Pub Date : 2023-08-12DOI: 10.3390/fermentation9080752
Yaoyu Zhang, Y. Gong, Gang Shi, Xiping Liu, Maifan Dai, Li Ding
Antibiotics have been detected in tiny environmental matrices all over the world, which caused a lot of concern. To solve this problem, biological treatment can be a low-cost and high-efficiency way. The use of biochar adsorbents made from the residual sludge of sewage for wastewater treatment can achieve pollutant removal while realizing pollutant reduction and reuse, which is of great significance for green development. In this study, a prepared biochar-based adsorbent (PBA) was modified and used for norfloxacin (NOR) removal. The composition of the adsorbent was characterized, and the influence of application factors on adsorption performance was investigated. After being modified and optimized, an overall removal efficiency of 84% was achieved for NOR in 4 h. The adsorption behavior was spontaneous and consistent with the Lagergren pseudo-second kinetic model and Langmuir model. The adsorption capacity of PBA reached 8.69 mg·L−1 for NOR. A total removal efficiency of 62% was obtained for five mixed quinolone antibiotics by PBA. The PBA could be well regenerated and reused five times. This study explored a new method of the bio-waste utilization of sewage sludge for antibiotic removal from wastewater.
{"title":"Removal of Quinolone Antibiotics from Wastewater by the Biochar-Based Sludge Adsorbent","authors":"Yaoyu Zhang, Y. Gong, Gang Shi, Xiping Liu, Maifan Dai, Li Ding","doi":"10.3390/fermentation9080752","DOIUrl":"https://doi.org/10.3390/fermentation9080752","url":null,"abstract":"Antibiotics have been detected in tiny environmental matrices all over the world, which caused a lot of concern. To solve this problem, biological treatment can be a low-cost and high-efficiency way. The use of biochar adsorbents made from the residual sludge of sewage for wastewater treatment can achieve pollutant removal while realizing pollutant reduction and reuse, which is of great significance for green development. In this study, a prepared biochar-based adsorbent (PBA) was modified and used for norfloxacin (NOR) removal. The composition of the adsorbent was characterized, and the influence of application factors on adsorption performance was investigated. After being modified and optimized, an overall removal efficiency of 84% was achieved for NOR in 4 h. The adsorption behavior was spontaneous and consistent with the Lagergren pseudo-second kinetic model and Langmuir model. The adsorption capacity of PBA reached 8.69 mg·L−1 for NOR. A total removal efficiency of 62% was obtained for five mixed quinolone antibiotics by PBA. The PBA could be well regenerated and reused five times. This study explored a new method of the bio-waste utilization of sewage sludge for antibiotic removal from wastewater.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46827437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-12DOI: 10.3390/fermentation9080753
Xiaohan Jia, Hongfan Chen, Xinyi Wang, Xin Nie, Lu Xiang, Dayu Liu, Zhiping Zhao
This study aimed to investigate the effects of ultra-long-term fermentation on the formation of non-volatile metabolites of Chinese solid-fermented kohlrabies. Liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) based non-targeted metabolomics coupled with multivariate statistical analysis were employed to respectively analyze the kohlrabies solid fermented for 5 years (5Y), 8 years (8Y), and 11 years (11Y). The results showed that 31, 169, and 123 differential metabolites were identified in the three groups of 5Y and 8Y (A1), 5Y and 11Y (A2), and 8Y and 11Y (A3), respectively (VIP > 1, p < 0.05 and |log2FC| > 1). The differential non-volatile metabolites were mainly organic acids and derivatives, organoheterocyclic compounds, benzenoids, lipids and lipid-like molecules, and organicoxygen compounds. Furthermore, 11 common differential metabolites were screened in the three groups, including diaminopimelic acid, ectoine, 9,10,13-TriHOME, and 9 others. The citrate cycle, glycine, serine and threonine metabolism, pantothenate and CoA biosynthesis, and glyoxylate and dicarboxylate metabolism were the four pathways most significantly correlated with the differential non-volatile metabolites based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (p < 0.05). The present study describes the effects of ultra-long-term fermentation periods on the formation of non-volatile metabolites in solid fermented kohlrabies, providing a theoretical basis for cooking with the three solid fermented kohlrabies to make different Chinese dishes.
