Pub Date : 2024-05-22DOI: 10.3390/aerospace11060419
Xuan Gao, Longmiao Chen, Jingsong Tang
Cartridge delivery systems are commonly employed in aerospace engineering for the transportation of cylindrical projectiles. The coordination mechanism plays a pivotal role in ensuring reliable cartridge conveying, with its positioning accuracy being of utmost importance. However, accurately depicting the nonlinear relationship between input parameters and output response is challenging due to the involvement of numerous complex, uncertain factors during the movement process of the coordination mechanism. To address this issue, this study proposes a dynamics model that incorporates hinged gaps to represent rigid–flexible coupling within the coordination mechanism. Experimental validation confirms its effectiveness, while computational efficiency is enhanced through the utilization of a deep learning neural network surrogate model. Furthermore, an improved method for the uncertainty analysis of directional subintervals is introduced and applied to analyze uncertainty in coordination mechanisms, yielding results that demonstrate superior efficiency compared to other approaches.
{"title":"Rigid–Flexible Coupling Dynamics Analysis of Coordination Arm and Application of a New Directional Subinterval Uncertainty Analysis Method","authors":"Xuan Gao, Longmiao Chen, Jingsong Tang","doi":"10.3390/aerospace11060419","DOIUrl":"https://doi.org/10.3390/aerospace11060419","url":null,"abstract":"Cartridge delivery systems are commonly employed in aerospace engineering for the transportation of cylindrical projectiles. The coordination mechanism plays a pivotal role in ensuring reliable cartridge conveying, with its positioning accuracy being of utmost importance. However, accurately depicting the nonlinear relationship between input parameters and output response is challenging due to the involvement of numerous complex, uncertain factors during the movement process of the coordination mechanism. To address this issue, this study proposes a dynamics model that incorporates hinged gaps to represent rigid–flexible coupling within the coordination mechanism. Experimental validation confirms its effectiveness, while computational efficiency is enhanced through the utilization of a deep learning neural network surrogate model. Furthermore, an improved method for the uncertainty analysis of directional subintervals is introduced and applied to analyze uncertainty in coordination mechanisms, yielding results that demonstrate superior efficiency compared to other approaches.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141111602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-22DOI: 10.3390/aerospace11060418
Vytautas Rimša, Mykolas Liugas
Due to their complex aerodynamics, helicopters may enter different dangerous aerodynamic conditions under certain adverse circumstances. In this paper, we examine one such phenomenon—the Vortex Ring State (VRS). We present a simulation of the formation and evolution of a vortex ring around a helicopter’s main rotor. The calculations were carried out by solving Navier–Stokes equations using the Ansys CFX code. The simulations modeled a real helicopter using the rotor wing concept, assuming that only the main rotor blade’s geometry was modeled. A sensitivity study assessed the impact of the calculation domain and mesh size on main rotor thrust and required moment parameters. Simulations were conducted to determine the VRS region by observing the transition of the helicopter from a level flight, with the main rotor blades held at a fixed pitch position, to a gradual increase in vertical descent. The VRS region was compared with experimental results obtained from other authors, revealing sufficient coincidences. The main characteristics of the identified region were then described.
