Pub Date : 2023-12-22DOI: 10.3390/aerospace11010010
Zhuoming Du, Junfeng Zhang, Zhao Ma, Jiaxin Xu
Collaboration between terminal airspace and airport surface operation shows an increasing significance for the best efficiency of both parts of the air traffic management domain. Runways play a critical role in connecting the two parts for departure and arrival aircraft. Suppose the gate and the entry fix of an aircraft are predetermined according to the flight plan, and they are on the opposite side of the airport terminal. The aircraft will either spend more time (i.e., delay in the air) landing on a runway close to its gate or take a longer distance (i.e., detour on the ground) taxiing to its gate if a runway close to its entry fix is assigned. This paper proposes a runway assignment model considering terminal airspace operation and airport surface movement simultaneously to discover how runway assignments can affect integrated operations. Four different runway assignment schemes are applied in this model. Subsequently, a metaheuristic method is proposed to solve the model. Furthermore, the historical taxiing and flight time data are analyzed to demonstrate the potential benefits of runway reassignment. Finally, the results show that the free assignment of the runway stands out among the four schemes, not only in the performance of terminal airspace operation (lower flight time) but also in airport surface movement (lower pushback delay, taxi time).
{"title":"Delay in the Air or Detour on the Ground?—A Case Study in Guangzhou Baiyun International Airport","authors":"Zhuoming Du, Junfeng Zhang, Zhao Ma, Jiaxin Xu","doi":"10.3390/aerospace11010010","DOIUrl":"https://doi.org/10.3390/aerospace11010010","url":null,"abstract":"Collaboration between terminal airspace and airport surface operation shows an increasing significance for the best efficiency of both parts of the air traffic management domain. Runways play a critical role in connecting the two parts for departure and arrival aircraft. Suppose the gate and the entry fix of an aircraft are predetermined according to the flight plan, and they are on the opposite side of the airport terminal. The aircraft will either spend more time (i.e., delay in the air) landing on a runway close to its gate or take a longer distance (i.e., detour on the ground) taxiing to its gate if a runway close to its entry fix is assigned. This paper proposes a runway assignment model considering terminal airspace operation and airport surface movement simultaneously to discover how runway assignments can affect integrated operations. Four different runway assignment schemes are applied in this model. Subsequently, a metaheuristic method is proposed to solve the model. Furthermore, the historical taxiing and flight time data are analyzed to demonstrate the potential benefits of runway reassignment. Finally, the results show that the free assignment of the runway stands out among the four schemes, not only in the performance of terminal airspace operation (lower flight time) but also in airport surface movement (lower pushback delay, taxi time).","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"40 25","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138946652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.3390/aerospace11010008
Murat Millidere, Ferhat Akgül, K. Leblebicioğlu, James F. Whidborne
For developing high-fidelity flight simulations, an accurate and complete representation of the aerodynamic characteristics of the aircraft is necessary. To obtain a realistic aerodynamic database, system identification methods can be used to describe the applied forces and moments acting on the aircraft. This study is based on simulated flight test data from a nonlinear simulation of the F-16 aircraft. It is demonstrated that the complete set of aerodynamic coefficients can be reconstructed from the flight test data. Thrust forces and moments are obtained from ground tests. A practical system identification methodology based on the iterative equation error method to determine the nonlinear aerodynamic and engine thrust models in the absence of engine manufacturer data is developed. The estimated values obtained using the method are compared with the actual parameter values. A mathematical engine model that can be used to estimate the thrust force for any flight condition is also developed. The findings demonstrate that the proposed method yields accurate results. The developed methodology is well-suited for the identification of isolated aerodynamic drag and lift coefficients and the thrust model.