{"title":"Effects of Fermentation Period on the Non-Volatile Metabolites of Chinese Ultra-Long-Term Solid Fermented Kohlrabi Based on Non-Targeted Metabolomic Analysis","authors":"Xiaohan Jia, Hongfan Chen, Xinyi Wang, Xin Nie, Lu Xiang, Dayu Liu, Zhiping Zhao","doi":"10.3390/fermentation9080753","DOIUrl":"https://doi.org/10.3390/fermentation9080753","url":null,"abstract":"This study aimed to investigate the effects of ultra-long-term fermentation on the formation of non-volatile metabolites of Chinese solid-fermented kohlrabies. Liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) based non-targeted metabolomics coupled with multivariate statistical analysis were employed to respectively analyze the kohlrabies solid fermented for 5 years (5Y), 8 years (8Y), and 11 years (11Y). The results showed that 31, 169, and 123 differential metabolites were identified in the three groups of 5Y and 8Y (A1), 5Y and 11Y (A2), and 8Y and 11Y (A3), respectively (VIP > 1, p < 0.05 and |log2FC| > 1). The differential non-volatile metabolites were mainly organic acids and derivatives, organoheterocyclic compounds, benzenoids, lipids and lipid-like molecules, and organicoxygen compounds. Furthermore, 11 common differential metabolites were screened in the three groups, including diaminopimelic acid, ectoine, 9,10,13-TriHOME, and 9 others. The citrate cycle, glycine, serine and threonine metabolism, pantothenate and CoA biosynthesis, and glyoxylate and dicarboxylate metabolism were the four pathways most significantly correlated with the differential non-volatile metabolites based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (p < 0.05). The present study describes the effects of ultra-long-term fermentation periods on the formation of non-volatile metabolites in solid fermented kohlrabies, providing a theoretical basis for cooking with the three solid fermented kohlrabies to make different Chinese dishes.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45775885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-12DOI: 10.3390/fermentation9080750
Alejandro Moure Abelenda, G. Aggidis, F. Aiouache
With the current increase in demand for animal and agricultural products, management of agrowaste has become critical to avoid greenhouse gas emissions. The present article investigates the applicability of ammonium bicarbonate synthesis via flash distillation to valorize and stabilize several types of anaerobic digestates which are produced from individual fermentations of amino acids. The content of CO2 in the digestate was found to be responsible for the OH alkalinity (0.4 equivalents of acid/kg digestate), while the partial and total alkalinities (0.8 eq/kg digestate) were essentially derived from the content of NH3. The most suitable conditions for the flash distillation were 95 °C and 1 bar with the condensation occurring at 25 °C. However, in order to attain the precipitation of NH4HCO3 in the distillate, it was necessary to consider digestates with a moisture content of 50 wt.%, since saturation levels of inorganic nitrogen and inorganic carbon were not attained otherwise. Even under these conditions, few amino acids (i.e., arginine, glycine, and histidine) were able to provide an anaerobic digestate upon fermentation that would be suitable for NH4HCO3 stabilization. The process of stabilization with a capacity of a t of digestate per h was improved by adding hydrochloric acid or sodium hydroxide at a rate of 44 kg/h, leading to production of 34 kg NH4HCO3/h. Given the role of the volatile elements of the biogas as endogenous stripping agents, it is recommended to use a fresh and saturated digestate as feed for the flash distillation.
