首页 > 最新文献

Infomat最新文献

英文 中文
Inside Front Cover Image 内页封面图像
IF 22.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-08-26 DOI: 10.1002/inf2.70062
Xiaorui Ma, Zhiao Wu, Haoran Tian, Guangyu Fang, Jiao Dai, Tianpeng Ding, Weilin Xu, Huanyu Jin, Xu Xiao, Jun Wan

Coaxial MXene-cuprammonium fiber harnesses water-compatible interfaces for reversible, durable sensing in harsh amphibious dry-wet environments.

同轴mxene -铜铵纤维利用水兼容接口,在恶劣的两栖干湿环境中进行可逆,持久的传感。
{"title":"Inside Front Cover Image","authors":"Xiaorui Ma,&nbsp;Zhiao Wu,&nbsp;Haoran Tian,&nbsp;Guangyu Fang,&nbsp;Jiao Dai,&nbsp;Tianpeng Ding,&nbsp;Weilin Xu,&nbsp;Huanyu Jin,&nbsp;Xu Xiao,&nbsp;Jun Wan","doi":"10.1002/inf2.70062","DOIUrl":"https://doi.org/10.1002/inf2.70062","url":null,"abstract":"<p>Coaxial MXene-cuprammonium fiber harnesses water-compatible interfaces for reversible, durable sensing in harsh amphibious dry-wet environments.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 8","pages":""},"PeriodicalIF":22.3,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144905551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back cover image 封底图像
IF 22.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-08-26 DOI: 10.1002/inf2.70063
Chunxue Wan, Yubing Liu, Xiaoqing Li, Hui Xu, Rui Guo, Jing Liu

Interfacial adhesion adjustment enables liquid metal printing on varied substrates for stretchable circuits, 3D electronics and sensor applications.

界面粘附调节使液态金属打印在各种基材上的可拉伸电路,3D电子和传感器应用。
{"title":"Back cover image","authors":"Chunxue Wan,&nbsp;Yubing Liu,&nbsp;Xiaoqing Li,&nbsp;Hui Xu,&nbsp;Rui Guo,&nbsp;Jing Liu","doi":"10.1002/inf2.70063","DOIUrl":"https://doi.org/10.1002/inf2.70063","url":null,"abstract":"<p>Interfacial adhesion adjustment enables liquid metal printing on varied substrates for stretchable circuits, 3D electronics and sensor applications.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 8","pages":""},"PeriodicalIF":22.3,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144905552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinspired hollow heterostructure fillers for enhanced electromagnetic interference shielding in polyimide aerogels 在聚酰亚胺气凝胶中增强电磁干扰屏蔽的生物启发中空异质结构填料
IF 22.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-08-13 DOI: 10.1002/inf2.70060
An Liu, Xingshen Xu, Hua Qiu, Hua Guo, Mukun He, Ze Yu, Yali Zhang, Junwei Gu

Heterostructure fillers are crucial for enhancing the electromagnetic interference (EMI) shielding performance of composites, and the core lies in the regulation of their morphology. Inspired by the radial structures on marimo surfaces during growth, we propose a bioinspired heterostructure assembly strategy to fabricate novel marimo-like hollow spherical reduced graphene oxide (hs-rGO)@nickel-catalyzed nitrogen-doped carbon nanotubes (Ni-NCNTs) and their corresponding polyimide aerogels. Benefiting from the synergistic design of multilevel porous architectures formed by the hollow microspheres in combination with the aerogel matrix, as well as radially aligned Ni-NCNTs epitaxially grown on hs-rGO surfaces, the resulting aerogels exhibit exceptional EMI shielding effectiveness, reaching up to 68 dB. Finite element simulations further elucidate the shielding mechanisms. Additionally, these aerogels exhibit rapid, durable pressure-sensing performance due to their excellent resilience and conductivity. The multifunctional combination of high-efficiency EMI shielding and mechanical sensing highlights their promising potential in next-generation intelligent electronics, aerospace systems, and advanced communication technologies.