{"title":"Development of Aerodynamic and Propulsion Models Using the Iterative Equation Error Method","authors":"Murat Millidere, Ferhat Akgül, K. Leblebicioğlu, James F. Whidborne","doi":"10.3390/aerospace11010008","DOIUrl":"https://doi.org/10.3390/aerospace11010008","url":null,"abstract":"For developing high-fidelity flight simulations, an accurate and complete representation of the aerodynamic characteristics of the aircraft is necessary. To obtain a realistic aerodynamic database, system identification methods can be used to describe the applied forces and moments acting on the aircraft. This study is based on simulated flight test data from a nonlinear simulation of the F-16 aircraft. It is demonstrated that the complete set of aerodynamic coefficients can be reconstructed from the flight test data. Thrust forces and moments are obtained from ground tests. A practical system identification methodology based on the iterative equation error method to determine the nonlinear aerodynamic and engine thrust models in the absence of engine manufacturer data is developed. The estimated values obtained using the method are compared with the actual parameter values. A mathematical engine model that can be used to estimate the thrust force for any flight condition is also developed. The findings demonstrate that the proposed method yields accurate results. The developed methodology is well-suited for the identification of isolated aerodynamic drag and lift coefficients and the thrust model.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"29 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138950308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.3390/aerospace11010009
Hyeong-Geun Kim, Donghyun Beck
We propose an integrated guidance and control law for dual-controlled interceptor dynamics controlled via tail-fin deflection and reaction jets. Because dual-controlled interceptors have two input channels in each axis, we define two error variables as the first step to derive an integrated controller. One variable is configured as a line-of-sight rate for nullifying heading errors to a target, and the other is established to allocate the control strategy for the fast response of an integrated loop. Consequently, interceptor dynamics are controlled to produce a required maneuver by the net force of the two control inputs when a large heading error occurs, thereby accelerating the control response compared with conventional control methods. After the heading error is sufficiently reduced, it is switched to a general control strategy that performs a maneuver through the lift generated by the fuselage angle of attack to prevent excessive use of the control inputs. Based on such a control strategy, the proposed integrated law is expected to exhibit enhanced homing performance compared with existing control methods that perform guidance and control in separate loops. Moreover, numerical simulations considering engagement scenarios with highly maneuverable targets are conducted to evaluate the performance of the proposed integrated guidance and control law.
{"title":"Integrated Guidance and Control for Collision Course Stabilization of Dual-Controlled Interceptors","authors":"Hyeong-Geun Kim, Donghyun Beck","doi":"10.3390/aerospace11010009","DOIUrl":"https://doi.org/10.3390/aerospace11010009","url":null,"abstract":"We propose an integrated guidance and control law for dual-controlled interceptor dynamics controlled via tail-fin deflection and reaction jets. Because dual-controlled interceptors have two input channels in each axis, we define two error variables as the first step to derive an integrated controller. One variable is configured as a line-of-sight rate for nullifying heading errors to a target, and the other is established to allocate the control strategy for the fast response of an integrated loop. Consequently, interceptor dynamics are controlled to produce a required maneuver by the net force of the two control inputs when a large heading error occurs, thereby accelerating the control response compared with conventional control methods. After the heading error is sufficiently reduced, it is switched to a general control strategy that performs a maneuver through the lift generated by the fuselage angle of attack to prevent excessive use of the control inputs. Based on such a control strategy, the proposed integrated law is expected to exhibit enhanced homing performance compared with existing control methods that perform guidance and control in separate loops. Moreover, numerical simulations considering engagement scenarios with highly maneuverable targets are conducted to evaluate the performance of the proposed integrated guidance and control law.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"51 7","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138952504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.3390/aerospace11010007
Haoyu Cheng, Dan Zhao, N. Oo, Xiran Liu, Xu Dong
Ice accretion is inevitable on fix-wing UAVs (unmanned aerial vehicles) when they are applied to surveillance and mapping over colder climates and arctic regions. Subsequent aerodynamic profile changes have caused the current interest in the better prediction of the effect of icing shapes/sizes/distribution patterns on the aerodynamic performances of an aircraft. This study employs a numerical model which investigates the RG-15 aerofoil’s response to various icing scenarios at a Reynolds number of Re=2×105. Under icing conditions, compared to a clean aerofoil, a reduction in the lift coefficient and an increase in the drag coefficient are observed. Lower temperatures and reduced liquid water content lead to a decrease in the maximum thickness of ice accretion on the RG-15 aerofoil. Particularly noteworthy is the 10.85% reduction in the lift coefficient at a 10° angle of attack, which is in the icing condition at −10 °C with a mean volume diameter of 15 μm. Power consumption increases in the range of 0.46% to 26.5% under various icing conditions, showing synchronization with the rise in drag coefficient. This study underscores the need for future research to investigate various cloud conditions comprehensively and deeply in the context of aerofoil icing.