{"title":"Modelling of Amino Acid Fermentations and Stabilization of Anaerobic Digestates by Extracting Ammonium Bicarbonate","authors":"Alejandro Moure Abelenda, G. Aggidis, F. Aiouache","doi":"10.3390/fermentation9080750","DOIUrl":"https://doi.org/10.3390/fermentation9080750","url":null,"abstract":"With the current increase in demand for animal and agricultural products, management of agrowaste has become critical to avoid greenhouse gas emissions. The present article investigates the applicability of ammonium bicarbonate synthesis via flash distillation to valorize and stabilize several types of anaerobic digestates which are produced from individual fermentations of amino acids. The content of CO2 in the digestate was found to be responsible for the OH alkalinity (0.4 equivalents of acid/kg digestate), while the partial and total alkalinities (0.8 eq/kg digestate) were essentially derived from the content of NH3. The most suitable conditions for the flash distillation were 95 °C and 1 bar with the condensation occurring at 25 °C. However, in order to attain the precipitation of NH4HCO3 in the distillate, it was necessary to consider digestates with a moisture content of 50 wt.%, since saturation levels of inorganic nitrogen and inorganic carbon were not attained otherwise. Even under these conditions, few amino acids (i.e., arginine, glycine, and histidine) were able to provide an anaerobic digestate upon fermentation that would be suitable for NH4HCO3 stabilization. The process of stabilization with a capacity of a t of digestate per h was improved by adding hydrochloric acid or sodium hydroxide at a rate of 44 kg/h, leading to production of 34 kg NH4HCO3/h. Given the role of the volatile elements of the biogas as endogenous stripping agents, it is recommended to use a fresh and saturated digestate as feed for the flash distillation.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44554868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-12DOI: 10.3390/fermentation9080748
D. Restuccia, Luigi Esposito, U. G. Spizzirri, M. Martuscelli, P. Caputo, C. Rossi, M. L. Clodoveo, R. Pujia, E. Mazza, A. Pujia, T. Montalcini, F. Aiello
A baked gluten-free pastry was formulated using milk kefir, rice, and different amounts of carob pulp flour, i.e., 20% (B1) and 40% (B2). In all cases, B2 showed the most remarkable antioxidant properties in terms of total phenolic, phenolic acid, and flavonoid content, as well as scavenging activity both in aqueous and organic media. This trend was observed over a 6-day storage time. Lower cohesive interactions among dough aggregate domains were recorded as the carob pulp flour amount increased. At the same time, rigidity decreased in the order B0 > B1 > B2 as confirmed by lower textural properties shown by the carob-added samples. Sensory analysis recorded overall acceptability for both B1 and B2, with sweetness, cocoa, gingerbread, and rye aroma as predominant descriptors. The glycemic index determination confirmed a better score for B2 and revealed a medium GI value (62), in comparison with high GIs recorded for B1 and B0 (115 and 100, respectively).
{"title":"Formulation of A Gluten-Free Carob-Based Bakery Product: Evaluation of Glycemic Index, Antioxidant Activity, Rheological Properties, and Sensory Features","authors":"D. Restuccia, Luigi Esposito, U. G. Spizzirri, M. Martuscelli, P. Caputo, C. Rossi, M. L. Clodoveo, R. Pujia, E. Mazza, A. Pujia, T. Montalcini, F. Aiello","doi":"10.3390/fermentation9080748","DOIUrl":"https://doi.org/10.3390/fermentation9080748","url":null,"abstract":"A baked gluten-free pastry was formulated using milk kefir, rice, and different amounts of carob pulp flour, i.e., 20% (B1) and 40% (B2). In all cases, B2 showed the most remarkable antioxidant properties in terms of total phenolic, phenolic acid, and flavonoid content, as well as scavenging activity both in aqueous and organic media. This trend was observed over a 6-day storage time. Lower cohesive interactions among dough aggregate domains were recorded as the carob pulp flour amount increased. At the same time, rigidity decreased in the order B0 > B1 > B2 as confirmed by lower textural properties shown by the carob-added samples. Sensory analysis recorded overall acceptability for both B1 and B2, with sweetness, cocoa, gingerbread, and rye aroma as predominant descriptors. The glycemic index determination confirmed a better score for B2 and revealed a medium GI value (62), in comparison with high GIs recorded for B1 and B0 (115 and 100, respectively).","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44953273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-12DOI: 10.3390/fermentation9080751
V. Ryazanov, E. Tarasova, G. Duskaev, V. Kolpakov, I. Miroshnikov
