首页 > 最新文献

Infomat最新文献

英文 中文
Double-ended passivator enables dark-current-suppressed colloidal quantum dot photodiodes for CMOS-integrated infrared imagers 双端钝化剂使暗电流抑制胶体量子点光电二极管适用于 CMOS 集成式红外成像仪
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-12-13 DOI: 10.1002/inf2.12497
Peilin Liu, Shuaicheng Lu, Jing Liu, Bing Xia, Gaoyuan Yang, Mo Ke, Xuezhi Zhao, Junrui Yang, Yuxuan Liu, Ciyu Ge, Guijie Liang, Wei Chen, Xinzheng Lan, Jianbing Zhang, Liang Gao, Jiang Tang

Lead sulfide (PbS) colloidal quantum dot (CQD) photodiodes integrated with silicon-based readout integrated circuits (ROICs) offer a promising solution for the next-generation short-wave infrared (SWIR) imaging technology. Despite their potential, large-size CQD photodiodes pose a challenge due to high dark currents resulting from surface states on non-passivated (100) facets and trap states generated by CQD fusion. In this work, we present a novel approach to address this issue by introducing double-ended ligands that supplementally passivate (100) facets of halide-capped large-size CQDs, leading to suppressed bandtail states and reduced defect concentration. Our results demonstrate that the dark current density is highly suppressed by about an order of magnitude to 9.6 nA cm−2 at −10 mV, which is among the lowest reported for PbS CQD photodiodes. Furthermore, the performance of the photodiodes is exemplary, yielding an external quantum efficiency of 50.8% (which corresponds to a responsivity of 0.532 A W−1) and a specific detectivity of 2.5 × 1012 Jones at 1300 nm. By integrating CQD photodiodes with CMOS ROICs, the CQD imager provides high-resolution (640 × 512) SWIR imaging for infrared penetration and material discrimination.

与硅基读出集成电路(ROIC)集成的硫化铅(PbS)胶体量子点(CQD)光电二极管为下一代短波红外(SWIR)成像技术提供了一种前景广阔的解决方案。尽管大尺寸 CQD 光电二极管潜力巨大,但由于非钝化(100)面上的表面态和 CQD 融合产生的陷阱态导致的高暗电流,大尺寸 CQD 光电二极管仍面临挑战。在这项工作中,我们提出了一种解决这一问题的新方法,即引入双端配体来补充钝化卤化物封端的大尺寸 CQD 的(100)面,从而抑制带尾态并降低缺陷浓度。我们的研究结果表明,在 -10 mV 电压下,暗电流密度被高度抑制到 9.6 nA cm-2,约为一个数量级,这是目前已报道的 PbS CQD 光电二极管中最低的。此外,该光电二极管的性能也堪称典范,其外部量子效率为 50.8%(相当于 0.532 A W-1),在 1300 nm 波长处的比检测率为 2.5 × 1012 Jones。通过将 CQD 光电二极管与 CMOS ROIC 集成,CQD 成像仪可提供高分辨率(640 × 512)的 SWIR 成像,用于红外穿透和材料鉴别。
{"title":"Double-ended passivator enables dark-current-suppressed colloidal quantum dot photodiodes for CMOS-integrated infrared imagers","authors":"Peilin Liu,&nbsp;Shuaicheng Lu,&nbsp;Jing Liu,&nbsp;Bing Xia,&nbsp;Gaoyuan Yang,&nbsp;Mo Ke,&nbsp;Xuezhi Zhao,&nbsp;Junrui Yang,&nbsp;Yuxuan Liu,&nbsp;Ciyu Ge,&nbsp;Guijie Liang,&nbsp;Wei Chen,&nbsp;Xinzheng Lan,&nbsp;Jianbing Zhang,&nbsp;Liang Gao,&nbsp;Jiang Tang","doi":"10.1002/inf2.12497","DOIUrl":"10.1002/inf2.12497","url":null,"abstract":"<p>Lead sulfide (PbS) colloidal quantum dot (CQD) photodiodes integrated with silicon-based readout integrated circuits (ROICs) offer a promising solution for the next-generation short-wave infrared (SWIR) imaging technology. Despite their potential, large-size CQD photodiodes pose a challenge due to high dark currents resulting from surface states on non-passivated (100) facets and trap states generated by CQD fusion. In this work, we present a novel approach to address this issue by introducing double-ended ligands that supplementally passivate (100) facets of halide-capped large-size CQDs, leading to suppressed bandtail states and reduced defect concentration. Our results demonstrate that the dark current density is highly suppressed by about an order of magnitude to 9.6 nA cm<sup>−2</sup> at −10 mV, which is among the lowest reported for PbS CQD photodiodes. Furthermore, the performance of the photodiodes is exemplary, yielding an external quantum efficiency of 50.8% (which corresponds to a responsivity of 0.532 A W<sup>−1</sup>) and a specific detectivity of 2.5 × 10<sup>12</sup> Jones at 1300 nm. By integrating CQD photodiodes with CMOS ROICs, the CQD imager provides high-resolution (640 × 512) SWIR imaging for infrared penetration and material discrimination.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 1","pages":""},"PeriodicalIF":22.7,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12497","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138688933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Filterless narrowband photodetectors enabled by controllable band modulation through ion migration: The case of halide perovskites 通过离子迁移实现可控波段调制的无滤光片窄带光电探测器:卤化物过氧化物
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-12-12 DOI: 10.1002/inf2.12506
Yu Li, Shanshan Yu, Junjie Yang, Kai Zhang, Mingyu Hu, Weitao Qiu, Fumin Guo, Wei Qian, Sean Reinecke, Tao Chen, Makhsud I. Saidaminov, Jian Wang, Shihe Yang