{"title":"Numerical Investigation of the Vortex Ring Phenomena in Rotorcraft","authors":"Vytautas Rimša, Mykolas Liugas","doi":"10.3390/aerospace11060418","DOIUrl":"https://doi.org/10.3390/aerospace11060418","url":null,"abstract":"Due to their complex aerodynamics, helicopters may enter different dangerous aerodynamic conditions under certain adverse circumstances. In this paper, we examine one such phenomenon—the Vortex Ring State (VRS). We present a simulation of the formation and evolution of a vortex ring around a helicopter’s main rotor. The calculations were carried out by solving Navier–Stokes equations using the Ansys CFX code. The simulations modeled a real helicopter using the rotor wing concept, assuming that only the main rotor blade’s geometry was modeled. A sensitivity study assessed the impact of the calculation domain and mesh size on main rotor thrust and required moment parameters. Simulations were conducted to determine the VRS region by observing the transition of the helicopter from a level flight, with the main rotor blades held at a fixed pitch position, to a gradual increase in vertical descent. The VRS region was compared with experimental results obtained from other authors, revealing sufficient coincidences. The main characteristics of the identified region were then described.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141110533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.3390/aerospace11060417
Mingda Jin, Wei Shao
Craters are regarded as significant navigation landmarks during the descent and landing process in small body exploration missions for their universality. Recognizing and matching craters is a crucial prerequisite for visual and LIDAR-based navigation tasks. Compared to traditional algorithms, deep learning-based crater detection algorithms can achieve a higher recognition rate. However, matching crater detection results under various image transformations still poses challenges. To address the problem, a composite feature-matching algorithm that combines geometric descriptors and region descriptors (extracting normalized region pixel gradient features as feature vectors) is proposed. First, the geometric configuration map is constructed based on the crater detection results. Then, geometric descriptors and region descriptors are established within each feature primitive of the map. Subsequently, taking the salience of geometric features into consideration, composite feature descriptors with scale, rotation, and illumination invariance are generated through fusion geometric and region descriptors. Finally, descriptor matching is accomplished by computing the relative distances between descriptors and adhering to the nearest neighbor principle. Experimental results show that the composite feature descriptor proposed in this paper has better matching performance than only using shape descriptors or region descriptors, and can achieve a more than 90% correct matching rate, which can provide technical support for the small body visual navigation task.
{"title":"Crater Triangle Matching Algorithm Based on Fused Geometric and Regional Features","authors":"Mingda Jin, Wei Shao","doi":"10.3390/aerospace11060417","DOIUrl":"https://doi.org/10.3390/aerospace11060417","url":null,"abstract":"Craters are regarded as significant navigation landmarks during the descent and landing process in small body exploration missions for their universality. Recognizing and matching craters is a crucial prerequisite for visual and LIDAR-based navigation tasks. Compared to traditional algorithms, deep learning-based crater detection algorithms can achieve a higher recognition rate. However, matching crater detection results under various image transformations still poses challenges. To address the problem, a composite feature-matching algorithm that combines geometric descriptors and region descriptors (extracting normalized region pixel gradient features as feature vectors) is proposed. First, the geometric configuration map is constructed based on the crater detection results. Then, geometric descriptors and region descriptors are established within each feature primitive of the map. Subsequently, taking the salience of geometric features into consideration, composite feature descriptors with scale, rotation, and illumination invariance are generated through fusion geometric and region descriptors. Finally, descriptor matching is accomplished by computing the relative distances between descriptors and adhering to the nearest neighbor principle. Experimental results show that the composite feature descriptor proposed in this paper has better matching performance than only using shape descriptors or region descriptors, and can achieve a more than 90% correct matching rate, which can provide technical support for the small body visual navigation task.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141116323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.3390/aerospace11060416
Liwei Hao, Yingchun Zhang
This article explores novel in-orbit drag-free technology that can be utilized for deep space detection scientific missions. In this study, we considered a two-test-mass drag-free method and analyzed the design of the drag-free and attitude control system for the TianQin mission. The entire control system was comprehensively designed, including an actuator allocation design and controllers for two test masses and one spacecraft, with a total of 18 degrees of freedom. Furthermore, stability analysis was conducted. Based on our design, numerical analysis and simulations were performed assuming geocentric orbit conditions in the TianQin mission, confirming the feasibility of this aerospace engineering concept. The versatility of the design allows for its application to scientific observations across various disciplines by modifying the structure of the simulation environment, and consequently, the approach discussed in this study holds significant practical implications for effectively accomplishing deep space observation tasks.