The aim of the study was to analyze the effect of a plant feed additive based on Artemisia absinthium and the metal trace element CoCl2 (cobalt chloride II) on the metabolism of amino acids closely related to the energy of feed and the bacterial community of the rumen of Kazakh white-headed bulls. Animals were divided into four groups: (A)—the control group of animals received the basic diet (BD), (B)—animals of the experimental group I were additionally given A. absinthium at a dose of 2.0 g/kg of dry matter (DM), (C)—II experimental group A. absinthium at a dose of 2.0 g/kg DM with additional CoCl2 (1.5 mg/kg/DM), and (D)—III experimental group was given only CoCl2 (1.5 mg/kg/DM) to study the rumen metabolism of amino acids and bacterial diversity of animals, rumen cannula were installed, the experiment was carried out using a 4 × 4 Latin square. It was found that additional feeding of A. absinthium, both separately and in combination with CoCl2, led to a change in the indices of the alpha biodiversity of the bacterial community. Correlation analysis revealed a linear relationship between the concentration of amino acids and the rumen bacterial community (p ≤ 0.05). The relationship between the values of amino acid concentrations and certain OTUs was established, with a possible percentile probability of 95% for the genera unclassified Lachnospiraceae, unclassified Clostridiales, unclassified Bacteroidales, Fibrobacter, Ihubacter, Phocaeicola, Paludibacter, Akkermansia, Vampirovibrio, unclassified Ruminococcaceae, and Alistipes. Thus, the use of A. absinthium and CoCl2 as feed additives, both in combination and without, leads to a change in the taxonomic structure affecting the concentration of amino acids. However, further research is needed to better understand the effectiveness and safety of these supplements.
{"title":"Changes in the Concentration of Amino Acids and Bacterial Community in the Rumen When Feeding Artemisia absinthium and Cobalt Chloride","authors":"V. Ryazanov, E. Tarasova, G. Duskaev, V. Kolpakov, I. Miroshnikov","doi":"10.3390/fermentation9080751","DOIUrl":"https://doi.org/10.3390/fermentation9080751","url":null,"abstract":"The aim of the study was to analyze the effect of a plant feed additive based on Artemisia absinthium and the metal trace element CoCl2 (cobalt chloride II) on the metabolism of amino acids closely related to the energy of feed and the bacterial community of the rumen of Kazakh white-headed bulls. Animals were divided into four groups: (A)—the control group of animals received the basic diet (BD), (B)—animals of the experimental group I were additionally given A. absinthium at a dose of 2.0 g/kg of dry matter (DM), (C)—II experimental group A. absinthium at a dose of 2.0 g/kg DM with additional CoCl2 (1.5 mg/kg/DM), and (D)—III experimental group was given only CoCl2 (1.5 mg/kg/DM) to study the rumen metabolism of amino acids and bacterial diversity of animals, rumen cannula were installed, the experiment was carried out using a 4 × 4 Latin square. It was found that additional feeding of A. absinthium, both separately and in combination with CoCl2, led to a change in the indices of the alpha biodiversity of the bacterial community. Correlation analysis revealed a linear relationship between the concentration of amino acids and the rumen bacterial community (p ≤ 0.05). The relationship between the values of amino acid concentrations and certain OTUs was established, with a possible percentile probability of 95% for the genera unclassified Lachnospiraceae, unclassified Clostridiales, unclassified Bacteroidales, Fibrobacter, Ihubacter, Phocaeicola, Paludibacter, Akkermansia, Vampirovibrio, unclassified Ruminococcaceae, and Alistipes. Thus, the use of A. absinthium and CoCl2 as feed additives, both in combination and without, leads to a change in the taxonomic structure affecting the concentration of amino acids. However, further research is needed to better understand the effectiveness and safety of these supplements.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46834841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-11DOI: 10.3390/fermentation9080747
Kristina Habschied, I. Ćosić, G. Šarić, Vinko Krstanović, K. Mastanjević
The beer market today shows extremely diverse styles and offers many possibilities for consumers to try new aromas and tastes. Most modern breweries have a similar technology and equipment and use quality raw materials, but the differences between beers’ physical–chemical properties are always detectable. In ensuring the same beer quality is being delivered to the consumers, sensory analysis is in some cases even more important than the chemical or physical–chemical analysis, since consumers focus on constant quality and sensory properties of their chosen beer. Sensory evaluation is not an easy task and involves flexible methods for determination of differences and changes between beers. It is commonly used in breweries to provide a constant quality in finished products, but also to ensure the quality of different raw materials (water, malt, hops) and to minimize the influence of the production process on final quality of beer. The results of this research indicate that sensory analysis is of great importance, since sheer physical–chemical analysis can be outweighed by it. Certain beers that showed that, despite a high concentration of off-flavors (e.g., dimethylsulphide), the overall sensory score was not affected (10/Koelsch style) while for some beers, a small excess of a sensory threshold lead to extreme sensory deterioration (sample 4/Lager).