Narrowband photodetectors conventionally rely on optical structure design or bandpass filters to achieve the narrowband regime. Recently, a strategy for filterless narrowband photoresponse based on the charge collection narrowing (CCN) mechanism was reported. However, the CCN strategy requires an electrically and optically “thick” photoactive layer, which poses challenges in controlling the narrowband photoresponse. Here we propose a novel strategy for constructing narrowband photodetectors by leveraging the inherent ion migration in perovskites, which we term “band modulation narrowing” (BMN). By manipulating the ion migration with external stimuli such as illumination, temperature, and bias voltage, we can regulate in situ the energy-band structure of perovskite photodetectors (PPDs) and hence their spectral response. Combining the Fermi energy levels obtained by the Kelvin probe force microscopy, the internal potential profiles from solar cell capacitance simulator simulation, and the anion accumulation revealed by the transient ion-drift technique, we discover two critical mechanisms behind our BMN strategy: the extension of an optically active but electronically dead region proximal to the top electrode and the down-bending energy bands near the electron transport layer. Our findings offer a case for harnessing the often-annoying ion migration for developing advanced narrowband PPDs.

窄带光电探测器通常依靠光学结构设计或带通滤波器来实现窄带系统。最近,一种基于电荷收集收窄(CCN)机制的无滤波器窄带光响应策略被报道出来。然而,CCN 策略需要电学和光学 "厚 "光活性层,这给控制窄带光响应带来了挑战。在这里,我们提出了一种利用包晶石中固有的离子迁移来构建窄带光电探测器的新策略,我们称之为 "带调制收窄"(BMN)。通过在光照、温度和偏置电压等外部刺激下操纵离子迁移,我们可以就地调节包晶体光电探测器(PPD)的能带结构,进而调节其光谱响应。结合开尔文探针力显微镜获得的费米能级、太阳能电池电容模拟器模拟获得的内部电位曲线,以及瞬态离子漂移技术揭示的阴离子积累,我们发现了 BMN 策略背后的两个关键机制:光学活跃但电子死区靠近顶部电极的延伸,以及电子传输层附近能带的下弯。我们的研究结果为利用经常令人烦恼的离子迁移来开发先进的窄带聚光二极体提供了一个案例。
{"title":"Filterless narrowband photodetectors enabled by controllable band modulation through ion migration: The case of halide perovskites","authors":"Yu Li,&nbsp;Shanshan Yu,&nbsp;Junjie Yang,&nbsp;Kai Zhang,&nbsp;Mingyu Hu,&nbsp;Weitao Qiu,&nbsp;Fumin Guo,&nbsp;Wei Qian,&nbsp;Sean Reinecke,&nbsp;Tao Chen,&nbsp;Makhsud I. Saidaminov,&nbsp;Jian Wang,&nbsp;Shihe Yang","doi":"10.1002/inf2.12506","DOIUrl":"10.1002/inf2.12506","url":null,"abstract":"<p>Narrowband photodetectors conventionally rely on optical structure design or bandpass filters to achieve the narrowband regime. Recently, a strategy for filterless narrowband photoresponse based on the charge collection narrowing (CCN) mechanism was reported. However, the CCN strategy requires an electrically and optically “thick” photoactive layer, which poses challenges in controlling the narrowband photoresponse. Here we propose a novel strategy for constructing narrowband photodetectors by leveraging the inherent ion migration in perovskites, which we term “band modulation narrowing” (BMN). By manipulating the ion migration with external stimuli such as illumination, temperature, and bias voltage, we can regulate in situ the energy-band structure of perovskite photodetectors (PPDs) and hence their spectral response. Combining the Fermi energy levels obtained by the Kelvin probe force microscopy, the internal potential profiles from solar cell capacitance simulator simulation, and the anion accumulation revealed by the transient ion-drift technique, we discover two critical mechanisms behind our BMN strategy: the extension of an optically active but electronically dead region proximal to the top electrode and the down-bending energy bands near the electron transport layer. Our findings offer a case for harnessing the often-annoying ion migration for developing advanced narrowband PPDs.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 1","pages":""},"PeriodicalIF":22.7,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12506","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138680931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications 面向工业应用的高分辨率柔性电子图案电流体动力打印技术
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-12-12 DOI: 10.1002/inf2.12505
Zhouping Yin, Dazhi Wang, Yunlong Guo, Zhiyuan Zhao, Liqiang Li, Wei Chen, Yongqing Duan

