Pub Date : 2023-08-28DOI: 10.3390/fermentation9090792
Cheng Guo, Fanlin Kong, Shengli Li, Xiaowei Wang, Xiaoge Sun, W. Du, Dongwen Dai, Shuo Wang, B. Xie, Xiaofeng Xu
The present study investigates the effect of 50 mL AMCB taken daily as a dietary supplement on the rumen fermentation, microbiota, and production performance of 40 Holstein dairy cows in the transition period with 2.76 ± 0.48 parity and 650 ± 25 kg body weight. AMCB supplementation stabilized rumen pH, improved rumen microbiota richness and partial probiotic colonization, and considerably increased dry matter intake, milk production, protein content, and yield. Moreover, after calving, AMCB supplementation considerably reduced the serum blood urea nitrogen, malondialdehyde, hydrogen peroxide, alanine aminotransferase, and aspartate transaminase levels and increased the serum immunoglobulin G and A levels. The results indicated that AMCB dietary supplementation improved postpartum dry matter intake, production performance, partial immune function, antioxidant capacity, and rumen microbiota richness in Holstein dairy cows in the transition period. AMC is an excellent candidate for use as a rumen buffer.
本试验以40头胎次为2.76±0.48胎次、体重650±25 kg的荷斯坦奶牛为试验对象,研究了饲粮中每天添加50 mL AMCB对奶牛瘤胃发酵、微生物群和生产性能的影响。补充AMCB稳定了瘤胃pH,提高了瘤胃微生物群丰富度和部分益生菌定植,显著提高了干物质采食量、产奶量、蛋白质含量和产量。产犊后,添加AMCB显著降低了血清尿素氮、丙二醛、过氧化氢、丙氨酸转氨酶和天冬氨酸转氨酶水平,提高了血清免疫球蛋白G和A水平。结果表明,饲粮中添加AMCB可提高过渡期荷斯坦奶牛产后干物质采食量、生产性能、部分免疫功能、抗氧化能力和瘤胃微生物群丰富度。AMC是用作瘤胃缓冲液的极好候选物。
{"title":"Effect of Alkaline Mineral Complex Buffer Supplementation on Milk Performance, Serum Variables, Rumen Fermentation and Rumen Microbiota of Transition Dairy Cows","authors":"Cheng Guo, Fanlin Kong, Shengli Li, Xiaowei Wang, Xiaoge Sun, W. Du, Dongwen Dai, Shuo Wang, B. Xie, Xiaofeng Xu","doi":"10.3390/fermentation9090792","DOIUrl":"https://doi.org/10.3390/fermentation9090792","url":null,"abstract":"The present study investigates the effect of 50 mL AMCB taken daily as a dietary supplement on the rumen fermentation, microbiota, and production performance of 40 Holstein dairy cows in the transition period with 2.76 ± 0.48 parity and 650 ± 25 kg body weight. AMCB supplementation stabilized rumen pH, improved rumen microbiota richness and partial probiotic colonization, and considerably increased dry matter intake, milk production, protein content, and yield. Moreover, after calving, AMCB supplementation considerably reduced the serum blood urea nitrogen, malondialdehyde, hydrogen peroxide, alanine aminotransferase, and aspartate transaminase levels and increased the serum immunoglobulin G and A levels. The results indicated that AMCB dietary supplementation improved postpartum dry matter intake, production performance, partial immune function, antioxidant capacity, and rumen microbiota richness in Holstein dairy cows in the transition period. AMC is an excellent candidate for use as a rumen buffer.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":"1 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69922698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.3390/fermentation9090793
Edina Eszterbauer, Á. Németh
Yarrowia lipolytica is a widely used microorganism in biotechnology since it is capable of producing a wide range of products (lipase, citric acid, polyols). A less-studied related strain is Y. divulgata, which is also capable of erythritol production in even higher concentration than most Y. lipolytica wild strains from glycerol as renewable feedstock. Thus, the aim of this work was to investigate Y. divulgata’s complex utilisation based on erythritol fermentation from glycerol to establish a Yarrowia-based biorefinery in which both the fermentation broth and separated cells are converted into high added-value products (erythritol, bioemulsifier, cosmetic ingredient, i.e., skin moisturizer). An important parameter of erythritol fermentation is an adequate oxygen level, so both the constant oxygen level and oxygen absorption rate were investigated regarding the three target products. DO (dissolved oxygen) = 10, 20, 30, 40% was examined in the bioreactor, and a KLa range of 18–655 h−1 was investigated in both the bioreactor and in different types of shaking flasks, applying two different glycerol levels (100–150 g/L). The results showed that the Yarrowia divulagata NCAIM 1485 strain could produce one of the highest amounts of erythritol (44.14 ± 1 g/L) among wild-type yeasts from 150 g/L glycerol beside a KLa value of 655 h−1. Cell-lysates skin hydrating activity was the highest (12%) when DO = 20% (KLa 26.4 h−1) was applied. In all cases, the collected samples had an emulsification index above 69% which did not decrease below 54% after 24 h, showing good stability. Since Y. divulgata fermentations resulted in three high added-value products at the same time from a renewable raw material (glycerol), we concluded that it is suitable for complex utilisation in a microbial biorefinery, since the fermentation broth can be used for the isolation of a sweetener and bioemulsifier; meanwhile, the separated cells can be processed for cosmetic application as a skin moisturizer.