{"title":"Sensory Analysis Coupled with Gas Chromatography/Mass spectrometry Analysis in Craft Beer Evaluation","authors":"Kristina Habschied, I. Ćosić, G. Šarić, Vinko Krstanović, K. Mastanjević","doi":"10.3390/fermentation9080747","DOIUrl":"https://doi.org/10.3390/fermentation9080747","url":null,"abstract":"The beer market today shows extremely diverse styles and offers many possibilities for consumers to try new aromas and tastes. Most modern breweries have a similar technology and equipment and use quality raw materials, but the differences between beers’ physical–chemical properties are always detectable. In ensuring the same beer quality is being delivered to the consumers, sensory analysis is in some cases even more important than the chemical or physical–chemical analysis, since consumers focus on constant quality and sensory properties of their chosen beer. Sensory evaluation is not an easy task and involves flexible methods for determination of differences and changes between beers. It is commonly used in breweries to provide a constant quality in finished products, but also to ensure the quality of different raw materials (water, malt, hops) and to minimize the influence of the production process on final quality of beer. The results of this research indicate that sensory analysis is of great importance, since sheer physical–chemical analysis can be outweighed by it. Certain beers that showed that, despite a high concentration of off-flavors (e.g., dimethylsulphide), the overall sensory score was not affected (10/Koelsch style) while for some beers, a small excess of a sensory threshold lead to extreme sensory deterioration (sample 4/Lager).","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41464532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10DOI: 10.3390/fermentation9080745
M. Jovanović, P. Vojvodić, D. Tenji, Nina Tomić, Jovana Nešić, D. Mitić-Ćulafić, J. Miočinović
Fermented foods containing psychobiotics are of growing interest among food scientists. Human-derived Limosilactobacillus reuteri DSM 17938, a gut symbiont and potential psychobiotic strain, has been shown to exhibit the following health benefits: anti-inflammation and GABA-production capacity, as well as modulation of pathogen and cancer cell growth. The aim of this research was to develop an acid-coagulated fresh soft quark-type cheese, fermented with L. reuteri DSM 17938, with enhanced bioactivity, sensory acceptability, and overall likeability. Psychobiotic-containing cheeses represent the food of a new generation, so it is of great importance to gain the trust of the consumers. To develop a familiar taste, cheese samples were enriched with mushroom powders of Agaricus bisporus and Pleurotus ostreatus. A high abundance of lactic acid bacteria was maintained in all cheese samples (>log 7.64 CFU/mL), while cheese extracts exhibited cytotoxicity to colon cancer cell line HCT116 (up to 30.96%) in vitro. Additionally, cheese samples provided a favorable medium for the growth of the probiotic Escherichia coli Nissle 1917 (>log 7.11 CFU/mL). Sensory evaluation revealed high scores for all samples (up to 97.21% of maximum overall quality). The survey conducted in this study offered insights into consumer willingness to try products containing psychobiotics. This study demonstrates the potential for the successful development of fermented food products with L. reuteri DSM 17938, which exhibits all the desired traits that consumers may receive well. Further research is required to explore the potential health benefits of these innovative food products.