Electrohydrodynamic (EHD) printing technique, which deposits micro/nanostructures through high electric force, has recently attracted significant research interest owing to their fascinating characteristics in high resolution (<1 μm), wide material applicability (ink viscosity 1–10 000 cps), tunable printing modes (electrospray, electrospinning, and EHD jet printing), and compatibility with flexible/wearable applications. Since the laboratory level of the EHD printed electronics' resolution and efficiency is gradually approaching the commercial application level, an urgent need for developing EHD technique from laboratory into industrialization have been put forward. Herein, we first discuss the EHD printing technique, including the ink design, droplet formation, and key technologies for promoting printing efficiency/accuracy. Then we summarize the recent progress of EHD printing in fabrication of displays, organic field-effect transistors (OFETs), transparent electrodes, and sensors and actuators. Finally, a brief summary and the outlook for future research effort are presented.

电流体动力(EHD)印刷技术通过高电流沉积微/纳米结构,具有分辨率高(1 微米)、材料适用性广(油墨粘度 1-10 000 cps)、印刷模式可调(电喷雾、电纺丝和 EHD 喷射印刷)以及与柔性/可穿戴应用兼容等迷人特点,近年来引起了人们的极大研究兴趣。由于实验室水平的 EHD 印刷电子器件的分辨率和效率正逐渐接近商业应用水平,因此迫切需要将 EHD 技术从实验室发展到产业化。在此,我们首先讨论了 EHD 印刷技术,包括油墨设计、液滴形成以及提高印刷效率/精度的关键技术。然后,我们总结了电晕印刷在制造显示器、有机场效应晶体管(OFET)、透明电极以及传感器和致动器方面的最新进展。最后,我们对未来的研究工作进行了简要总结和展望。
{"title":"Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications","authors":"Zhouping Yin,&nbsp;Dazhi Wang,&nbsp;Yunlong Guo,&nbsp;Zhiyuan Zhao,&nbsp;Liqiang Li,&nbsp;Wei Chen,&nbsp;Yongqing Duan","doi":"10.1002/inf2.12505","DOIUrl":"10.1002/inf2.12505","url":null,"abstract":"<p>Electrohydrodynamic (EHD) printing technique, which deposits micro/nanostructures through high electric force, has recently attracted significant research interest owing to their fascinating characteristics in high resolution (&lt;1 μm), wide material applicability (ink viscosity 1–10 000 cps), tunable printing modes (electrospray, electrospinning, and EHD jet printing), and compatibility with flexible/wearable applications. Since the laboratory level of the EHD printed electronics' resolution and efficiency is gradually approaching the commercial application level, an urgent need for developing EHD technique from laboratory into industrialization have been put forward. Herein, we first discuss the EHD printing technique, including the ink design, droplet formation, and key technologies for promoting printing efficiency/accuracy. Then we summarize the recent progress of EHD printing in fabrication of displays, organic field-effect transistors (OFETs), transparent electrodes, and sensors and actuators. Finally, a brief summary and the outlook for future research effort are presented.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 2","pages":""},"PeriodicalIF":22.7,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138681056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Safer solid-state lithium metal batteries: Mechanisms and strategies 更安全的固态锂金属电池:机制与策略
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-12-12 DOI: 10.1002/inf2.12512
Shi-Jie Yang, Jiang-Kui Hu, Feng-Ni Jiang, Hong Yuan, Ho Seok Park, Jia-Qi Huang

Solid-state batteries that employ solid-state electrolytes (SSEs) to replace routine liquid electrolytes are considered to be one of the most promising solutions for achieving high-safety lithium metal batteries. SSEs with high mechanical modulus, thermal stability, and non-flammability can not only inhibit the growth of lithium dendrites but also enhance the safety of lithium metal batteries. However, several internal materials/electrodes-related thermal hazards demonstrated by recent works show that solid-state lithium metal batteries (SSLMBs) are not impenetrable. Therefore, understanding the potential thermal hazards of SSLMBs is critical for their more secure and widespread applications. In this contribution, we provide a comprehensive overview of the thermal failure mechanism of SSLMBs from materials to devices. Also, strategies to improve the thermal safety performance of SSLMBs are included from the view of material enhancement, battery design, and external management. Consequently, the future directions are further provided. We hope that this work can shed bright insights into the path of constructing energy storage devices with high energy density and safety.