{"title":"Numerical Investigation on Intermittent Maximum Ice Accretion and Aerodynamic Performances of RG-15 Aerofoil at Low Reynolds Number","authors":"Haoyu Cheng, Dan Zhao, N. Oo, Xiran Liu, Xu Dong","doi":"10.3390/aerospace11010007","DOIUrl":"https://doi.org/10.3390/aerospace11010007","url":null,"abstract":"Ice accretion is inevitable on fix-wing UAVs (unmanned aerial vehicles) when they are applied to surveillance and mapping over colder climates and arctic regions. Subsequent aerodynamic profile changes have caused the current interest in the better prediction of the effect of icing shapes/sizes/distribution patterns on the aerodynamic performances of an aircraft. This study employs a numerical model which investigates the RG-15 aerofoil’s response to various icing scenarios at a Reynolds number of Re=2×105. Under icing conditions, compared to a clean aerofoil, a reduction in the lift coefficient and an increase in the drag coefficient are observed. Lower temperatures and reduced liquid water content lead to a decrease in the maximum thickness of ice accretion on the RG-15 aerofoil. Particularly noteworthy is the 10.85% reduction in the lift coefficient at a 10° angle of attack, which is in the icing condition at −10 °C with a mean volume diameter of 15 μm. Power consumption increases in the range of 0.46% to 26.5% under various icing conditions, showing synchronization with the rise in drag coefficient. This study underscores the need for future research to investigate various cloud conditions comprehensively and deeply in the context of aerofoil icing.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"42 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138950917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.3390/aerospace11010005
Martynas Milaševičius, Laurynas Mačiulis
This paper presents a state-of-the-art overview of fine beam steering mechanisms for free-space optical communication on satellites. Precise beam pointing is a critical task for the successful operation of free-space optical communication systems. Based on past research and ongoing projects, the use of fast steering mirrors (FSMs) is still the most popular solution for free-space optical communication applications. Although a variety of commercial off-the-shelf (COTS) FSM solutions exist, there is limited publicly available data on these solutions in the space environment. Three main actuation principles are considered (electro-static force actuated, magnetic force actuated, piezo-effect actuated) and reviewed using available data from past space missions. The article describes the most important criteria in the choice of a fine beam steering solution for free-space optical communication in space.
{"title":"A Review of Mechanical Fine-Pointing Actuators for Free-Space Optical Communication","authors":"Martynas Milaševičius, Laurynas Mačiulis","doi":"10.3390/aerospace11010005","DOIUrl":"https://doi.org/10.3390/aerospace11010005","url":null,"abstract":"This paper presents a state-of-the-art overview of fine beam steering mechanisms for free-space optical communication on satellites. Precise beam pointing is a critical task for the successful operation of free-space optical communication systems. Based on past research and ongoing projects, the use of fast steering mirrors (FSMs) is still the most popular solution for free-space optical communication applications. Although a variety of commercial off-the-shelf (COTS) FSM solutions exist, there is limited publicly available data on these solutions in the space environment. Three main actuation principles are considered (electro-static force actuated, magnetic force actuated, piezo-effect actuated) and reviewed using available data from past space missions. The article describes the most important criteria in the choice of a fine beam steering solution for free-space optical communication in space.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"120 4","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138958531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.3390/aerospace11010006
V. Pham, M. Tyan, T. Nguyen, Jae-Woo Lee
Multi-fidelity surrogate modeling (MFSM) methods are gaining recognition for their effectiveness in addressing simulation-based design challenges. Prior approaches have typically relied on recursive techniques, combining a limited number of high-fidelity (HF) samples with multiple low-fidelity (LF) datasets structured in hierarchical levels to generate a precise HF approximation model. However, challenges arise when dealing with non-level LF datasets, where the fidelity levels of LF models are indistinguishable across the design space. In such cases, conventional methods employing recursive frameworks may lead to inefficient LF dataset utilization and substantial computational costs. To address these challenges, this work proposes the extended hierarchical Kriging (EHK) method, designed to simultaneously incorporate multiple non-level LF datasets for improved HF model construction, regardless of minor differences in fidelity levels. This method leverages a unique Bayesian-based MFSM framework, simultaneously combining non-level LF models using scaling factors to construct a global trend model. During model processing, unknown scaling factors are implicitly estimated through hyperparameter optimization, resulting in minimal computational costs during model processing, regardless of the number of LF datasets integrated, while maintaining the necessary accuracy in the resulting HF model. The advantages of the proposed EHK method are validated against state-of-the-art MFSM methods through various analytical examples and an engineering case study involving the construction of an aerodynamic database for the KP-2 eVTOL aircraft under various flying conditions. The results demonstrated the superiority of the proposed method in terms of computational cost and accuracy when generating aerodynamic models from the given multi-fidelity datasets.