{"title":"Cheese Fermented with Human-Derived Limosilactobacillus reuteri DSM 17938 and Mushroom Powders: A Novel Psychobiotic Food with Enhanced Bioactivity and Sensory Acceptability","authors":"M. Jovanović, P. Vojvodić, D. Tenji, Nina Tomić, Jovana Nešić, D. Mitić-Ćulafić, J. Miočinović","doi":"10.3390/fermentation9080745","DOIUrl":"https://doi.org/10.3390/fermentation9080745","url":null,"abstract":"Fermented foods containing psychobiotics are of growing interest among food scientists. Human-derived Limosilactobacillus reuteri DSM 17938, a gut symbiont and potential psychobiotic strain, has been shown to exhibit the following health benefits: anti-inflammation and GABA-production capacity, as well as modulation of pathogen and cancer cell growth. The aim of this research was to develop an acid-coagulated fresh soft quark-type cheese, fermented with L. reuteri DSM 17938, with enhanced bioactivity, sensory acceptability, and overall likeability. Psychobiotic-containing cheeses represent the food of a new generation, so it is of great importance to gain the trust of the consumers. To develop a familiar taste, cheese samples were enriched with mushroom powders of Agaricus bisporus and Pleurotus ostreatus. A high abundance of lactic acid bacteria was maintained in all cheese samples (>log 7.64 CFU/mL), while cheese extracts exhibited cytotoxicity to colon cancer cell line HCT116 (up to 30.96%) in vitro. Additionally, cheese samples provided a favorable medium for the growth of the probiotic Escherichia coli Nissle 1917 (>log 7.11 CFU/mL). Sensory evaluation revealed high scores for all samples (up to 97.21% of maximum overall quality). The survey conducted in this study offered insights into consumer willingness to try products containing psychobiotics. This study demonstrates the potential for the successful development of fermented food products with L. reuteri DSM 17938, which exhibits all the desired traits that consumers may receive well. Further research is required to explore the potential health benefits of these innovative food products.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43780631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Knockout of the transcriptional repressor Trctf1 is known to enhance the yield of cellulose-induced cellulase synthesis in Trichoderma reesei. However, different inducers possess distinct induction mechanisms, and the effect of Trctf1 on cellulase synthesis with soluble inducers remains unknown. To evaluate the effect of the Trctf1 gene on cellulase synthesis and develop a high-yielding cellulase strain, we established a CRISPR–Cas9 genome editing system in T. reesei Rut C30 using codon-optimized Cas9 protein and in vitro transcribed RNA. This study demonstrated that T. reesei ΔTrctf1 with the Trctf1 gene knocked out showed no statistically significant differences in cellulase, cellobiohydrolase, endoglucanase, and β−glucosidase production when induced with MGD (the mixture of glucose and sophorose). However, when induced with lactose, the activities of these enzymes increased by 20.2%, 12.4%, and 12.9%, respectively, with no statistically significant differences in β−glucosidase activity. The hydrolysis efficiency on corn stover of cellulases produced by T. reesei ΔTrctf1 under different inducers was not significantly different from that of wild-type cellulases, indicating that Trctf1 gene deletion has little effect on the cellulase cocktail. These findings contribute to a better understanding of the molecular mechanisms underlying the regulation of T. reesei cellulase synthesis by different soluble inducers, as well as the construction of high-yield cellulase gene−engineered strains.