{"title":"Investigations for a Yarrowia-Based Biorefinery: In Vitro Proof-of-Concept for Manufacturing Sweetener, Cosmetic Ingredient, and Bioemulsifier","authors":"Edina Eszterbauer, Á. Németh","doi":"10.3390/fermentation9090793","DOIUrl":"https://doi.org/10.3390/fermentation9090793","url":null,"abstract":"Yarrowia lipolytica is a widely used microorganism in biotechnology since it is capable of producing a wide range of products (lipase, citric acid, polyols). A less-studied related strain is Y. divulgata, which is also capable of erythritol production in even higher concentration than most Y. lipolytica wild strains from glycerol as renewable feedstock. Thus, the aim of this work was to investigate Y. divulgata’s complex utilisation based on erythritol fermentation from glycerol to establish a Yarrowia-based biorefinery in which both the fermentation broth and separated cells are converted into high added-value products (erythritol, bioemulsifier, cosmetic ingredient, i.e., skin moisturizer). An important parameter of erythritol fermentation is an adequate oxygen level, so both the constant oxygen level and oxygen absorption rate were investigated regarding the three target products. DO (dissolved oxygen) = 10, 20, 30, 40% was examined in the bioreactor, and a KLa range of 18–655 h−1 was investigated in both the bioreactor and in different types of shaking flasks, applying two different glycerol levels (100–150 g/L). The results showed that the Yarrowia divulagata NCAIM 1485 strain could produce one of the highest amounts of erythritol (44.14 ± 1 g/L) among wild-type yeasts from 150 g/L glycerol beside a KLa value of 655 h−1. Cell-lysates skin hydrating activity was the highest (12%) when DO = 20% (KLa 26.4 h−1) was applied. In all cases, the collected samples had an emulsification index above 69% which did not decrease below 54% after 24 h, showing good stability. Since Y. divulgata fermentations resulted in three high added-value products at the same time from a renewable raw material (glycerol), we concluded that it is suitable for complex utilisation in a microbial biorefinery, since the fermentation broth can be used for the isolation of a sweetener and bioemulsifier; meanwhile, the separated cells can be processed for cosmetic application as a skin moisturizer.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44990495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-27DOI: 10.3390/fermentation9090791
Miguel Francisco, Tatiana Q. Aguiar, Gabriel Abreu, S. Marques, F. Girio, L. Domingues
In this work, microbial lipid production from non-detoxified Eucalyptus bark hydrolysate (EBH) with oleaginous xylose-utilizing Ashbya gossypii strains was explored. The best producing strain from a set of engineered strains was identified in synthetic media mimicking the composition of the non-detoxified EBH (SM), the lipid profile was characterized, and yeast extract and corn steep liquor (CSL) were pinpointed as supplements enabling a good balance between lipid accumulation, biomass production, and autolysis by A. gossypii. The potential of the engineered A. gossypii A877 strain to produce lipids was further validated and optimized with minimally processed inhibitor-containing hydrolysate and high sugar concentration, and scaled up in a 2 L bioreactor. Lipid production from non-detoxified EBH supplemented with CSL reached a lipid titer of 1.42 g/L, paving the way for sustainable single-cell oil production within the concept of circular economy and placing lipids as an alternative by-product within microbial biorefineries.