异质结构填料是提高复合材料屏蔽电磁干扰性能的关键,其核心在于对其形态的调控。受marimo表面生长过程中径向结构的启发,我们提出了一种仿生异质结构组装策略来制造新型marimo类中空球形还原氧化石墨烯(hs-rGO)@镍催化氮掺杂碳纳米管(Ni-NCNTs)及其相应的聚酰亚胺气凝胶。得益于中空微球与气凝胶基质结合形成的多层多孔结构的协同设计,以及在hs-rGO表面外延生长的径向排列的Ni-NCNTs,所得气凝胶表现出卓越的电磁干扰屏蔽效果,达到68 dB。有限元模拟进一步阐明了屏蔽机理。此外,由于具有优异的回弹性和导电性,这些气凝胶表现出快速、持久的压力传感性能。高效电磁干扰屏蔽和机械传感的多功能组合突出了它们在下一代智能电子、航空航天系统和先进通信技术中的巨大潜力。
{"title":"Bioinspired hollow heterostructure fillers for enhanced electromagnetic interference shielding in polyimide aerogels","authors":"An Liu,&nbsp;Xingshen Xu,&nbsp;Hua Qiu,&nbsp;Hua Guo,&nbsp;Mukun He,&nbsp;Ze Yu,&nbsp;Yali Zhang,&nbsp;Junwei Gu","doi":"10.1002/inf2.70060","DOIUrl":"https://doi.org/10.1002/inf2.70060","url":null,"abstract":"<p>Heterostructure fillers are crucial for enhancing the electromagnetic interference (EMI) shielding performance of composites, and the core lies in the regulation of their morphology. Inspired by the radial structures on marimo surfaces during growth, we propose a bioinspired heterostructure assembly strategy to fabricate novel marimo-like hollow spherical reduced graphene oxide (hs-rGO)@nickel-catalyzed nitrogen-doped carbon nanotubes (Ni-NCNTs) and their corresponding polyimide aerogels. Benefiting from the synergistic design of multilevel porous architectures formed by the hollow microspheres in combination with the aerogel matrix, as well as radially aligned Ni-NCNTs epitaxially grown on hs-rGO surfaces, the resulting aerogels exhibit exceptional EMI shielding effectiveness, reaching up to 68 dB. Finite element simulations further elucidate the shielding mechanisms. Additionally, these aerogels exhibit rapid, durable pressure-sensing performance due to their excellent resilience and conductivity. The multifunctional combination of high-efficiency EMI shielding and mechanical sensing highlights their promising potential in next-generation intelligent electronics, aerospace systems, and advanced communication technologies.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 11","pages":""},"PeriodicalIF":22.3,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145601040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thin-film composite membranes enhanced with Ti3C2Tx MXenes for highly selective desalination and water reuse Ti3C2Tx MXenes增强薄膜复合膜用于高选择性海水淡化和水回用
IF 22.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-08-12 DOI: 10.1002/inf2.70054
M. Obaid, Jehad K. El-Demellawi, Jaewon Lee, Muhammad Saqib Nawaz, Mrinal K. Hota, Valentina-Elena Musteata, Harun Elcik, Mohamed N. Hedhili, Sofiane Soukane, Xiangming Xu, Seungkwan Hong, Husam N. Alshareef, Noreddine Ghaffour