采用固态电解质(SSE)替代常规液态电解质的固态电池被认为是实现高安全性锂金属电池的最有前途的解决方案之一。具有高机械模量、热稳定性和不可燃性的固态电解质不仅能抑制锂枝晶的生长,还能提高锂金属电池的安全性。然而,最近的研究表明,固态锂金属电池(SSLMB)的内部材料/电极存在一些热危害。因此,了解固态锂金属电池的潜在热危害对其更安全、更广泛的应用至关重要。在本文中,我们将全面概述 SSLMB 从材料到器件的热失效机制。此外,我们还从材料改进、电池设计和外部管理等方面阐述了提高 SSLMB 热安全性能的策略。因此,我们进一步提出了未来的研究方向。我们希望这项研究能为构建高能量密度和高安全性的储能设备提供一些启示。
{"title":"Safer solid-state lithium metal batteries: Mechanisms and strategies","authors":"Shi-Jie Yang,&nbsp;Jiang-Kui Hu,&nbsp;Feng-Ni Jiang,&nbsp;Hong Yuan,&nbsp;Ho Seok Park,&nbsp;Jia-Qi Huang","doi":"10.1002/inf2.12512","DOIUrl":"10.1002/inf2.12512","url":null,"abstract":"<p>Solid-state batteries that employ solid-state electrolytes (SSEs) to replace routine liquid electrolytes are considered to be one of the most promising solutions for achieving high-safety lithium metal batteries. SSEs with high mechanical modulus, thermal stability, and non-flammability can not only inhibit the growth of lithium dendrites but also enhance the safety of lithium metal batteries. However, several internal materials/electrodes-related thermal hazards demonstrated by recent works show that solid-state lithium metal batteries (SSLMBs) are not impenetrable. Therefore, understanding the potential thermal hazards of SSLMBs is critical for their more secure and widespread applications. In this contribution, we provide a comprehensive overview of the thermal failure mechanism of SSLMBs from materials to devices. Also, strategies to improve the thermal safety performance of SSLMBs are included from the view of material enhancement, battery design, and external management. Consequently, the future directions are further provided. We hope that this work can shed bright insights into the path of constructing energy storage devices with high energy density and safety.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 2","pages":""},"PeriodicalIF":22.7,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12512","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138681486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced electrocatalysts with unusual active sites for electrochemical water splitting 具有特殊活性位点的先进电催化剂用于电化学水分解
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-27 DOI: 10.1002/inf2.12494
Hainan Sun, Xiaomin Xu, Hyunseung Kim, Zongping Shao, WooChul Jung

Electrochemical water splitting represents a promising technology for green hydrogen production. To design advanced electrocatalysts, it is crucial to identify their active sites and interpret the relationship between their structures and performance. Materials extensively studied as electrocatalysts include noble-metal-based (e.g., Ru, Ir, and Pt) and non-noble-metal-based (e.g., 3d transition metals) compounds. Recently, advancements in characterization techniques and theoretical calculations have revealed novel and unusual active sites. The present review highlights the latest achievements in the discovery and identification of various unconventional active sites for electrochemical water splitting, with a focus on state-of-the-art strategies for determining true active sites and establishing structure–activity relationships. Furthermore, we discuss the remaining challenges and future perspectives for the development of next-generation electrocatalysts with unusual active sites. By presenting a fresh perspective on the unconventional reaction sites involved in electrochemical water splitting, this review aims to provide valuable guidance for the future study of electrocatalysts in industrial applications.