{"title":"Single-Cell Oil Production by Engineered Ashbya gossypii from Non-Detoxified Lignocellulosic Biomass Hydrolysate","authors":"Miguel Francisco, Tatiana Q. Aguiar, Gabriel Abreu, S. Marques, F. Girio, L. Domingues","doi":"10.3390/fermentation9090791","DOIUrl":"https://doi.org/10.3390/fermentation9090791","url":null,"abstract":"In this work, microbial lipid production from non-detoxified Eucalyptus bark hydrolysate (EBH) with oleaginous xylose-utilizing Ashbya gossypii strains was explored. The best producing strain from a set of engineered strains was identified in synthetic media mimicking the composition of the non-detoxified EBH (SM), the lipid profile was characterized, and yeast extract and corn steep liquor (CSL) were pinpointed as supplements enabling a good balance between lipid accumulation, biomass production, and autolysis by A. gossypii. The potential of the engineered A. gossypii A877 strain to produce lipids was further validated and optimized with minimally processed inhibitor-containing hydrolysate and high sugar concentration, and scaled up in a 2 L bioreactor. Lipid production from non-detoxified EBH supplemented with CSL reached a lipid titer of 1.42 g/L, paving the way for sustainable single-cell oil production within the concept of circular economy and placing lipids as an alternative by-product within microbial biorefineries.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46758567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-27DOI: 10.3390/fermentation9090790
M. Verni, C. Rizzello
The major roles of antioxidant compounds in preserving food shelf-life, as well as in providing health-promoting benefits, combined with the increasing concern regarding synthetic antioxidants, is progressively leading the scientific community to focus on natural antioxidants [...]
{"title":"The Antioxidant Potential of Fermented Foods: Challenges and Future Trends","authors":"M. Verni, C. Rizzello","doi":"10.3390/fermentation9090790","DOIUrl":"https://doi.org/10.3390/fermentation9090790","url":null,"abstract":"The major roles of antioxidant compounds in preserving food shelf-life, as well as in providing health-promoting benefits, combined with the increasing concern regarding synthetic antioxidants, is progressively leading the scientific community to focus on natural antioxidants [...]","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46015164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-26DOI: 10.3390/fermentation9090789
W. R. Alves, Thiago Alessandre da Silva, A. Zandoná Filho, Luiz Pereira Ramos
This work aimed at producing lactic acid (LA) from sugarcane bagasse after steam explosion at 195 °C for 7.5 and 15 min. Enzymatic hydrolysis was carried out with Cellic CTec3 and Cellic HTec3 (Novozymes), whereas fermentation was performed with Bacillus coagulans DSM2314. Water washing of pretreated solids before enzymatic hydrolysis improved both hydrolysis and fermentation yields. The presence of xylo-oligosaccharides (XOS) in substrate hydrolysates reduced hydrolysis efficiency, but their effect on fermentation was negligible. The presence of fermentation inhibitors in C5 streams was circumvented by adsorption on activated carbon powder with no detectable sugar losses. High carbohydrates-to-LA conversions (Yp/s) of 0.88 g·g−1 were obtained from enzymatic hydrolysates of water-washed steam-exploded materials that were produced at 195 °C, in 7.5 min, and the use of centrifuged-but-never-washed pretreated solids decreased Yp/s by 16%. However, when the detoxified C5 stream was added at a 10% ratio, Yp/s was raised to 0.93 g·g−1 for an LA productivity of 2.55 g·L−1·h−1. Doubling the pretreatment time caused a decrease in Yp/s to 0.78 g·g−1, but LA productivity was the highest (3.20 g·L−1·h−1). For pretreatment at 195 °C for 7.5 min, the elimination of water washing seemed feasible, but the use of longer pretreatment times made it mandatory to eliminate fermentation inhibitors.