{"title":"Extended Hierarchical Kriging Method for Aerodynamic Model Generation Incorporating Multiple Low-Fidelity Datasets","authors":"V. Pham, M. Tyan, T. Nguyen, Jae-Woo Lee","doi":"10.3390/aerospace11010006","DOIUrl":"https://doi.org/10.3390/aerospace11010006","url":null,"abstract":"Multi-fidelity surrogate modeling (MFSM) methods are gaining recognition for their effectiveness in addressing simulation-based design challenges. Prior approaches have typically relied on recursive techniques, combining a limited number of high-fidelity (HF) samples with multiple low-fidelity (LF) datasets structured in hierarchical levels to generate a precise HF approximation model. However, challenges arise when dealing with non-level LF datasets, where the fidelity levels of LF models are indistinguishable across the design space. In such cases, conventional methods employing recursive frameworks may lead to inefficient LF dataset utilization and substantial computational costs. To address these challenges, this work proposes the extended hierarchical Kriging (EHK) method, designed to simultaneously incorporate multiple non-level LF datasets for improved HF model construction, regardless of minor differences in fidelity levels. This method leverages a unique Bayesian-based MFSM framework, simultaneously combining non-level LF models using scaling factors to construct a global trend model. During model processing, unknown scaling factors are implicitly estimated through hyperparameter optimization, resulting in minimal computational costs during model processing, regardless of the number of LF datasets integrated, while maintaining the necessary accuracy in the resulting HF model. The advantages of the proposed EHK method are validated against state-of-the-art MFSM methods through various analytical examples and an engineering case study involving the construction of an aerodynamic database for the KP-2 eVTOL aircraft under various flying conditions. The results demonstrated the superiority of the proposed method in terms of computational cost and accuracy when generating aerodynamic models from the given multi-fidelity datasets.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"119 28","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138953828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.3390/aerospace11010004
Zeliang Liu, Rui Zhao, Chenglin Tao, Yuan Wang, Xi Liang
Lattice structures are characterized by a light weight, high strength, and high stiffness, and have a wide range of applications in the aerospace field. Node stress concentration is a key factor affecting the mechanical performance of lattice structures. In this paper, a new equal-strength body-centered cubic (ES-BCC) lattice structure was additively manufactured using 316L stainless steel via selective laser melting (SLM). The results of a mechanical compression test and finite element analysis revealed that the failure location of the ES-BCC structure changed from the nodes to the center of the struts. At the same density, the energy absorption, elastic modulus, and yield strength of the ES-BCC structure increased by 11.89%, 61.80%, and 53.72% compared to the BCC structure, respectively. Furthermore, the change in angle of the ES-BCC structure achieves significant changes in strength, stiffness, and energy absorption to meet different design requirements and engineering applications. The equal-strength concept design can be applied as a general design method to the design of other lightweight energy-absorbing lattice structures.