电化学水分解是一种很有前途的绿色制氢技术。为了设计先进的电催化剂,确定其活性位点并解释其结构与性能之间的关系至关重要。作为电催化剂广泛研究的材料包括贵金属基(如Ru、Ir和Pt)和非贵金属基(如3d过渡金属)化合物。最近,表征技术和理论计算的进步揭示了新的和不寻常的活性位点。本文综述了电化学水分解中各种非常规活性位点的发现和鉴定的最新成果,重点介绍了确定真正活性位点和建立构效关系的最新策略。此外,我们还讨论了具有特殊活性位点的下一代电催化剂的发展面临的挑战和未来的前景。本文综述了电化学水分解中涉及的非常规反应位点,旨在为今后电催化剂的工业应用研究提供有价值的指导。
{"title":"Advanced electrocatalysts with unusual active sites for electrochemical water splitting","authors":"Hainan Sun,&nbsp;Xiaomin Xu,&nbsp;Hyunseung Kim,&nbsp;Zongping Shao,&nbsp;WooChul Jung","doi":"10.1002/inf2.12494","DOIUrl":"10.1002/inf2.12494","url":null,"abstract":"<p>Electrochemical water splitting represents a promising technology for green hydrogen production. To design advanced electrocatalysts, it is crucial to identify their active sites and interpret the relationship between their structures and performance. Materials extensively studied as electrocatalysts include noble-metal-based (e.g., Ru, Ir, and Pt) and non-noble-metal-based (e.g., <i>3d</i> transition metals) compounds. Recently, advancements in characterization techniques and theoretical calculations have revealed novel and unusual active sites. The present review highlights the latest achievements in the discovery and identification of various unconventional active sites for electrochemical water splitting, with a focus on state-of-the-art strategies for determining true active sites and establishing structure–activity relationships. Furthermore, we discuss the remaining challenges and future perspectives for the development of next-generation electrocatalysts with unusual active sites. By presenting a fresh perspective on the unconventional reaction sites involved in electrochemical water splitting, this review aims to provide valuable guidance for the future study of electrocatalysts in industrial applications.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 1","pages":""},"PeriodicalIF":22.7,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12494","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent developments in three-dimensional Zn metal anodes for battery applications 电池用三维锌金属阳极研究进展
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-27 DOI: 10.1002/inf2.12485
Jianyu Chen, Yizhou Wang, Zhengnan Tian, Jin Zhao, Yanwen Ma, Husam N. Alshareef

Aqueous zinc (Zn) ion batteries (AZIBs) are regarded as one of the promising candidates for next-generation electrochemical energy storage systems due to their low cost, high safety, and environmental friendliness. However, the commercialization of AZIBs has been severely restricted by the growth of dendrite at the Zn metal anode. Tailoring the planar-structured Zn anodes into three-dimensional (3D) structures has proven to be an effective way to modulate the plating/stripping behavior of Zn anodes, resulting in the suppression of dendrite formation. This review provides an up-to-date review of 3D structured Zn metal anodes, including working principles, design, current status, and future prospects. We aim to give the readers a comprehensive understanding of 3D-structured Zn anodes and their effective usage to enhance AZIB performance.

水锌离子电池(azib)由于其低成本、高安全性和环境友好性被认为是下一代电化学储能系统的有前途的候选人之一。然而,azib的商业化受到Zn金属阳极枝晶生长的严重限制。将平面结构的锌阳极裁剪成三维结构已被证明是一种有效的方法来调节锌阳极的镀/剥离行为,从而抑制枝晶的形成。本文综述了三维结构锌金属阳极的最新研究进展,包括工作原理、设计、现状和未来展望。我们的目标是让读者全面了解3d结构锌阳极及其有效使用,以提高AZIB性能。
{"title":"Recent developments in three-dimensional Zn metal anodes for battery applications","authors":"Jianyu Chen,&nbsp;Yizhou Wang,&nbsp;Zhengnan Tian,&nbsp;Jin Zhao,&nbsp;Yanwen Ma,&nbsp;Husam N. Alshareef","doi":"10.1002/inf2.12485","DOIUrl":"10.1002/inf2.12485","url":null,"abstract":"<p>Aqueous zinc (Zn) ion batteries (AZIBs) are regarded as one of the promising candidates for next-generation electrochemical energy storage systems due to their low cost, high safety, and environmental friendliness. However, the commercialization of AZIBs has been severely restricted by the growth of dendrite at the Zn metal anode. Tailoring the planar-structured Zn anodes into three-dimensional (3D) structures has proven to be an effective way to modulate the plating/stripping behavior of Zn anodes, resulting in the suppression of dendrite formation. This review provides an up-to-date review of 3D structured Zn metal anodes, including working principles, design, current status, and future prospects. We aim to give the readers a comprehensive understanding of 3D-structured Zn anodes and their effective usage to enhance AZIB performance.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 1","pages":""},"PeriodicalIF":22.7,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12485","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back Cover Image 封底图像
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-23 DOI: 10.1002/inf2.12510
Hanxi Li, Jiayang Hu, Anzhe Chen, Yishu Zhang, Chenhao Wang, Beiduo Wang, Yi Tong, Jiachao Zhou, Kian Ping Loh, Yang Xu, Tawfique Hasan, Bin Yu

The cover image focuses on neuronal circuit motif with specialized excitatory–inhibitory connectivity pattern. The neuronal circuit is an advanced functional unit of the brain beyond neurons and synapses. Neurons do not function in isolation and are linked to ensembles or circuit motifs that process specific types of information, enables multidimensional signal processing in the information flow of the brain. The authors demonstrate a core processor that can be employed to construct commonly used neuronal circuits and further perform bio-realistic neuromorphic computing. Exploring the working principle, physical configuration, scalable design, and extensive signal-processing capabilities of core processing neuron is crucial for advancing hardware development for brain-inspired integrated neuromorphic systems.