{"title":"Lactic Acid Production from Steam-Exploded Sugarcane Bagasse Using Bacillus coagulans DSM2314","authors":"W. R. Alves, Thiago Alessandre da Silva, A. Zandoná Filho, Luiz Pereira Ramos","doi":"10.3390/fermentation9090789","DOIUrl":"https://doi.org/10.3390/fermentation9090789","url":null,"abstract":"This work aimed at producing lactic acid (LA) from sugarcane bagasse after steam explosion at 195 °C for 7.5 and 15 min. Enzymatic hydrolysis was carried out with Cellic CTec3 and Cellic HTec3 (Novozymes), whereas fermentation was performed with Bacillus coagulans DSM2314. Water washing of pretreated solids before enzymatic hydrolysis improved both hydrolysis and fermentation yields. The presence of xylo-oligosaccharides (XOS) in substrate hydrolysates reduced hydrolysis efficiency, but their effect on fermentation was negligible. The presence of fermentation inhibitors in C5 streams was circumvented by adsorption on activated carbon powder with no detectable sugar losses. High carbohydrates-to-LA conversions (Yp/s) of 0.88 g·g−1 were obtained from enzymatic hydrolysates of water-washed steam-exploded materials that were produced at 195 °C, in 7.5 min, and the use of centrifuged-but-never-washed pretreated solids decreased Yp/s by 16%. However, when the detoxified C5 stream was added at a 10% ratio, Yp/s was raised to 0.93 g·g−1 for an LA productivity of 2.55 g·L−1·h−1. Doubling the pretreatment time caused a decrease in Yp/s to 0.78 g·g−1, but LA productivity was the highest (3.20 g·L−1·h−1). For pretreatment at 195 °C for 7.5 min, the elimination of water washing seemed feasible, but the use of longer pretreatment times made it mandatory to eliminate fermentation inhibitors.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42813580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-25DOI: 10.3390/fermentation9090785
G. Perpetuini, Alessio Pio Rossetti, Luca Quadrani, G. Arfelli, A. Piva, G. Suzzi, R. Tofalo
The aim of this study was the evaluation of the effect of the sequential inoculation of Metschnikowia pulcherrima and Saccharomyces cerevisiae for the production of Pecorino wine on the winery scale. Sequential inoculation allowed for wines with interesting oenological characteristics to be obtained. In particular, these wines showed a lower ethanol content than those obtained with S. cerevisiae alone, and the presence of M. pulcherrima induced a reduction in the wine titratable and volatile acidity of about 30%. The effect of M. pulcherrima was relevant also in terms of the volatile profile of the wines. In fact, an increase in the esters content of 60% and a reduction of 53% of the acetic acid was observed. Moreover, the sequential inoculation resulted in an increase in the terpenes content of about 80%. The wines also showed a different sensory profile; in fact, the wines obtained with the sequential inoculation showed higher scores than the other wines for the following descriptors: floral, tropical fruit, citrusy, balsamic, and freshness.
{"title":"Sequential Inoculation of Metschnikowia pulcherrima and Saccharomyces cerevisiae as a Biotechnological Tool to Increase the Terpenes Content of Pecorino White Wines","authors":"G. Perpetuini, Alessio Pio Rossetti, Luca Quadrani, G. Arfelli, A. Piva, G. Suzzi, R. Tofalo","doi":"10.3390/fermentation9090785","DOIUrl":"https://doi.org/10.3390/fermentation9090785","url":null,"abstract":"The aim of this study was the evaluation of the effect of the sequential inoculation of Metschnikowia pulcherrima and Saccharomyces cerevisiae for the production of Pecorino wine on the winery scale. Sequential inoculation allowed for wines with interesting oenological characteristics to be obtained. In particular, these wines showed a lower ethanol content than those obtained with S. cerevisiae alone, and the presence of M. pulcherrima induced a reduction in the wine titratable and volatile acidity of about 30%. The effect of M. pulcherrima was relevant also in terms of the volatile profile of the wines. In fact, an increase in the esters content of 60% and a reduction of 53% of the acetic acid was observed. Moreover, the sequential inoculation resulted in an increase in the terpenes content of about 80%. The wines also showed a different sensory profile; in fact, the wines obtained with the sequential inoculation showed higher scores than the other wines for the following descriptors: floral, tropical fruit, citrusy, balsamic, and freshness.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44358718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-25DOI: 10.3390/fermentation9090787
Octavio García-Depraect, E. León‐Becerril
This study aimed at investigating the feasibility of using a highly specialized bacterial inoculum harboring lactic acid bacteria (LAB) and lactate-oxidizing, hydrogen-producing bacteria (LO-HPB) to produce either lactate or biohydrogen and butyrate from several agro-industrial resources via dual-phase dark fermentation. The feedstocks were fruit–vegetable waste, cheese whey, coffee wastewater, tequila vinasse, and maize processing wastewater, and were tested in both mono- and co-fermentation. The results obtained indicated that the biocatalyst used was able to perform a dual-phase lactate fermentation, producing high lactate (13.1–36.4 g/L), biohydrogen (0.2–7.5 NL H2/Lfeedstock, equivalent to 0.3–1.7 mol H2/mol hexose), and butyrate (3.3–13.9 g/L) with all the tested feedstocks. A series of self-fermentation tests were also performed with crude cheese whey and fruit–vegetable waste for comparison purposes. Compared to inoculum-aided fermentations, the self-fermentation exhibited a reduced bioconversion efficiency. Short-length 16S rRNA gene sequencing analysis showed that LO-HPB was the dominant microbial group (86.0%) in the biocatalyst, followed by acetic acid bacteria (5.8%) and LAB (5.7%). As expected, the molecular analysis also showed significant differences in the microbial community structure of the biocatalyst and those that evolved from self-fermentation. Besides lactate fermentation and oxidation, the biocatalyst also assisted the bi-phasic lactate fermentation via oxygen consumption, and apparently, via substrate hydrolysis. Overall, this study can lay the foundation for robust inoculum development, which is of special significance in the field of dark fermentation, and proposes an innovative bioprocess for agro-industrial valorization through a trade-off approach, tailoring the metabolic pathway to the target product(s).