{"title":"Design and Analysis of the Integrated Drag-Free and Attitude Control System for TianQin Mission: A Preliminary Result","authors":"Liwei Hao, Yingchun Zhang","doi":"10.3390/aerospace11060416","DOIUrl":"https://doi.org/10.3390/aerospace11060416","url":null,"abstract":"This article explores novel in-orbit drag-free technology that can be utilized for deep space detection scientific missions. In this study, we considered a two-test-mass drag-free method and analyzed the design of the drag-free and attitude control system for the TianQin mission. The entire control system was comprehensively designed, including an actuator allocation design and controllers for two test masses and one spacecraft, with a total of 18 degrees of freedom. Furthermore, stability analysis was conducted. Based on our design, numerical analysis and simulations were performed assuming geocentric orbit conditions in the TianQin mission, confirming the feasibility of this aerospace engineering concept. The versatility of the design allows for its application to scientific observations across various disciplines by modifying the structure of the simulation environment, and consequently, the approach discussed in this study holds significant practical implications for effectively accomplishing deep space observation tasks.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.3390/aerospace11060415
Emre Saldiran, M. Hasanzade, Gokhan Inalhan, Antonios Tsourdos
In this paper, we explore the development of an explainability system for air combat agents trained with reinforcement learning, thus addressing a crucial need in the dynamic and complex realm of air combat. The safety-critical nature of air combat demands not only improved performance but also a deep understanding of artificial intelligence (AI) decision-making processes. Although AI has been applied significantly to air combat, a gap remains in comprehensively explaining an AI agent’s decisions, which is essential for their effective integration and for fostering trust in their actions. Our research involves the creation of an explainability system tailored for agents trained in an air combat environment. Using reinforcement learning, combined with a reward decomposition approach, the system clarifies the agent’s decision making in various tactical situations. This transparency allows for a nuanced understanding of the agent’s behavior, thereby uncovering their strategic preferences and operational patterns. The findings reveal that our system effectively identifies the strengths and weaknesses of an agent’s tactics in different air combat scenarios. This knowledge is essential for debugging and refining the agent’s performance and to ensure that AI agents operate optimally within their intended contexts. The insights gained from our study highlight the crucial role of explainability in improving the integration of AI technologies within air combat systems, thus facilitating more informed tactical decisions and potential advancements in air combat strategies.
{"title":"Towards Global Explainability of Artificial Intelligence Agent Tactics in Close Air Combat","authors":"Emre Saldiran, M. Hasanzade, Gokhan Inalhan, Antonios Tsourdos","doi":"10.3390/aerospace11060415","DOIUrl":"https://doi.org/10.3390/aerospace11060415","url":null,"abstract":"In this paper, we explore the development of an explainability system for air combat agents trained with reinforcement learning, thus addressing a crucial need in the dynamic and complex realm of air combat. The safety-critical nature of air combat demands not only improved performance but also a deep understanding of artificial intelligence (AI) decision-making processes. Although AI has been applied significantly to air combat, a gap remains in comprehensively explaining an AI agent’s decisions, which is essential for their effective integration and for fostering trust in their actions. Our research involves the creation of an explainability system tailored for agents trained in an air combat environment. Using reinforcement learning, combined with a reward decomposition approach, the system clarifies the agent’s decision making in various tactical situations. This transparency allows for a nuanced understanding of the agent’s behavior, thereby uncovering their strategic preferences and operational patterns. The findings reveal that our system effectively identifies the strengths and weaknesses of an agent’s tactics in different air combat scenarios. This knowledge is essential for debugging and refining the agent’s performance and to ensure that AI agents operate optimally within their intended contexts. The insights gained from our study highlight the crucial role of explainability in improving the integration of AI technologies within air combat systems, thus facilitating more informed tactical decisions and potential advancements in air combat strategies.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-20DOI: 10.3390/aerospace11050414
Qiwei Lin, Chang Yang, Yuhao Bai, Jiahao Qin
In the field of civil aviation, the nose landing gear is a critical component that is prone to damage during taxiing. With the advent of new technologies such as towing taxi-out and hub motors, the nose landing gear faces increasingly complex operational environments, thereby imposing higher performance demands. Ensuring the structural safety of the nose landing gear is fundamental for the successful application of these technologies. However, current research on aircraft nose landing gear under these new conditions is somewhat lacking, particularly in terms of reliable analysis models for real-world scenarios. This study focuses on a typical Class C aircraft, specifically the B-727 model, for which a finite element model of the nose landing gear is developed. Modal testing of the aircraft’s nose landing gear is conducted using the impact hammer method, and the results are compared with those from the simulations. The experimental data indicate that the error range for the first seven natural frequencies is between 0.23% and 9.27%, confirming the high accuracy of the developed landing gear model. Furthermore, with towing taxi-out as the primary scenario, a dynamic model of the aircraft towing system is established, and an analysis on the structural strength and topological optimization of the nose landing gear under various conditions, including high speeds and heavy loads, is performed. The results show that the developed model can effectively support the analysis and prediction of the mechanical behavior of the nose landing gear. Under high-speed, heavy-load conditions, the nose landing gear experiences significantly increased loads, with the maximum deformation primarily occurring at the lower section of the shock strut’s outer cylinder. However, no damage occurred. Additionally, under these conditions, an optimized structural design for the landing gear was identified, which, while ensuring structural strength, achieves a 22.32% reduction in the mass of the outer cylinder, also ensuring safety in towing taxi-out conditions.