封面图像聚焦于神经元回路基序具有特殊的兴奋-抑制连接模式。神经元回路是大脑中超越神经元和突触的高级功能单位。神经元不是孤立地起作用,而是与处理特定类型信息的整体或电路基序相关联,使大脑信息流中的多维信号处理成为可能。作者展示了一个核心处理器,可以用来构建常用的神经元电路,并进一步进行生物逼真的神经形态计算。探索核心处理神经元的工作原理、物理结构、可扩展设计和广泛的信号处理能力,对于推进脑启发集成神经形态系统的硬件开发至关重要。
{"title":"Back Cover Image","authors":"Hanxi Li,&nbsp;Jiayang Hu,&nbsp;Anzhe Chen,&nbsp;Yishu Zhang,&nbsp;Chenhao Wang,&nbsp;Beiduo Wang,&nbsp;Yi Tong,&nbsp;Jiachao Zhou,&nbsp;Kian Ping Loh,&nbsp;Yang Xu,&nbsp;Tawfique Hasan,&nbsp;Bin Yu","doi":"10.1002/inf2.12510","DOIUrl":"https://doi.org/10.1002/inf2.12510","url":null,"abstract":"<p>The cover image focuses on neuronal circuit motif with specialized excitatory–inhibitory connectivity pattern. The neuronal circuit is an advanced functional unit of the brain beyond neurons and synapses. Neurons do not function in isolation and are linked to ensembles or circuit motifs that process specific types of information, enables multidimensional signal processing in the information flow of the brain. The authors demonstrate a core processor that can be employed to construct commonly used neuronal circuits and further perform bio-realistic neuromorphic computing. Exploring the working principle, physical configuration, scalable design, and extensive signal-processing capabilities of core processing neuron is crucial for advancing hardware development for brain-inspired integrated neuromorphic systems.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"5 11","pages":""},"PeriodicalIF":22.7,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12510","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138432452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover Image 封面图片
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-23 DOI: 10.1002/inf2.12509
Jianlong Ji, Zhenxing Wang, Fan Zhang, Bin Wang, Yan Niu, Xiaoning Jiang, Zeng-ying Qiao, Tian-ling Ren, Wendong Zhang, Shengbo Sang, Zhengdong Cheng, Qijun Sun

A pulse-driven electrochemical synaptic transistor for supersensitive and ultrafast biosensor is proposed.

提出了一种用于超灵敏超快生物传感器的脉冲驱动电化学突触晶体管。
{"title":"Front Cover Image","authors":"Jianlong Ji,&nbsp;Zhenxing Wang,&nbsp;Fan Zhang,&nbsp;Bin Wang,&nbsp;Yan Niu,&nbsp;Xiaoning Jiang,&nbsp;Zeng-ying Qiao,&nbsp;Tian-ling Ren,&nbsp;Wendong Zhang,&nbsp;Shengbo Sang,&nbsp;Zhengdong Cheng,&nbsp;Qijun Sun","doi":"10.1002/inf2.12509","DOIUrl":"https://doi.org/10.1002/inf2.12509","url":null,"abstract":"<p>A pulse-driven electrochemical synaptic transistor for supersensitive and ultrafast biosensor is proposed.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"5 11","pages":""},"PeriodicalIF":22.7,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138432451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional solar-blind ultraviolet photodetectors based on p-PCDTBT/n-Ga2O3 heterojunction with high photoresponse 基于高光响应p- pcdbt /n-Ga2O3异质结的多功能太阳盲紫外探测器
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-21 DOI: 10.1002/inf2.12503
Yifei Wang, Zhenhua Lin, Jingli Ma, Yongyi Wu, Haidong Yuan, Dongsheng Cui, Mengyang Kang, Xing Guo, Jie Su, Jinshui Miao, Zhifeng Shi, Tao Li, Jincheng Zhang, Yue Hao, Jingjing Chang