{"title":"Use of a Highly Specialized Biocatalyst to Produce Lactate or Biohydrogen and Butyrate from Agro-Industrial Resources in a Dual-Phase Dark Fermentation","authors":"Octavio García-Depraect, E. León‐Becerril","doi":"10.3390/fermentation9090787","DOIUrl":"https://doi.org/10.3390/fermentation9090787","url":null,"abstract":"This study aimed at investigating the feasibility of using a highly specialized bacterial inoculum harboring lactic acid bacteria (LAB) and lactate-oxidizing, hydrogen-producing bacteria (LO-HPB) to produce either lactate or biohydrogen and butyrate from several agro-industrial resources via dual-phase dark fermentation. The feedstocks were fruit–vegetable waste, cheese whey, coffee wastewater, tequila vinasse, and maize processing wastewater, and were tested in both mono- and co-fermentation. The results obtained indicated that the biocatalyst used was able to perform a dual-phase lactate fermentation, producing high lactate (13.1–36.4 g/L), biohydrogen (0.2–7.5 NL H2/Lfeedstock, equivalent to 0.3–1.7 mol H2/mol hexose), and butyrate (3.3–13.9 g/L) with all the tested feedstocks. A series of self-fermentation tests were also performed with crude cheese whey and fruit–vegetable waste for comparison purposes. Compared to inoculum-aided fermentations, the self-fermentation exhibited a reduced bioconversion efficiency. Short-length 16S rRNA gene sequencing analysis showed that LO-HPB was the dominant microbial group (86.0%) in the biocatalyst, followed by acetic acid bacteria (5.8%) and LAB (5.7%). As expected, the molecular analysis also showed significant differences in the microbial community structure of the biocatalyst and those that evolved from self-fermentation. Besides lactate fermentation and oxidation, the biocatalyst also assisted the bi-phasic lactate fermentation via oxygen consumption, and apparently, via substrate hydrolysis. Overall, this study can lay the foundation for robust inoculum development, which is of special significance in the field of dark fermentation, and proposes an innovative bioprocess for agro-industrial valorization through a trade-off approach, tailoring the metabolic pathway to the target product(s).","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48842679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-25DOI: 10.3390/fermentation9090788
Johana Marisol Burbano-Cuasapud, J. Solarte-Toro, D. L. Restrepo-Serna, C. A. Cardona Alzate
The use of chemical fertilizers is essential for agricultural development when soils do not have the nutritional balance required for plants. The continuous use of chemical fertilizers has changed the soil physicochemical and biological properties. Biofertilizer production has been considered as an alternative to reduce chemical fertilizers dependence and the environmental impact. The aim of this study is the evaluation of three technologies for the production of biofertilizers and bioenergy at technical, economic, environmental, and social levels. Ammonium sulfate and digestate-based biofertilizers were obtained via anaerobic digestion; biochar was produced via gasification; and amino acids as plants biostimulants were obtained via protein hydrolysis. Different indicators were calculated for elucidating the sustainability of the processes. Technical, economic, environmental, and social analysis is performed for each of the biorefineries processing stage (complex and stand-alone) without considering the agronomic stage or other value chain links. Scenario 1 presented a positive impact on the economic, environmental, and social aspects since this process has a payback period of 10 years, a carbon footprint of 0.67 kg CO2-eq/kg product, and a potential to generate nine jobs in the Colombian context due to the products portfolio, in contrast with scenario 2 and 3. As conclusion, the integration of biofertilizers and bioenergy in biorefineries have the potential to expand the range of bioproducts and to increase the process sustainability.
