of the established results of S. Kumar et al. (2020) and K. Sharma et al. (2020). Some of their solutions can be deduced from the results derived in this work. Other results in the existing literature are different from those in this work.
{"title":"On similarity solutions to (2+1)-dispersive long-wave equations","authors":"Raj Kumar , Ravi Shankar Verma , Atul Kumar Tiwari","doi":"10.1016/j.joes.2021.12.005","DOIUrl":"10.1016/j.joes.2021.12.005","url":null,"abstract":"<div><p>This work is devoted to get a new family of analytical solutions of the (2+1)-coupled dispersive long wave equations propagating in an infinitely long channel with constant depth, and can be observed in an open sea or in wide channels. The solutions are obtained by using the invariance property of the similarity transformations method <em>via</em> one-parameter Lie group theory. The repeated use of the similarity transformations method can transform the system of PDEs into system of ODEs. Under adequate restrictions, the reduced system of ODEs is solved. Numerical simulation is performed to describe the solutions in a physically meaningful way. The profiles of the solutions are simulated by taking an appropriate choice of functions and constants involved therein. In each animation, a frame for dominated behavior is captured. They exhibit elastic multisolitons, single soliton, doubly solitons, stationary, kink and parabolic nature. The results are significant since these have confirmed some of the established results of S. Kumar et al. (2020) and K. Sharma et al. (2020). Some of their solutions can be deduced from the results derived in this work. Other results in the existing literature are different from those in this work.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 2","pages":"Pages 111-123"},"PeriodicalIF":7.1,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44824644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.joes.2021.11.003
Yu Ao , Yunbo Li , Jiaye Gong , Shaofan Li
Ship-hull design is a complex process because the any slight local alteration in ship hull structure may significantly change the hydrostatic and hydrodynamic performances of a ship. To find the optimum hull shape under the design requirements, the state-of-art of ship hull design combines computational fluid dynamics computation with geometric modeling. However, this process is very computationally intensive, which is only suitable at the final stage of the design process. To narrow down the design parameter space, in this work, we have developed an AI-based deep learning neural network to realize a real-time prediction of the total resistance of the ship-hull structure in its initial design process. In this work, we have demonstrated how to use the developed DNN model to carry out the initial ship hull design. The validation results showed that the deep learning model could accurately predict the ship hull’s total resistance accurately after being trained, where the average error of all samples in the testing dataset is lower than 4%. Simultaneously, the trained deep learning model can predict the hip’s performances in real-time by inputting geometric modification parameters without tedious preprocessing and calculation processes. The machine learning approach in ship hull design proposed in this work is the first step towards the artificial intelligence-aided design in naval architectures.
{"title":"An artificial intelligence-aided design (AIAD) of ship hull structures","authors":"Yu Ao , Yunbo Li , Jiaye Gong , Shaofan Li","doi":"10.1016/j.joes.2021.11.003","DOIUrl":"10.1016/j.joes.2021.11.003","url":null,"abstract":"<div><p>Ship-hull design is a complex process because the any slight local alteration in ship hull structure may significantly change the hydrostatic and hydrodynamic performances of a ship. To find the optimum hull shape under the design requirements, the state-of-art of ship hull design combines computational fluid dynamics computation with geometric modeling. However, this process is very computationally intensive, which is only suitable at the final stage of the design process. To narrow down the design parameter space, in this work, we have developed an AI-based deep learning neural network to realize a real-time prediction of the total resistance of the ship-hull structure in its initial design process. In this work, we have demonstrated how to use the developed DNN model to carry out the initial ship hull design. The validation results showed that the deep learning model could accurately predict the ship hull’s total resistance accurately after being trained, where the average error of all samples in the testing dataset is lower than 4%. Simultaneously, the trained deep learning model can predict the hip’s performances in real-time by inputting geometric modification parameters without tedious preprocessing and calculation processes. The machine learning approach in ship hull design proposed in this work is the first step towards the artificial intelligence-aided design in naval architectures.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 1","pages":"Pages 15-32"},"PeriodicalIF":7.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45989683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.joes.2021.11.004
Saima Rashid , Rehana Ashraf , Zakia Hammouch
This paper presents a study of nonlinear waves in shallow water. The Korteweg-de Vries (KdV) equation has a canonical version based on oceanography theory, the shallow water waves in the oceans, and the internal ion-acoustic waves in plasma. Indeed, the main goal of this investigation is to employ a semi-analytical method based on the homotopy perturbation transform method (HPTM) to obtain the numerical findings of nonlinear dispersive and fifth order KdV models for investigating the behaviour of magneto-acoustic waves in plasma via fuzziness. This approach is connected with the fuzzy generalized integral transform and HPTM. Besides that, two novel results for fuzzy generalized integral transformation concerning fuzzy partial -derivatives are presented. Several illustrative examples are illustrated to show the effectiveness and supremacy of the proposed method. Furthermore, 2D and 3D simulations depict the comparison analysis between two fractional derivative operators (Caputo and Atangana-Baleanu fractional derivative operators in the Caputo sense) under generalized -differentiability. The projected method (GHPTM) demonstrates a diverse spectrum of applications for dealing with nonlinear wave equations in scientific domains. The current work, as a novel use of GHPTM, demonstrates some key differences from existing similar methods.