Solar-blind ultraviolet (UV) photodetectors based on p-organic/n-Ga2O3 hybrid heterojunctions have attracted extensive attention recently. Herein, the multifunctional solar-blind photodetector based on p-type poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT)/n-type amorphous Ga2O3 (a-Ga2O3) is fabricated and investigated, which can work in the phototransistor mode coupling with self-powered mode. With the introduction of PCDTBT, the dark current of such the a-Ga2O3-based photodetector is decreased to 0.48 pA. Meanwhile, the photoresponse parameters of the a-Ga2O3-based photodetector in the phototransistor mode to solar-blind UV light are further increased, that is, responsivity (R), photo-detectivity (D*), and external quantum efficiency (EQE) enhanced to 187 A W–1, 1.3 × 1016 Jones and 9.1 × 104 % under the weak light intensity of 11 μW cm2, respectively. Thanks to the formation of the built-in field in the p-PCDTBT/n-Ga2O3 type-II heterojunction, the PCDTBT/Ga2O3 multifunctional photodetector shows self-powered behavior. The responsivity of p-PCDTBT/n-Ga2O3 multifunctional photodetector is 57.5 mA W–1 at zero bias. Such multifunctional p-n hybrid heterojunction-based photodetectors set the stage for realizing high-performance amorphous Ga2O3 heterojunction-based photodetectors.

基于p-有机/n-Ga2O3杂化异质结的日盲紫外探测器近年来引起了广泛的关注。本文制备并研究了基于p型聚[N-9′-庚烷-2,7-咔唑-氨基-5,5-(4′,7′-二-2-噻基-2′,1′,3′-苯并噻唑)](PCDTBT)/n型非晶Ga2O3 (a-Ga2O3)的多功能太阳盲光电探测器,该探测器可在光电晶体管模式与自供电模式耦合下工作。引入pcdbt后,a- ga2o3基光电探测器的暗电流降至0.48 pA。同时,光电晶体管模式下基于A - ga2o3的光电探测器对太阳盲紫外光的光响应参数进一步提高,在弱光强度为11 μW cm-2时,响应率(R)、光探测率(D*)和外量子效率(EQE)分别提高到187 A W-1、1.3 × 1016 Jones和9.1 × 104%。由于在p-PCDTBT/n-Ga2O3 ii型异质结中形成了内置场,PCDTBT/Ga2O3多功能光电探测器表现出自供电行为。p- pcdbt /n-Ga2O3多功能光电探测器在零偏置下的响应率为57.5 mA W-1。这种基于p-n杂化异质结的多功能光电探测器为实现高性能非晶Ga2O3异质结光电探测器奠定了基础。
{"title":"Multifunctional solar-blind ultraviolet photodetectors based on p-PCDTBT/n-Ga2O3 heterojunction with high photoresponse","authors":"Yifei Wang,&nbsp;Zhenhua Lin,&nbsp;Jingli Ma,&nbsp;Yongyi Wu,&nbsp;Haidong Yuan,&nbsp;Dongsheng Cui,&nbsp;Mengyang Kang,&nbsp;Xing Guo,&nbsp;Jie Su,&nbsp;Jinshui Miao,&nbsp;Zhifeng Shi,&nbsp;Tao Li,&nbsp;Jincheng Zhang,&nbsp;Yue Hao,&nbsp;Jingjing Chang","doi":"10.1002/inf2.12503","DOIUrl":"10.1002/inf2.12503","url":null,"abstract":"<p>Solar-blind ultraviolet (UV) photodetectors based on p-organic/n-Ga<sub>2</sub>O<sub>3</sub> hybrid heterojunctions have attracted extensive attention recently. Herein, the multifunctional solar-blind photodetector based on p-type poly[<i>N</i>-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT)/n-type amorphous Ga<sub>2</sub>O<sub>3</sub> (a-Ga<sub>2</sub>O<sub>3</sub>) is fabricated and investigated, which can work in the phototransistor mode coupling with self-powered mode. With the introduction of PCDTBT, the dark current of such the a-Ga<sub>2</sub>O<sub>3</sub>-based photodetector is decreased to 0.48 pA. Meanwhile, the photoresponse parameters of the a-Ga<sub>2</sub>O<sub>3</sub>-based photodetector in the phototransistor mode to solar-blind UV light are further increased, that is, responsivity (<i>R</i>), photo-detectivity (<i>D</i>*), and external quantum efficiency (EQE) enhanced to 187 A W<sup>–1</sup>, 1.3 × 10<sup>16</sup> Jones and 9.1 × 10<sup>4</sup> % under the weak light intensity of 11 μW cm<sup>–</sup><sup>2</sup>, respectively. Thanks to the formation of the built-in field in the p-PCDTBT/n-Ga<sub>2</sub>O<sub>3</sub> type-II heterojunction, the PCDTBT/Ga<sub>2</sub>O<sub>3</sub> multifunctional photodetector shows self-powered behavior. The responsivity of p-PCDTBT/n-Ga<sub>2</sub>O<sub>3</sub> multifunctional photodetector is 57.5 mA W<sup>–1</sup> at zero bias. Such multifunctional p-n hybrid heterojunction-based photodetectors set the stage for realizing high-performance amorphous Ga<sub>2</sub>O<sub>3</sub> heterojunction-based photodetectors.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 2","pages":""},"PeriodicalIF":22.7,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12503","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ construction of PtSe2/Ge Schottky junction array with interface passivation for broadband infrared photodetection and imaging 用于宽带红外探测成像的界面钝化PtSe2/Ge肖特基结阵列的原位构建
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-21 DOI: 10.1002/inf2.12499
Xue Li, Shuo-En Wu, Di Wu, Tianxiang Zhao, Pei Lin, Zhifeng Shi, Yongtao Tian, Xinjian Li, Longhui Zeng, Xuechao Yu