{"title":"The Influence of Trctf1 Gene Knockout by CRISPR–Cas9 on Cellulase Synthesis by Trichoderma reesei with Various Soluble Inducers","authors":"Yudian Chen, Yushan Gao, Zancheng Wang, Nian Peng, Xiaoqin Ran, Ting Chen, Lulu Liu, Yonghao Li","doi":"10.3390/fermentation9080746","DOIUrl":"https://doi.org/10.3390/fermentation9080746","url":null,"abstract":"Knockout of the transcriptional repressor Trctf1 is known to enhance the yield of cellulose-induced cellulase synthesis in Trichoderma reesei. However, different inducers possess distinct induction mechanisms, and the effect of Trctf1 on cellulase synthesis with soluble inducers remains unknown. To evaluate the effect of the Trctf1 gene on cellulase synthesis and develop a high-yielding cellulase strain, we established a CRISPR–Cas9 genome editing system in T. reesei Rut C30 using codon-optimized Cas9 protein and in vitro transcribed RNA. This study demonstrated that T. reesei ΔTrctf1 with the Trctf1 gene knocked out showed no statistically significant differences in cellulase, cellobiohydrolase, endoglucanase, and β−glucosidase production when induced with MGD (the mixture of glucose and sophorose). However, when induced with lactose, the activities of these enzymes increased by 20.2%, 12.4%, and 12.9%, respectively, with no statistically significant differences in β−glucosidase activity. The hydrolysis efficiency on corn stover of cellulases produced by T. reesei ΔTrctf1 under different inducers was not significantly different from that of wild-type cellulases, indicating that Trctf1 gene deletion has little effect on the cellulase cocktail. These findings contribute to a better understanding of the molecular mechanisms underlying the regulation of T. reesei cellulase synthesis by different soluble inducers, as well as the construction of high-yield cellulase gene−engineered strains.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49415683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.3390/fermentation9080744
Ying Wang, M. Gao
The current study investigated the feasibility of developing and adopting a few state-of-the-art fermentation techniques to maximize the efficiency of the lignocellulosic waste bioconversion. There have been various efforts towards utilizing the fermentable sugars released from the specific parts of lignocellulose, i.e., cellulose and hemicellulose. However, complete utilization of carbon sources derived from lignocellulosic biomass remains challenging owing to the generated glucose in the presence of β-glucosidase, which is known as glucose-induced carbon catabolite repression (CCR). To overcome this obstacle, a novel simultaneous saccharification and fermentation (SSF) of lactic acid was designed by using Celluclast 1.5L as a hydrolytic enzyme to optimize the generation and utilization of pentose and hexose. Under the optimal enzyme loading and pH condition, 53.1 g/L optically pure L-lactic acid with a maximum volumetric productivity of 3.65 g/L/h was achieved during the SSF from the brewer’s spent grain without any nutrient supplementation. This study demonstrated the potential of lactic acid production from the designed lignocellulosic substrate.
{"title":"Efficient Biorefinery Based on Designed Lignocellulosic Substrate for Lactic Acid Production","authors":"Ying Wang, M. Gao","doi":"10.3390/fermentation9080744","DOIUrl":"https://doi.org/10.3390/fermentation9080744","url":null,"abstract":"The current study investigated the feasibility of developing and adopting a few state-of-the-art fermentation techniques to maximize the efficiency of the lignocellulosic waste bioconversion. There have been various efforts towards utilizing the fermentable sugars released from the specific parts of lignocellulose, i.e., cellulose and hemicellulose. However, complete utilization of carbon sources derived from lignocellulosic biomass remains challenging owing to the generated glucose in the presence of β-glucosidase, which is known as glucose-induced carbon catabolite repression (CCR). To overcome this obstacle, a novel simultaneous saccharification and fermentation (SSF) of lactic acid was designed by using Celluclast 1.5L as a hydrolytic enzyme to optimize the generation and utilization of pentose and hexose. Under the optimal enzyme loading and pH condition, 53.1 g/L optically pure L-lactic acid with a maximum volumetric productivity of 3.65 g/L/h was achieved during the SSF from the brewer’s spent grain without any nutrient supplementation. This study demonstrated the potential of lactic acid production from the designed lignocellulosic substrate.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46419838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a potential alternative to fossil-based fuels, cellulosic ethanol has attracted much attention due to its great benefit to energy sustainability and environmental friendliness. However, at present, the industrial competitiveness of cellulosic ethanol production is still insufficient compared with fossil-based fuels because of the higher costs. Expanding the range of lignocellulosic biomass may be a promising measure to promote the economical production of cellulosic ethanol. Corn fiber, a byproduct from the corn deep-processing, is an attractive feedstock for cellulosic ethanol production because of its rich carbohydrate content (generally exceeding 65% of dry weight), almost no transportation cost, and low lignin content allow it to be easily handled. This study first optimized the hydrolysis conditions, including the pretreatment and enzymolysis process based on dilute sulfuric acid, to achieve a high sugar yield. Then, the corn fiber hydrolysates obtained under different hydrolysis conditions were suitably fermented by different C5/C6 co-fermentation Saccharomyces cerevisiae, indicating that the hydrolysate at high solid loading (20%) needs to detoxification to a certain extent but not low solid loading (10%) to achieve high ethanol yield. Finally, the fermentation of the 20% solid loading hydrolysates with resin detoxification was performed in a 50 L bioreactor, achieving the sugar (glucose and xylose) metabolic rate of 2.24 g L −1 h −1 and ethanol yield of 92% of the theoretical value, which are the highest reported levels to date. This study provided a potential process route for cellulosic ethanol production from corn fiber from the perspective of the suitability between the upstream hydrolysis process and the downstream fermentation strain.