在民用航空领域,机头起落架是滑行过程中容易损坏的关键部件。随着牵引滑出和轮毂电机等新技术的出现,机头起落架面临着越来越复杂的运行环境,从而提出了更高的性能要求。确保机头起落架的结构安全是成功应用这些技术的基础。然而,目前对这些新条件下飞机前起落架的研究还略显不足,特别是在针对实际场景的可靠分析模型方面。本研究侧重于典型的 C 级飞机,特别是 B-727 机型,为此开发了机头起落架的有限元模型。采用冲击锤法对飞机前起落架进行了模态测试,并将测试结果与模拟结果进行了比较。实验数据表明,前七个固有频率的误差范围在 0.23% 到 9.27% 之间,证实了所开发的起落架模型具有很高的精度。此外,以拖曳滑出为主要场景,建立了飞机拖曳系统的动态模型,并对高速和重载等各种条件下的机头起落架结构强度和拓扑优化进行了分析。结果表明,所建立的模型可以有效地支持对机头起落架力学行为的分析和预测。在高速、重载条件下,机头起落架承受的载荷显著增加,最大变形主要发生在减震支柱外筒的下部。但是,没有发生损坏。此外,在这些条件下,还确定了起落架的优化结构设计,在确保结构强度的同时,将外筒的质量减少了 22.32%,也确保了拖曳滑出条件下的安全性。
{"title":"Structural Strength Analysis and Optimization of Commercial Aircraft Nose Landing Gear under Towing Taxi-Out Conditions Using Finite Element Simulation and Modal Testing","authors":"Qiwei Lin, Chang Yang, Yuhao Bai, Jiahao Qin","doi":"10.3390/aerospace11050414","DOIUrl":"https://doi.org/10.3390/aerospace11050414","url":null,"abstract":"In the field of civil aviation, the nose landing gear is a critical component that is prone to damage during taxiing. With the advent of new technologies such as towing taxi-out and hub motors, the nose landing gear faces increasingly complex operational environments, thereby imposing higher performance demands. Ensuring the structural safety of the nose landing gear is fundamental for the successful application of these technologies. However, current research on aircraft nose landing gear under these new conditions is somewhat lacking, particularly in terms of reliable analysis models for real-world scenarios. This study focuses on a typical Class C aircraft, specifically the B-727 model, for which a finite element model of the nose landing gear is developed. Modal testing of the aircraft’s nose landing gear is conducted using the impact hammer method, and the results are compared with those from the simulations. The experimental data indicate that the error range for the first seven natural frequencies is between 0.23% and 9.27%, confirming the high accuracy of the developed landing gear model. Furthermore, with towing taxi-out as the primary scenario, a dynamic model of the aircraft towing system is established, and an analysis on the structural strength and topological optimization of the nose landing gear under various conditions, including high speeds and heavy loads, is performed. The results show that the developed model can effectively support the analysis and prediction of the mechanical behavior of the nose landing gear. Under high-speed, heavy-load conditions, the nose landing gear experiences significantly increased loads, with the maximum deformation primarily occurring at the lower section of the shock strut’s outer cylinder. However, no damage occurred. Additionally, under these conditions, an optimized structural design for the landing gear was identified, which, while ensuring structural strength, achieves a 22.32% reduction in the mass of the outer cylinder, also ensuring safety in towing taxi-out conditions.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-20DOI: 10.3390/aerospace11050413
Yangyang Zhang, Zhenxing Gao, Kai Qi, Jiawei Li
The positioning of civil aviation aircraft relative to a geographic reference point on Earth in a Cartesian frame is significant to detect the deviations from the desired path, especially for high-altitude airports or special airports based on performance-based navigation (PBN). To obtain these critical deviations during aircraft approach and landing, it is fundamental to estimate the continuous flight variables and discrete flight modes simultaneously with enough accuracy. With the coordinate conversion between the North, East, and Down (NED) frame and the geographic coordinate system based on World Geodetic System 1984 (WGS-84) considered, this study proposed a non-linear stochastic hybrid estimation algorithm with adaptive square-root unscented particle filtering (ASR-UPF) to estimate the true path. The probabilities of mode transition, represented by the normal cumulative density function of continuous states, determine whether to proceed with mode transitions. In addition, the adaptive update characterized by tracking variable noise and the importance sampling distributions based on the results of square-root unscented Kalman filtering (SR-UKF), as a comparative study of continuous system filtering, were used. The experiments illustrated the ASR-UPF is able to reduce the state estimation error more effectively, and more promptly track the error caused by incorrect mode estimation with adaptability compared to the SR-UKF. A further test with real flight data indicates that the proposed method gives the refined estimation of position and azimuth in NED frame.