Thin-film composite (TFC) membranes featuring nanovoid-containing polyamide (PA) layers on supportive nanofiber substrates represent a significant advancement in desalination technology. However, the separation performance of TFC membranes hinges critically on the nanoscale thickness of the PA layers and their distinctive ridge-and-valley roughness. This complex morphology is a direct result of interfacial instability arising during the highly exothermic interfacial polymerization (IP), where heat generation drives non-uniform PA layer growth. To mitigate these instabilities that adversely affect the overall membrane performance, thermally conductive MXene (Ti3C2Tx) nanosheets are spray-coated onto the supportive polymeric substrates before initiating the IP process. The MXene-coated substrate significantly improves the surface morphology of the PA layer, reducing its thickness to 18 nm and minimizing nanovoid formation due to the effective lateral heat dissipation by the Ti3C2Tx MXene interlayer. These interlayers regulate monomer diffusion via hydrogen bonding and covalent interactions, ensuring uniform polymerization and defect-free PA layers. The optimized Ti3C2Tx MXene-interlayered TFC membrane exhibits a more than two-fold increase in the water flux, exceeding that of commercial membranes, while significantly improving ion rejection. This study highlights the significant impact of substrate thermal conductivity on desalination efficiency, enabling the development of smooth and efficient PA nanofilms for high-performance desalination through the tailored design of interlayered TFC membranes.

薄膜复合材料(TFC)膜在支撑纳米纤维基底上含有纳米空隙的聚酰胺(PA)层,代表了海水淡化技术的重大进步。然而,TFC膜的分离性能主要取决于PA层的纳米级厚度及其独特的脊谷粗糙度。这种复杂的形态是在高度放热界面聚合(IP)过程中产生的界面不稳定性的直接结果,其中热量的产生驱动了不均匀的PA层生长。为了减轻这些不稳定性对整体膜性能的不利影响,在启动IP过程之前,将导热MXene (Ti3C2Tx)纳米片喷涂到支持性聚合物衬底上。MXene涂层的衬底显著改善了PA层的表面形貌,将其厚度减小到18 nm,并且由于Ti3C2Tx MXene中间层有效的侧向散热,减少了纳米空洞的形成。这些中间层通过氢键和共价相互作用调节单体扩散,确保均匀聚合和无缺陷的PA层。优化后的Ti3C2Tx mxene -层间TFC膜的水通量增加了两倍以上,超过了工业膜,同时显著提高了离子截留能力。本研究强调了衬底导热性对海水淡化效率的重要影响,通过定制设计层间TFC膜,可以开发出光滑高效的PA纳米膜,用于高性能海水淡化。
{"title":"Thin-film composite membranes enhanced with Ti3C2Tx MXenes for highly selective desalination and water reuse","authors":"M. Obaid,&nbsp;Jehad K. El-Demellawi,&nbsp;Jaewon Lee,&nbsp;Muhammad Saqib Nawaz,&nbsp;Mrinal K. Hota,&nbsp;Valentina-Elena Musteata,&nbsp;Harun Elcik,&nbsp;Mohamed N. Hedhili,&nbsp;Sofiane Soukane,&nbsp;Xiangming Xu,&nbsp;Seungkwan Hong,&nbsp;Husam N. Alshareef,&nbsp;Noreddine Ghaffour","doi":"10.1002/inf2.70054","DOIUrl":"https://doi.org/10.1002/inf2.70054","url":null,"abstract":"<p>Thin-film composite (TFC) membranes featuring nanovoid-containing polyamide (PA) layers on supportive nanofiber substrates represent a significant advancement in desalination technology. However, the separation performance of TFC membranes hinges critically on the nanoscale thickness of the PA layers and their distinctive ridge-and-valley roughness. This complex morphology is a direct result of interfacial instability arising during the highly exothermic interfacial polymerization (IP), where heat generation drives non-uniform PA layer growth. To mitigate these instabilities that adversely affect the overall membrane performance, thermally conductive MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>) nanosheets are spray-coated onto the supportive polymeric substrates before initiating the IP process. The MXene-coated substrate significantly improves the surface morphology of the PA layer, reducing its thickness to 18 nm and minimizing nanovoid formation due to the effective lateral heat dissipation by the Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene interlayer. These interlayers regulate monomer diffusion via hydrogen bonding and covalent interactions, ensuring uniform polymerization and defect-free PA layers. The optimized Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene-interlayered TFC membrane exhibits a more than two-fold increase in the water flux, exceeding that of commercial membranes, while significantly improving ion rejection. This study highlights the significant impact of substrate thermal conductivity on desalination efficiency, enabling the development of smooth and efficient PA nanofilms for high-performance desalination through the tailored design of interlayered TFC membranes.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 10","pages":""},"PeriodicalIF":22.3,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145426068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic activation of interfacial Li2S via zirconia membrane reactor confinement catalysis for high-performance lithium/sulfur batteries 高性能锂硫电池界面Li2S的氧化锆膜反应器约束动力学活化研究
IF 22.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-08-08 DOI: 10.1002/inf2.70056
Lei Ji, Jiayi Xue, Yuxin Dang, Quan Zhuang, Daotong Yang, Minxun Jia, Tong Wu, Yingying Zhang, Jinghai Liu, Yuegang Zhang