Infrared (IR) detection is vital for various military and civilian applications. Recent research has highlighted the potential of two-dimensional (2D) topological semimetals in IR detection due to their distinctive advantages, including van der Waals (vdW) stacking, gapless electronic structure, and Van Hove singularities in the electronic density of states. However, challenges such as large-scale patterning, poor photoresponsivity, and high dark current of photodetectors based on 2D topological semimetals significantly impede their wider applications in low-energy photon sensing. Here, we demonstrate the in situ fabrication of PtSe2/Ge Schottky junction by directly depositing 2D PtSe2 films with a vertical layer structure on a Ge substrate with an ultrathin AlOx layer. Due to high quality junction, the photodetector features a broadband response of up to 4.6 μm, along with a high specific detectivity of ~1012 Jones, and operates with remarkable stability in ambient conditions as well. Moreover, the highly integrated device arrays based on PtSe2/AlOx/Ge Schottky junction showcases excellent Mid-IR (MIR) imaging capability at room temperature. These findings highlight the promising prospects of 2D topological semimetals for uncooled IR photodetection and imaging applications.

红外(IR)探测在各种军事和民用应用中至关重要。最近的研究强调了二维(2D)拓扑半金属在红外探测中的潜力,因为它们具有独特的优势,包括范德华(vdW)堆叠,无间隙电子结构和状态电子密度的范霍夫奇点。然而,基于二维拓扑半金属的光电探测器的大规模图像化、光响应性差和大暗电流等挑战严重阻碍了它们在低能光子传感中的广泛应用。在这里,我们演示了通过将具有垂直层结构的二维PtSe2薄膜直接沉积在具有超薄AlOx层的Ge衬底上来原位制造PtSe2/Ge肖特基结。由于高质量的结,光电探测器具有高达4.6 μm的宽带响应,以及高达1012琼斯的高比探测率,并且在环境条件下也具有出色的稳定性。此外,基于PtSe2/AlOx/Ge Schottky结的高度集成器件阵列在室温下展示了出色的中红外(MIR)成像能力。这些发现突出了二维拓扑半金属在非冷却红外光探测和成像应用中的前景。
{"title":"In situ construction of PtSe2/Ge Schottky junction array with interface passivation for broadband infrared photodetection and imaging","authors":"Xue Li,&nbsp;Shuo-En Wu,&nbsp;Di Wu,&nbsp;Tianxiang Zhao,&nbsp;Pei Lin,&nbsp;Zhifeng Shi,&nbsp;Yongtao Tian,&nbsp;Xinjian Li,&nbsp;Longhui Zeng,&nbsp;Xuechao Yu","doi":"10.1002/inf2.12499","DOIUrl":"10.1002/inf2.12499","url":null,"abstract":"<p>Infrared (IR) detection is vital for various military and civilian applications. Recent research has highlighted the potential of two-dimensional (2D) topological semimetals in IR detection due to their distinctive advantages, including van der Waals (vdW) stacking, gapless electronic structure, and Van Hove singularities in the electronic density of states. However, challenges such as large-scale patterning, poor photoresponsivity, and high dark current of photodetectors based on 2D topological semimetals significantly impede their wider applications in low-energy photon sensing. Here, we demonstrate the in situ fabrication of PtSe<sub>2</sub>/Ge Schottky junction by directly depositing 2D PtSe<sub>2</sub> films with a vertical layer structure on a Ge substrate with an ultrathin AlO<sub>x</sub> layer. Due to high quality junction, the photodetector features a broadband response of up to 4.6 μm, along with a high specific detectivity of ~10<sup>12</sup> Jones, and operates with remarkable stability in ambient conditions as well. Moreover, the highly integrated device arrays based on PtSe<sub>2</sub>/AlO<sub>x</sub>/Ge Schottky junction showcases excellent Mid-IR (MIR) imaging capability at room temperature. These findings highlight the promising prospects of 2D topological semimetals for uncooled IR photodetection and imaging applications.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 4","pages":""},"PeriodicalIF":22.7,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12499","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138540052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Infomat
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1