{"title":"New generalized fuzzy transform computations for solving fractional partial differential equations arising in oceanography","authors":"Saima Rashid , Rehana Ashraf , Zakia Hammouch","doi":"10.1016/j.joes.2021.11.004","DOIUrl":"10.1016/j.joes.2021.11.004","url":null,"abstract":"<div><p>This paper presents a study of nonlinear waves in shallow water. The Korteweg-de Vries (KdV) equation has a canonical version based on oceanography theory, the shallow water waves in the oceans, and the internal ion-acoustic waves in plasma. Indeed, the main goal of this investigation is to employ a semi-analytical method based on the homotopy perturbation transform method (HPTM) to obtain the numerical findings of nonlinear dispersive and fifth order KdV models for investigating the behaviour of magneto-acoustic waves in plasma via fuzziness. This approach is connected with the fuzzy generalized integral transform and HPTM. Besides that, two novel results for fuzzy generalized integral transformation concerning fuzzy partial <span><math><mrow><mi>g</mi><mi>H</mi></mrow></math></span>-derivatives are presented. Several illustrative examples are illustrated to show the effectiveness and supremacy of the proposed method. Furthermore, 2D and 3D simulations depict the comparison analysis between two fractional derivative operators (Caputo and Atangana-Baleanu fractional derivative operators in the Caputo sense) under generalized <span><math><mrow><mi>g</mi><mi>H</mi></mrow></math></span>-differentiability. The projected method (GHPTM) demonstrates a diverse spectrum of applications for dealing with nonlinear wave equations in scientific domains. The current work, as a novel use of GHPTM, demonstrates some key differences from existing similar methods.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 1","pages":"Pages 55-78"},"PeriodicalIF":7.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45240314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.joes.2021.11.005
Kapil Kumar Kalkal , Aarti Kadian , Sunil Kumar
In the present article, we have used the three-phase-lag model of thermoelasticity to formulate a two dimensional problem of non homogeneous, isotropic, double porous media with a gravitational field impact. Thermal shock of constant intensity is applied on the bounding surface. The normal mode procedure is employed to derive the exact expressions of the field quantities. These expressions are also calculated numerically and plotted graphically to demonstrate and compare theoretical results. The influences of non-homogeneity parameter, double porosity and gravity on the various physical quantities are also analyzed. A comparative study is done between three-phase-lag and GN-III models. Some limiting cases are also deduced from the current study.
{"title":"Three-phase-lag functionally graded thermoelastic model having double porosity and gravitational effect","authors":"Kapil Kumar Kalkal , Aarti Kadian , Sunil Kumar","doi":"10.1016/j.joes.2021.11.005","DOIUrl":"10.1016/j.joes.2021.11.005","url":null,"abstract":"<div><p>In the present article, we have used the three-phase-lag model of thermoelasticity to formulate a two dimensional problem of non homogeneous, isotropic, double porous media with a gravitational field impact. Thermal shock of constant intensity is applied on the bounding surface. The normal mode procedure is employed to derive the exact expressions of the field quantities. These expressions are also calculated numerically and plotted graphically to demonstrate and compare theoretical results. The influences of non-homogeneity parameter, double porosity and gravity on the various physical quantities are also analyzed. A comparative study is done between three-phase-lag and GN-III models. Some limiting cases are also deduced from the current study.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 1","pages":"Pages 42-54"},"PeriodicalIF":7.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45674202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.joes.2021.12.004
Arzu Akbulut , Melike Kaplan , Mohammed K.A. Kaabar
The current work aims to present abundant families of the exact solutions of Mikhailov-Novikov-Wang equation via three different techniques. The adopted methods are generalized Kudryashov method (GKM), exponential rational function method (ERFM), and modified extended tanh-function method (METFM). Some plots of some presented new solutions are represented to exhibit wave characteristics. All results in this work are essential to understand the physical meaning and behavior of the investigated equation that sheds light on the importance of investigating various nonlinear wave phenomena in ocean engineering and physics. This equation provides new insights to understand the relationship between the integrability and water waves’ phenomena.