纤维素乙醇作为一种潜在的化石燃料替代品,因其具有能源可持续性和环境友好性而备受关注。然而,目前纤维素乙醇生产由于成本较高,与化石燃料相比,其产业竞争力仍然不足。扩大木质纤维素生物质的范围可能是促进纤维素乙醇经济生产的一项有希望的措施。玉米纤维是玉米深加工的副产品,由于其丰富的碳水化合物含量(通常超过干重的65%),几乎没有运输成本,以及低木质素含量使其易于处理,是一种有吸引力的纤维素乙醇生产原料。本研究首先对水解条件进行优化,包括预处理和稀硫酸酶解工艺,以获得较高的糖收率。然后,对不同水解条件下得到的玉米纤维水解产物进行不同C5/C6共发酵,表明高固载(20%)水解产物需要进行一定程度的脱毒处理,而低固载(10%)水解产物则不需要进行脱毒处理,以达到较高的乙醇产量。最后,在50 L的生物反应器中进行20%固体负荷水解物的树脂解毒发酵,糖(葡萄糖和木糖)代谢率为2.24 g L−1 h−1,乙醇产量为理论值的92%,这是迄今为止报道的最高水平。本研究从上游水解工艺与下游发酵菌株的适宜性角度出发,为玉米纤维生产纤维素乙醇提供了一条潜在的工艺路线。
{"title":"High-Efficient Production of Cellulosic Ethanol from Corn Fiber Based on the Suitable C5/C6 Co-Fermentation Saccharomyces cerevisiae Strain","authors":"Menglei Li, Fadi Xu, Yuping Zhao, Dongming Sun, Jiao Liu, Xiaolong Yin, Zailu Li, Jianzhi Zhao, Hongxing Li, X. Bao","doi":"10.3390/fermentation9080743","DOIUrl":"https://doi.org/10.3390/fermentation9080743","url":null,"abstract":"As a potential alternative to fossil-based fuels, cellulosic ethanol has attracted much attention due to its great benefit to energy sustainability and environmental friendliness. However, at present, the industrial competitiveness of cellulosic ethanol production is still insufficient compared with fossil-based fuels because of the higher costs. Expanding the range of lignocellulosic biomass may be a promising measure to promote the economical production of cellulosic ethanol. Corn fiber, a byproduct from the corn deep-processing, is an attractive feedstock for cellulosic ethanol production because of its rich carbohydrate content (generally exceeding 65% of dry weight), almost no transportation cost, and low lignin content allow it to be easily handled. This study first optimized the hydrolysis conditions, including the pretreatment and enzymolysis process based on dilute sulfuric acid, to achieve a high sugar yield. Then, the corn fiber hydrolysates obtained under different hydrolysis conditions were suitably fermented by different C5/C6 co-fermentation Saccharomyces cerevisiae, indicating that the hydrolysate at high solid loading (20%) needs to detoxification to a certain extent but not low solid loading (10%) to achieve high ethanol yield. Finally, the fermentation of the 20% solid loading hydrolysates with resin detoxification was performed in a 50 L bioreactor, achieving the sugar (glucose and xylose) metabolic rate of 2.24 g L −1 h −1 and ethanol yield of 92% of the theoretical value, which are the highest reported levels to date. This study provided a potential process route for cellulosic ethanol production from corn fiber from the perspective of the suitability between the upstream hydrolysis process and the downstream fermentation strain.","PeriodicalId":48535,"journal":{"name":"Fermentation-Basel","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45854145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}