The slow kinetics and irreversibility of Li2S deposition and dissolution during the sulfur reduction/evolution reactions (SRR/SER) hinder the fast-charging and high-rate capabilities of lithium–sulfur (Li/S) batteries. To address this challenge, we design a zirconia membrane reactor (ZMR) composed of ZrO2/N-doped carbon nanofibers (ZONC) to kinetically regulate the interfacial reversible conversion of Li2S. Electrochemical measurements, in situ x-ray diffraction, and density functional theory calculations are employed to investigate the confinement catalysis of ZMR and elucidate the Li2S activation mechanism for enhanced rate performance and cycling stability. Operating at the cathode side, the ZMR enables the Li/S cell to deliver an initial discharge specific capacity of 1460.8 mAh g−1 at 0.1 C (corresponding to a sulfur utilization of approximately 87.2%), a high-rate capability of 931.4 mAh g−1 at 5 C, and a capacity retention of 91.0% after 200 cycles at 3 C. Moreover, when a sandwich configuration module (ZMR-S-ZMR) is fabricated to support a high-sulfur-loading cathode, the resulting Li/S coin cell with a sulfur loading of 12.0 mg cm−2 achieves a remarkable areal capacity of 8.6 mAh cm−2 and 94.2% capacity retention after 90 cycles at 0.1 C (2.2 mA).