{"title":"New exact solutions of the Mikhailov-Novikov-Wang equation via three novel techniques","authors":"Arzu Akbulut , Melike Kaplan , Mohammed K.A. Kaabar","doi":"10.1016/j.joes.2021.12.004","DOIUrl":"10.1016/j.joes.2021.12.004","url":null,"abstract":"<div><p>The current work aims to present abundant families of the exact solutions of Mikhailov-Novikov-Wang equation via three different techniques. The adopted methods are generalized Kudryashov method (GKM), exponential rational function method (ERFM), and modified extended tanh-function method (METFM). Some plots of some presented new solutions are represented to exhibit wave characteristics. All results in this work are essential to understand the physical meaning and behavior of the investigated equation that sheds light on the importance of investigating various nonlinear wave phenomena in ocean engineering and physics. This equation provides new insights to understand the relationship between the integrability and water waves’ phenomena.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 1","pages":"Pages 103-110"},"PeriodicalIF":7.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47764211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.joes.2021.11.002
Sachin Kumar , Amit Kumar , Brij Mohan
In the fields of oceanography, hydrodynamics, and marine engineering, many mathematicians and physicists are interested in Burgers-type equations to show the different dynamics of nonlinear wave phenomena, one of which is a (3+1)-dimensional Burgers system that is currently being studied. In this paper, we apply two different analytical methods, namely the generalized Kudryashov (GK) method, and the generalized exponential rational function method, to derive abundant novel analytic exact solitary wave solutions, including multi-wave solitons, multi-wave peakon solitons, kink-wave profiles, stripe solitons, wave-wave interaction profiles, and periodic oscillating wave profiles for a (3+1)-dimensional Burgers system with the assistance of symbolic computation. By employing the generalized Kudryashov method, we obtain some new families of exact solitary wave solutions for the Burgers system. Further, we applied the generalized exponential rational function method to obtain a large number of soliton solutions in the forms of trigonometric and hyperbolic function solutions, exponential rational function solutions, periodic breather-wave soliton solutions, dark and bright solitons, singular periodic oscillating wave soliton solutions, and complex multi-wave solutions under various family cases. Based on soft computing via Wolfram Mathematica, all the newly established solutions are verified by back substituting them into the considered Burgers system. Eventually, the dynamical behaviors of some established results are exhibited graphically through three - and two-dimensional wave profiles via numerical simulation.
{"title":"Evolutionary dynamics of solitary wave profiles and abundant analytical solutions to a (3+1)-dimensional burgers system in ocean physics and hydrodynamics","authors":"Sachin Kumar , Amit Kumar , Brij Mohan","doi":"10.1016/j.joes.2021.11.002","DOIUrl":"10.1016/j.joes.2021.11.002","url":null,"abstract":"<div><p>In the fields of oceanography, hydrodynamics, and marine engineering, many mathematicians and physicists are interested in Burgers-type equations to show the different dynamics of nonlinear wave phenomena, one of which is a (3+1)-dimensional Burgers system that is currently being studied. In this paper, we apply two different analytical methods, namely the generalized Kudryashov (GK) method, and the generalized exponential rational function method, to derive abundant novel analytic exact solitary wave solutions, including multi-wave solitons, multi-wave peakon solitons, kink-wave profiles, stripe solitons, wave-wave interaction profiles, and periodic oscillating wave profiles for a (3+1)-dimensional Burgers system with the assistance of symbolic computation. By employing the generalized Kudryashov method, we obtain some new families of exact solitary wave solutions for the Burgers system. Further, we applied the generalized exponential rational function method to obtain a large number of soliton solutions in the forms of trigonometric and hyperbolic function solutions, exponential rational function solutions, periodic breather-wave soliton solutions, dark and bright solitons, singular periodic oscillating wave soliton solutions, and complex multi-wave solutions under various family cases. Based on soft computing via Wolfram Mathematica, all the newly established solutions are verified by back substituting them into the considered Burgers system. Eventually, the dynamical behaviors of some established results are exhibited graphically through three - and two-dimensional wave profiles via numerical simulation.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 1","pages":"Pages 1-14"},"PeriodicalIF":7.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42676925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper investigates the multiple rogue wave solutions associated with the generalized Hirota–Satsuma–Ito (HSI) equation and the newly proposed extended (3 + 1)-dimensional Jimbo–Miwa (JM) equation with the help of a symbolic computation technique. By incorporating a direct variable transformation and utilizing Hirota’s bilinear form, multiple rogue wave structures of different orders are obtained for both generalized HSI and JM equation. The obtained bilinear forms of the proposed equations successfully investigate the 1st, 2nd and 3rd-order rogue waves. The constructed solutions are verified by inserting them into original equations. The computations are assisted with 3D graphs to analyze the propagation dynamics of these rogue waves. Physical properties of these waves are governed by different parameters that are discussed in details.
{"title":"Multiple rational rogue waves for higher dimensional nonlinear evolution equations via symbolic computation approach","authors":"Saima Arshed , Nauman Raza , Asma Rashid Butt , Ahmad Javid , J.F. Gómez-Aguilar","doi":"10.1016/j.joes.2021.11.001","DOIUrl":"10.1016/j.joes.2021.11.001","url":null,"abstract":"<div><p>The paper investigates the multiple rogue wave solutions associated with the generalized Hirota–Satsuma–Ito (HSI) equation and the newly proposed extended (3 + 1)-dimensional Jimbo–Miwa (JM) equation with the help of a symbolic computation technique. By incorporating a direct variable transformation and utilizing Hirota’s bilinear form, multiple rogue wave structures of different orders are obtained for both generalized HSI and JM equation. The obtained bilinear forms of the proposed equations successfully investigate the 1st, 2nd and 3rd-order rogue waves. The constructed solutions are verified by inserting them into original equations. The computations are assisted with 3D graphs to analyze the propagation dynamics of these rogue waves. Physical properties of these waves are governed by different parameters that are discussed in details.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 1","pages":"Pages 33-41"},"PeriodicalIF":7.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44541163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}