{"title":"Process Sustainability Analysis of Biorefineries to Produce Biofertilizers and Bioenergy from Biodegradable Residues","authors":"Johana Marisol Burbano-Cuasapud, J. Solarte-Toro, D. L. Restrepo-Serna, C. A. Cardona Alzate","doi":"10.3390/fermentation9090788","DOIUrl":"https://doi.org/10.3390/fermentation9090788","url":null,"abstract":"The use of chemical fertilizers is essential for agricultural development when soils do not have the nutritional balance required for plants. The continuous use of chemical fertilizers has changed the soil physicochemical and biological properties. Biofertilizer production has been considered as an alternative to reduce chemical fertilizers dependence and the environmental impact. The aim of this study is the evaluation of three technologies for the production of biofertilizers and bioenergy at technical, economic, environmental, and social levels. Ammonium sulfate and digestate-based biofertilizers were obtained via anaerobic digestion; biochar was produced via gasification; and amino acids as plants biostimulants were obtained via protein hydrolysis. Different indicators were calculated for elucidating the sustainability of the processes. Technical, economic, environmental, and social analysis is performed for each of the biorefineries processing stage (complex and stand-alone) without considering the agronomic stage or other value chain links. Scenario 1 presented a positive impact on the economic, environmental, and social aspects since this process has a payback period of 10 years, a carbon footprint of 0.67 kg CO2-eq/kg product, and a potential to generate nine jobs in the Colombian context due to the products portfolio, in contrast with scenario 2 and 3. As conclusion, the integration of biofertilizers and bioenergy in biorefineries have the potential to expand the range of bioproducts and to increase the process sustainability.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43491827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-25DOI: 10.3390/fermentation9090786
Madina Akan, Andreas Gudiksen, Y. Baran, Heike Semmler, S. Brezina, S. Fritsch, D. Rauhut, J. Wendland
Despite the increasing number of publications on non-conventional yeasts (NCYs), many areas in this field remain poorly understood, making the examination of these strains important for determining their potential in wine fermentations. The amino acid metabolic pathways involved, particularly the catabolic Ehrlich pathway but also anabolic pathways such as the leucine biosynthesis pathway, are crucial for producing high-value aroma compounds that contribute to the final flavour of wine. We examined the potential use of Saccharomycopsis fermentans in wine fermentations. We selected mutant strains resistant to the toxic compound trifluoro-leucine (TFL), verified mutations in the SfLEU4 gene, and characterized the ability of the resulting strains to contribute to fermentation bouquets. Resistance to TFL relieves feedback inhibition in the leucine biosynthesis pathway and resulted in increased leucine biosynthesis. Concomitantly, the S. fermentans TFL-resistant mutants generated increased amounts of isoamyl alcohol and isovalerate during wine fermentation. Selection of TFL-resistant strains thus provides a generally applicable strategy for the improvement in NCYs and their utilization in co-fermentation processes for different grape must varieties.