硫还原/析硫反应(SRR/SER)过程中Li2S沉积和溶解的缓慢动力学和不可逆性阻碍了锂硫电池的快速充电和高倍率性能。为了解决这一挑战,我们设计了一个由ZrO2/ n掺杂碳纳米纤维(ZONC)组成的氧化锆膜反应器(ZMR),以动态调节Li2S的界面可逆转化。采用电化学测量、原位x射线衍射和密度泛函理论计算研究了ZMR的约束催化作用,并阐明了Li2S活化机理,提高了速率性能和循环稳定性。在阴极侧工作,ZMR使Li/S电池在0.1 C时提供1460.8 mAh g−1的初始放电比容量(相当于约87.2%的硫利用率),在5 C时提供931.4 mAh g−1的高倍率容量,在3 C下200次循环后的容量保持率为91.0%。此外,当制作夹芯配置模块(ZMR-S-ZMR)以支持高硫负载阴极时,在0.1 C (2.2 mA)下循环90次后,硫负载为12.0 mg cm - 2的锂/硫纽扣电池的面积容量达到8.6 mAh cm - 2,容量保持率为94.2%。
{"title":"Kinetic activation of interfacial Li2S via zirconia membrane reactor confinement catalysis for high-performance lithium/sulfur batteries","authors":"Lei Ji,&nbsp;Jiayi Xue,&nbsp;Yuxin Dang,&nbsp;Quan Zhuang,&nbsp;Daotong Yang,&nbsp;Minxun Jia,&nbsp;Tong Wu,&nbsp;Yingying Zhang,&nbsp;Jinghai Liu,&nbsp;Yuegang Zhang","doi":"10.1002/inf2.70056","DOIUrl":"https://doi.org/10.1002/inf2.70056","url":null,"abstract":"<p>The slow kinetics and irreversibility of Li<sub>2</sub>S deposition and dissolution during the sulfur reduction/evolution reactions (SRR/SER) hinder the fast-charging and high-rate capabilities of lithium–sulfur (Li/S) batteries. To address this challenge, we design a zirconia membrane reactor (ZMR) composed of ZrO<sub>2</sub>/N-doped carbon nanofibers (ZONC) to kinetically regulate the interfacial reversible conversion of Li<sub>2</sub>S. Electrochemical measurements, in situ x-ray diffraction, and density functional theory calculations are employed to investigate the confinement catalysis of ZMR and elucidate the Li<sub>2</sub>S activation mechanism for enhanced rate performance and cycling stability. Operating at the cathode side, the ZMR enables the Li/S cell to deliver an initial discharge specific capacity of 1460.8 mAh g<sup>−1</sup> at 0.1 C (corresponding to a sulfur utilization of approximately 87.2%), a high-rate capability of 931.4 mAh g<sup>−1</sup> at 5 C, and a capacity retention of 91.0% after 200 cycles at 3 C. Moreover, when a sandwich configuration module (ZMR-S-ZMR) is fabricated to support a high-sulfur-loading cathode, the resulting Li/S coin cell with a sulfur loading of 12.0 mg cm<sup>−2</sup> achieves a remarkable areal capacity of 8.6 mAh cm<sup>−2</sup> and 94.2% capacity retention after 90 cycles at 0.1 C (2.2 mA).</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 10","pages":""},"PeriodicalIF":22.3,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145426029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic Effects of Structural and Electronic Dual Engineering for Ultra-Stable Aqueous Zinc-Ion Batteries 超稳定水锌离子电池结构与电子双工程协同效应研究
IF 22.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-07-28 DOI: 10.1002/inf2.70055
Yajiang Wang, Yameng Fan, Xiudong Chen, Jin-Hang Liu, Yun Gao, Xihao Lin, Yan Huang, Huixiong Jiang, Changchao Zhan, Hang Zhang, Xiaohua Cao, Yao Xiao

Layered vanadium-based oxides have emerged as promising cathode materials for aqueous zinc-ion batteries (AZIBs) owing to their high theoretical capacity, multivalent vanadium species, and low cost. However, their practical development has been hindered by limitations such as narrow interlayer spacing and structural instability. To address these challenges, we successfully generated oxygen vacancies by a one-step hydrothermal method, and simultaneously inserted benzyltrimethylammonium organic cations (TMBA+) into the interlayers of V2O5 to obtain a VOH-TMBA+ composite electrode material, realizing the dual-strategy modification of V2O5. In the resulting VOH-TMBA+, oxygen vacancies and TMBA+ synergistically expand the interlayer spacing from 6.84 to 13.8 Å, stabilize the layered framework, and modulate the local atomic coordination and electronic structure. This “structural-electronic” dual regulation endows VOH-TMBA+ with a high specific capacity of 417.2 mAh g−1 at 0.2 A g−1 and exceptional cycling stability (90.7% capacity retention after 7000 cycles at 10.0 A g−1). In-situ XRD/Raman and ex-situ XPS/SEM characterizations clarify that the VOH-TMBA+ electrode is an energy storage mechanism based on H+/Zn2+ co-insertion/extraction. Furthermore, density functional theory calculations demonstrated that the conductivity of VOH-TMBA+ is further enhanced, while the reduction of electrostatic interactions facilitates the transfer of Zn2+. This work provides a generalizable strategy for engineering layered metal oxides through collaborative structural and electronic modulation, offering perspectives for designing high-performance cathode materials in AZIBs.