民航飞机在笛卡尔框架内相对于地球上某一地理参考点的定位,对于检测理想航线的偏差具有重要意义,特别是对于高空机场或基于性能导航(PBN)的特殊机场。为了在飞机进场和着陆时获得这些关键偏差,必须同时对连续飞行变量和离散飞行模式进行足够精确的估算。考虑到北、东、下(NED)框架与基于 1984 年世界大地测量系统(WGS-84)的地理坐标系统之间的坐标转换,本研究提出了一种非线性随机混合估计算法,该算法采用自适应平方根无cented 粒子滤波(ASR-UPF)来估计真实路径。模式转换概率由连续状态的正态累积密度函数表示,决定是否进行模式转换。此外,作为连续系统滤波的比较研究,还使用了以跟踪可变噪声为特征的自适应更新和基于平方根无特征卡尔曼滤波(SR-UKF)结果的重要性采样分布。实验结果表明,与 SR-UKF 相比,ASR-UPF 能够更有效地减少状态估计误差,并能更及时地跟踪由不正确的模式估计引起的误差,具有很强的适应性。利用真实飞行数据进行的进一步测试表明,所提出的方法能在 NED 框架内对位置和方位角进行精确估计。
{"title":"Refined Aircraft Positioning Based on Stochastic Hybrid Estimation with Adaptive Square-Root Unscented Particle Filtering","authors":"Yangyang Zhang, Zhenxing Gao, Kai Qi, Jiawei Li","doi":"10.3390/aerospace11050413","DOIUrl":"https://doi.org/10.3390/aerospace11050413","url":null,"abstract":"The positioning of civil aviation aircraft relative to a geographic reference point on Earth in a Cartesian frame is significant to detect the deviations from the desired path, especially for high-altitude airports or special airports based on performance-based navigation (PBN). To obtain these critical deviations during aircraft approach and landing, it is fundamental to estimate the continuous flight variables and discrete flight modes simultaneously with enough accuracy. With the coordinate conversion between the North, East, and Down (NED) frame and the geographic coordinate system based on World Geodetic System 1984 (WGS-84) considered, this study proposed a non-linear stochastic hybrid estimation algorithm with adaptive square-root unscented particle filtering (ASR-UPF) to estimate the true path. The probabilities of mode transition, represented by the normal cumulative density function of continuous states, determine whether to proceed with mode transitions. In addition, the adaptive update characterized by tracking variable noise and the importance sampling distributions based on the results of square-root unscented Kalman filtering (SR-UKF), as a comparative study of continuous system filtering, were used. The experiments illustrated the ASR-UPF is able to reduce the state estimation error more effectively, and more promptly track the error caused by incorrect mode estimation with adaptability compared to the SR-UKF. A further test with real flight data indicates that the proposed method gives the refined estimation of position and azimuth in NED frame.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-20DOI: 10.3390/aerospace11050412
A. Becks, Tyler Korenyi-Both, Jack J. McNamara, D. Gaitonde
Reynolds-averaged Navier–Stokes simulations are performed for supersonic turbulent flow over a cylinder/flare with upstream surface distortion representative of structural deformation induced via fluid–structural and fluid–thermal–structural behavior. Broad parametric analysis is carried out through the generation of Kriging-response surfaces from a database of general simulations. A posteriori simulations are then carried out at parametric combinations that correspond to extrema in the Kriging response surfaces to gain deeper insights into the interaction between the surface distortion and flow responses. Upstream distortions tend to decrease, rather than increase, the peak pressure and heat flux loads on the flare compared to an undeformed cylinder. Furthermore, decreases in these quantities reach up to O(10%) compared to up to O(1%) for increases. Integrated quantities over the flare are relatively insensitive to upstream distortion. The corner separation length is the most sensitive quantity to upstream distortion, with protrusions tending to increase the separation length and recessions reducing the separation length. Modifications in the separation length of up to 40% are observed. Reductions in peak loads tend to correspond to increases in the corner separation length. The movement of the surface distortion relative to the corner indicates a negligible impact beyond 1.5 distortion lengths from the corner, and the largest impact on the corner separation length occurs when distortion is directly adjacent. These results are an important step toward understanding and quantifying the impact of surface deformations on downstream components.