{"title":"Mechanical Performance of a Node-Reinforced Body-Centered Cubic Lattice Structure: An Equal-Strength Concept Design","authors":"Zeliang Liu, Rui Zhao, Chenglin Tao, Yuan Wang, Xi Liang","doi":"10.3390/aerospace11010004","DOIUrl":"https://doi.org/10.3390/aerospace11010004","url":null,"abstract":"Lattice structures are characterized by a light weight, high strength, and high stiffness, and have a wide range of applications in the aerospace field. Node stress concentration is a key factor affecting the mechanical performance of lattice structures. In this paper, a new equal-strength body-centered cubic (ES-BCC) lattice structure was additively manufactured using 316L stainless steel via selective laser melting (SLM). The results of a mechanical compression test and finite element analysis revealed that the failure location of the ES-BCC structure changed from the nodes to the center of the struts. At the same density, the energy absorption, elastic modulus, and yield strength of the ES-BCC structure increased by 11.89%, 61.80%, and 53.72% compared to the BCC structure, respectively. Furthermore, the change in angle of the ES-BCC structure achieves significant changes in strength, stiffness, and energy absorption to meet different design requirements and engineering applications. The equal-strength concept design can be applied as a general design method to the design of other lightweight energy-absorbing lattice structures.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"119 47","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138959038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.3390/aerospace11010001
Chenglou Liu, Fangfang Xie, Tingwei Ji
Formation path planning is a significant cornerstone for unmanned aerial vehicle (UAV) swarm intelligence. Previous methods were not suitable for large-scale UAV formation, which suffered from poor formation maintenance and low planning efficiency. To this end, this paper proposes a novel millisecond-level path planning method appropriate for large-scale fixed-wing UAV formation, which consists of two parts. Instead of directly planning paths independently for each UAV in the formation, the proposed method first introduces a formation control strategy. It controls the chaotic UAV swarm to move as a single rigid body, so that only one planning can obtain the feasible path of the entire formation. Then, a computationally lightweight Dubins path generation method with a closed-form expression is employed to plan feasible paths for the formation. During flight, the aforementioned formation control strategy maintains the geometric features of the formation and avoids internal collisions within the formation. Finally, the effectiveness of the proposed framework is exemplified through several simulations. The results show that the proposed method can not only achieve millisecond-level path planning for the entire formation but also excellently maintain formation during the flight. Furthermore, simple formation obstacle avoidance in a special case also highlights the application potential of the proposed method.
{"title":"Fixed-Wing UAV Formation Path Planning Based on Formation Control: Theory and Application","authors":"Chenglou Liu, Fangfang Xie, Tingwei Ji","doi":"10.3390/aerospace11010001","DOIUrl":"https://doi.org/10.3390/aerospace11010001","url":null,"abstract":"Formation path planning is a significant cornerstone for unmanned aerial vehicle (UAV) swarm intelligence. Previous methods were not suitable for large-scale UAV formation, which suffered from poor formation maintenance and low planning efficiency. To this end, this paper proposes a novel millisecond-level path planning method appropriate for large-scale fixed-wing UAV formation, which consists of two parts. Instead of directly planning paths independently for each UAV in the formation, the proposed method first introduces a formation control strategy. It controls the chaotic UAV swarm to move as a single rigid body, so that only one planning can obtain the feasible path of the entire formation. Then, a computationally lightweight Dubins path generation method with a closed-form expression is employed to plan feasible paths for the formation. During flight, the aforementioned formation control strategy maintains the geometric features of the formation and avoids internal collisions within the formation. Finally, the effectiveness of the proposed framework is exemplified through several simulations. The results show that the proposed method can not only achieve millisecond-level path planning for the entire formation but also excellently maintain formation during the flight. Furthermore, simple formation obstacle avoidance in a special case also highlights the application potential of the proposed method.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"185 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139172600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.3390/aerospace11010003
F. Piscitelli, Annalisa Volpe
Corrosion is a persistent challenge in the aviation industry, affecting the safety, performance, and maintenance costs of aircraft. While composite materials have gained widespread use due to their lightweight properties and corrosion resistance, certain critical parts, such as the wing and empennage leading edges and the engine inlet, demand alternative solutions. Aluminum, titanium, and stainless steel emerge as mandatory materials for such components, given their exceptional strength and durability. However, protecting these metallic components from corrosion remains crucial. In this paper, we present a study aimed at evaluating the corrosion resistance of stainless steel, employed as an erosion shielding panel for a composite vehicle’s wing, layered with a superhydrophobic coating. The samples with and without coating have been characterized by contact angle measurements, microscopy (optical and electronic), and visual inspection after immersion in two solutions, NaCl and NaOH, respectively. The application of the superhydrophobic coating demonstrated a significant reduction in corrosion extent, especially in the demanding NaCl environment. This was evidenced by diminished formation of ripples and surface roughness, decreased iron oxide formation from oxidative processes, and a lower Surface Free Energy value in both liquid environments. Notably, the surface maintained its superhydrophobic properties even following an 8-day immersion in NaCl and NaOH solutions, demonstrating the reliability of the superhydrophobic coating offering as a potential solution to enhance the longevity and reliability of aircraft structures.