{"title":"Exploring the Potential of Non-Conventional Yeasts in Wine Fermentation with a Focus on Saccharomycopsis fermentans","authors":"Madina Akan, Andreas Gudiksen, Y. Baran, Heike Semmler, S. Brezina, S. Fritsch, D. Rauhut, J. Wendland","doi":"10.3390/fermentation9090786","DOIUrl":"https://doi.org/10.3390/fermentation9090786","url":null,"abstract":"Despite the increasing number of publications on non-conventional yeasts (NCYs), many areas in this field remain poorly understood, making the examination of these strains important for determining their potential in wine fermentations. The amino acid metabolic pathways involved, particularly the catabolic Ehrlich pathway but also anabolic pathways such as the leucine biosynthesis pathway, are crucial for producing high-value aroma compounds that contribute to the final flavour of wine. We examined the potential use of Saccharomycopsis fermentans in wine fermentations. We selected mutant strains resistant to the toxic compound trifluoro-leucine (TFL), verified mutations in the SfLEU4 gene, and characterized the ability of the resulting strains to contribute to fermentation bouquets. Resistance to TFL relieves feedback inhibition in the leucine biosynthesis pathway and resulted in increased leucine biosynthesis. Concomitantly, the S. fermentans TFL-resistant mutants generated increased amounts of isoamyl alcohol and isovalerate during wine fermentation. Selection of TFL-resistant strains thus provides a generally applicable strategy for the improvement in NCYs and their utilization in co-fermentation processes for different grape must varieties.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49069421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24DOI: 10.3390/fermentation9090783
Katarina Lisak Jakopović, Irena Barukčić Jurina, Nives Marušić Radovčić, R. Božanić, Ana Jurinjak Tušek
Background: White brined cheese is one of the most frequently consumed cheeses that is accepted among a large group of consumers, which is largely related to its unique sensory properties, which are characterized by specific technological processes including ripening in the brine. Thus, white brined cheese contains a high amount of NaCl, and frequent consumption might lead to excessive sodium intake, which nowadays, presents a global problem. Consequently, food industries have developed reduced sodium products by substitutional salts. Furthermore, various studies have indicated that increased sodium intake via the diet can be associated with cardiovascular diseases, a risk of digestive system cancer, obesity, and other conditions. Calcium salts (citrate and lactate) are safe for human health and can be added to various foods according to the quantum satis rule. The present study aimed to partially replace NaCl with Ca-citrate and Ca-lactate in proportions of 25% and 50%. Additionally, the study presents the possibility of applying Artificial Neural Network (ANN) models for the prediction of some brine and cheese properties. Methods: White brined cheese with substitutional salts in brine (25% and 50% Ca-citrate and 25% and 50% Ca-lactate) were produced and compared to the control cheese ripened in conventionally applied NaCl brine. The acidity, total dissolved solids, salt amount, conductivity, color, and textural and sensory properties were determined over the 28 days of cold storage. Results: The substitution of NaCl with Ca-citrate and Ca-lactate is promising for sodium reduction in white brined cheese, whereby the physical and chemical properties remain acceptable. The best sensory score gain occurred with a substitution of 25% NaCl with Ca-citrate. Furthermore, ANN models can be employed to predict brine and cheese properties during storage.
{"title":"Reduced Sodium in White Brined Cheese Production: Artificial Neural Network Modeling for the Prediction of Specific Properties of Brine and Cheese during Storage","authors":"Katarina Lisak Jakopović, Irena Barukčić Jurina, Nives Marušić Radovčić, R. Božanić, Ana Jurinjak Tušek","doi":"10.3390/fermentation9090783","DOIUrl":"https://doi.org/10.3390/fermentation9090783","url":null,"abstract":"Background: White brined cheese is one of the most frequently consumed cheeses that is accepted among a large group of consumers, which is largely related to its unique sensory properties, which are characterized by specific technological processes including ripening in the brine. Thus, white brined cheese contains a high amount of NaCl, and frequent consumption might lead to excessive sodium intake, which nowadays, presents a global problem. Consequently, food industries have developed reduced sodium products by substitutional salts. Furthermore, various studies have indicated that increased sodium intake via the diet can be associated with cardiovascular diseases, a risk of digestive system cancer, obesity, and other conditions. Calcium salts (citrate and lactate) are safe for human health and can be added to various foods according to the quantum satis rule. The present study aimed to partially replace NaCl with Ca-citrate and Ca-lactate in proportions of 25% and 50%. Additionally, the study presents the possibility of applying Artificial Neural Network (ANN) models for the prediction of some brine and cheese properties. Methods: White brined cheese with substitutional salts in brine (25% and 50% Ca-citrate and 25% and 50% Ca-lactate) were produced and compared to the control cheese ripened in conventionally applied NaCl brine. The acidity, total dissolved solids, salt amount, conductivity, color, and textural and sensory properties were determined over the 28 days of cold storage. Results: The substitution of NaCl with Ca-citrate and Ca-lactate is promising for sodium reduction in white brined cheese, whereby the physical and chemical properties remain acceptable. The best sensory score gain occurred with a substitution of 25% NaCl with Ca-citrate. Furthermore, ANN models can be employed to predict brine and cheese properties during storage.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49475359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}