{"title":"The Impact of Upstream Static Deformation on Flow Past a Cylinder/Flare","authors":"A. Becks, Tyler Korenyi-Both, Jack J. McNamara, D. Gaitonde","doi":"10.3390/aerospace11050412","DOIUrl":"https://doi.org/10.3390/aerospace11050412","url":null,"abstract":"Reynolds-averaged Navier–Stokes simulations are performed for supersonic turbulent flow over a cylinder/flare with upstream surface distortion representative of structural deformation induced via fluid–structural and fluid–thermal–structural behavior. Broad parametric analysis is carried out through the generation of Kriging-response surfaces from a database of general simulations. A posteriori simulations are then carried out at parametric combinations that correspond to extrema in the Kriging response surfaces to gain deeper insights into the interaction between the surface distortion and flow responses. Upstream distortions tend to decrease, rather than increase, the peak pressure and heat flux loads on the flare compared to an undeformed cylinder. Furthermore, decreases in these quantities reach up to O(10%) compared to up to O(1%) for increases. Integrated quantities over the flare are relatively insensitive to upstream distortion. The corner separation length is the most sensitive quantity to upstream distortion, with protrusions tending to increase the separation length and recessions reducing the separation length. Modifications in the separation length of up to 40% are observed. Reductions in peak loads tend to correspond to increases in the corner separation length. The movement of the surface distortion relative to the corner indicates a negligible impact beyond 1.5 distortion lengths from the corner, and the largest impact on the corner separation length occurs when distortion is directly adjacent. These results are an important step toward understanding and quantifying the impact of surface deformations on downstream components.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141119080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-20DOI: 10.3390/aerospace11050411
Song Wu, Han Yan, Yuzhen Zhao, Yanhao Chen, Guoan Tang
The Chinese space station is a complex structure with large flexible appendages. Obtaining the on-orbit response characteristics of such a structure under different working conditions is a traditional and classic challenge in the field of dynamics. To address the on-orbit dynamics of the China Space Station, the basic equations for dynamic reduction, assembly and data recovery of linear and nonlinear substructures are derived based on the reduction and recovery theory, and a fast coupling analysis framework for flexible systems with nonlinear attachments is formed. This coupling analysis framework is adopted to quickly acquire the dynamic response of the China Space Station during in-orbit operation, thereby guiding the design. Taking SZ-15 radial docking to the Chinese Space Station as the object, the substructure of six nonlinear flexible arrays is reduced, the full flexible dynamic equation of the space station is assembled, and the response of each part of the flexible wing during the docking process is analyzed and recovered. By designing a reasonable and reliable flexible wing test scheme in-orbit, the acceleration at the root and top of the flexible wing during the docking of SZ-15 is obtained. The measured data in-orbit show that the acceleration analysis results of the typical parts of the flexible wing have a good agreement, which verifies the correctness of the fast coupling analysis framework of the flexible system. Hence, the dynamic coupling characteristics analysis of the main structure of the space station and the flexible wing based on this method can better guide the rationality of the design of the dynamic characteristics of the Chinese Space Station.