{"title":"Superhydrophobic Coatings for Corrosion Protection of Stainless Steel","authors":"F. Piscitelli, Annalisa Volpe","doi":"10.3390/aerospace11010003","DOIUrl":"https://doi.org/10.3390/aerospace11010003","url":null,"abstract":"Corrosion is a persistent challenge in the aviation industry, affecting the safety, performance, and maintenance costs of aircraft. While composite materials have gained widespread use due to their lightweight properties and corrosion resistance, certain critical parts, such as the wing and empennage leading edges and the engine inlet, demand alternative solutions. Aluminum, titanium, and stainless steel emerge as mandatory materials for such components, given their exceptional strength and durability. However, protecting these metallic components from corrosion remains crucial. In this paper, we present a study aimed at evaluating the corrosion resistance of stainless steel, employed as an erosion shielding panel for a composite vehicle’s wing, layered with a superhydrophobic coating. The samples with and without coating have been characterized by contact angle measurements, microscopy (optical and electronic), and visual inspection after immersion in two solutions, NaCl and NaOH, respectively. The application of the superhydrophobic coating demonstrated a significant reduction in corrosion extent, especially in the demanding NaCl environment. This was evidenced by diminished formation of ripples and surface roughness, decreased iron oxide formation from oxidative processes, and a lower Surface Free Energy value in both liquid environments. Notably, the surface maintained its superhydrophobic properties even following an 8-day immersion in NaCl and NaOH solutions, demonstrating the reliability of the superhydrophobic coating offering as a potential solution to enhance the longevity and reliability of aircraft structures.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":" 25","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138960773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.3390/aerospace11010002
Koichiro Hirose, K. Fukudome, H. Mamori, Makoto Yamamoto
Ice crystal icing occurs in jet engine compressors, which can severely degrade jet engine performance. In this study, we developed an ice crystal trajectory simulation, considering the state changes of ice crystals with a forced convection model, indicating a significant difference in impinging ice crystal content on the blade for tiny ice crystals. Then, ice crystal trajectory simulations were performed for the rotor blade of an axial fan to investigate the effects of ice crystal size and relative humidity on collision characteristics. The results indicate that the surrounding air affects the composition of tiny ice crystals before collision, and the flight time until impingement on the rotor blade varies significantly depending on the span position. Among them, ice crystals with a diameter of 50 μm impinge with water content that is most likely to adhere to the blade. Three-dimensional simulation results show that many ice crystals impinge not only on the leading edge, where icing occurs as revealed by the two-dimensional simulations but also on the trailing edge of the hub side. This study emphasizes the importance of evaluating the three-dimensional impingement position and water content in the prediction of ice crystal icing.
{"title":"Three-Dimensional Trajectory and Impingement Simulation of Ice Crystals Considering State Changes on the Rotor Blade of an Axial Fan","authors":"Koichiro Hirose, K. Fukudome, H. Mamori, Makoto Yamamoto","doi":"10.3390/aerospace11010002","DOIUrl":"https://doi.org/10.3390/aerospace11010002","url":null,"abstract":"Ice crystal icing occurs in jet engine compressors, which can severely degrade jet engine performance. In this study, we developed an ice crystal trajectory simulation, considering the state changes of ice crystals with a forced convection model, indicating a significant difference in impinging ice crystal content on the blade for tiny ice crystals. Then, ice crystal trajectory simulations were performed for the rotor blade of an axial fan to investigate the effects of ice crystal size and relative humidity on collision characteristics. The results indicate that the surrounding air affects the composition of tiny ice crystals before collision, and the flight time until impingement on the rotor blade varies significantly depending on the span position. Among them, ice crystals with a diameter of 50 μm impinge with water content that is most likely to adhere to the blade. Three-dimensional simulation results show that many ice crystals impinge not only on the leading edge, where icing occurs as revealed by the two-dimensional simulations but also on the trailing edge of the hub side. This study emphasizes the importance of evaluating the three-dimensional impingement position and water content in the prediction of ice crystal icing.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":" 98","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138960968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}