{"title":"A Framework for Rapidly Predicting the Dynamics of Flexible Solar Arrays in the China Space Station with a Verification Based on On-Orbit Measurement Data","authors":"Song Wu, Han Yan, Yuzhen Zhao, Yanhao Chen, Guoan Tang","doi":"10.3390/aerospace11050411","DOIUrl":"https://doi.org/10.3390/aerospace11050411","url":null,"abstract":"The Chinese space station is a complex structure with large flexible appendages. Obtaining the on-orbit response characteristics of such a structure under different working conditions is a traditional and classic challenge in the field of dynamics. To address the on-orbit dynamics of the China Space Station, the basic equations for dynamic reduction, assembly and data recovery of linear and nonlinear substructures are derived based on the reduction and recovery theory, and a fast coupling analysis framework for flexible systems with nonlinear attachments is formed. This coupling analysis framework is adopted to quickly acquire the dynamic response of the China Space Station during in-orbit operation, thereby guiding the design. Taking SZ-15 radial docking to the Chinese Space Station as the object, the substructure of six nonlinear flexible arrays is reduced, the full flexible dynamic equation of the space station is assembled, and the response of each part of the flexible wing during the docking process is analyzed and recovered. By designing a reasonable and reliable flexible wing test scheme in-orbit, the acceleration at the root and top of the flexible wing during the docking of SZ-15 is obtained. The measured data in-orbit show that the acceleration analysis results of the typical parts of the flexible wing have a good agreement, which verifies the correctness of the fast coupling analysis framework of the flexible system. Hence, the dynamic coupling characteristics analysis of the main structure of the space station and the flexible wing based on this method can better guide the rationality of the design of the dynamic characteristics of the Chinese Space Station.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141121758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-19DOI: 10.3390/aerospace11050410
Jialin Zeng, Guohui Wang, Hui Huang, Jian Fan, Haosu Wang
Scramjet based on solid propellant has become a potential choice for the development of future hypersonic vehicles. In this paper, a boron-containing solid rocket scramjet based on the central strut injection was proposed, and the ground direct-connect experiment with the equivalence ratios of 0.43 to 2.4 under the flight condition of Mach 6, 25 km was carried out. The pressure and flow rate over time were measured in the experiment. The results show that the engine can realize stable supersonic mode or subsonic mode combustion by changing the gas flow rate. The engine can effectively increase the combustor pressure, reduce the unstable combustion time, and advance the strong combustion position by increasing the gas flow rate. The engine achieved high combustion efficiency when the equivalence ratio was about 1, with a maximum of 88.28%. A numerical simulation analysis was also carried out in this paper. Compared to the experimental results, the pressure error obtained by numerical simulation was less than 4%, and the typical position error was less than 3%, suggesting that the simulation model can be used to predict the behavior of scramjet.
{"title":"Experimental Investigation of Solid Rocket Scramjet Based on Central Strut","authors":"Jialin Zeng, Guohui Wang, Hui Huang, Jian Fan, Haosu Wang","doi":"10.3390/aerospace11050410","DOIUrl":"https://doi.org/10.3390/aerospace11050410","url":null,"abstract":"Scramjet based on solid propellant has become a potential choice for the development of future hypersonic vehicles. In this paper, a boron-containing solid rocket scramjet based on the central strut injection was proposed, and the ground direct-connect experiment with the equivalence ratios of 0.43 to 2.4 under the flight condition of Mach 6, 25 km was carried out. The pressure and flow rate over time were measured in the experiment. The results show that the engine can realize stable supersonic mode or subsonic mode combustion by changing the gas flow rate. The engine can effectively increase the combustor pressure, reduce the unstable combustion time, and advance the strong combustion position by increasing the gas flow rate. The engine achieved high combustion efficiency when the equivalence ratio was about 1, with a maximum of 88.28%. A numerical simulation analysis was also carried out in this paper. Compared to the experimental results, the pressure error obtained by numerical simulation was less than 4%, and the typical position error was less than 3%, suggesting that the simulation model can be used to predict the behavior of scramjet.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141124082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}