层状钒基氧化物具有理论容量大、多价钒种类、成本低等优点,是水基锌离子电池(AZIBs)极具前景的正极材料。然而,它们的实际发展受到层间距窄和结构不稳定等限制。为了解决这些问题,我们成功地通过一步水热法生成了氧空位,同时在V2O5的中间层中插入了苄基三甲基铵有机阳离子(TMBA+),得到了VOH-TMBA+复合电极材料,实现了V2O5的双策略改性。在生成的VOH-TMBA+中,氧空位和TMBA+协同作用将层间间距从6.84扩大到13.8 Å,稳定层状框架,并调节局部原子配位和电子结构。这种“结构-电子”双重调节使VOH-TMBA+在0.2 a g−1下具有417.2 mAh g−1的高比容量和出色的循环稳定性(在10.0 a g−1下循环7000次后容量保持率为90.7%)。原位XRD/Raman和非原位XPS/SEM表征表明,VOH-TMBA+电极是一种基于H+/Zn2+共插入/萃取的储能机制。此外,密度泛函理论计算表明,VOH-TMBA+的电导率进一步提高,而静电相互作用的减少有利于Zn2+的转移。这项工作通过协同结构和电子调制为层状金属氧化物工程提供了一种通用策略,为azib中高性能阴极材料的设计提供了前景。
{"title":"Synergistic Effects of Structural and Electronic Dual Engineering for Ultra-Stable Aqueous Zinc-Ion Batteries","authors":"Yajiang Wang,&nbsp;Yameng Fan,&nbsp;Xiudong Chen,&nbsp;Jin-Hang Liu,&nbsp;Yun Gao,&nbsp;Xihao Lin,&nbsp;Yan Huang,&nbsp;Huixiong Jiang,&nbsp;Changchao Zhan,&nbsp;Hang Zhang,&nbsp;Xiaohua Cao,&nbsp;Yao Xiao","doi":"10.1002/inf2.70055","DOIUrl":"https://doi.org/10.1002/inf2.70055","url":null,"abstract":"<p>Layered vanadium-based oxides have emerged as promising cathode materials for aqueous zinc-ion batteries (AZIBs) owing to their high theoretical capacity, multivalent vanadium species, and low cost. However, their practical development has been hindered by limitations such as narrow interlayer spacing and structural instability. To address these challenges, we successfully generated oxygen vacancies by a one-step hydrothermal method, and simultaneously inserted benzyltrimethylammonium organic cations (TMBA<sup>+</sup>) into the interlayers of V<sub>2</sub>O<sub>5</sub> to obtain a VOH-TMBA<sup>+</sup> composite electrode material, realizing the dual-strategy modification of V<sub>2</sub>O<sub>5</sub>. In the resulting VOH-TMBA<sup>+</sup>, oxygen vacancies and TMBA<sup>+</sup> synergistically expand the interlayer spacing from 6.84 to 13.8 Å, stabilize the layered framework, and modulate the local atomic coordination and electronic structure. This “structural-electronic” dual regulation endows VOH-TMBA<sup>+</sup> with a high specific capacity of 417.2 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup> and exceptional cycling stability (90.7% capacity retention after 7000 cycles at 10.0 A g<sup>−1</sup>). In-situ XRD/Raman and ex-situ XPS/SEM characterizations clarify that the VOH-TMBA<sup>+</sup> electrode is an energy storage mechanism based on H<sup>+</sup>/Zn<sup>2+</sup> co-insertion/extraction. Furthermore, density functional theory calculations demonstrated that the conductivity of VOH-TMBA<sup>+</sup> is further enhanced, while the reduction of electrostatic interactions facilitates the transfer of Zn<sup>2+</sup>. This work provides a generalizable strategy for engineering layered metal oxides through collaborative structural and electronic modulation, offering perspectives for designing high-performance cathode materials in AZIBs.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 11","pages":""},"PeriodicalIF":22.3,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145601234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Record power conversion efficiency in wide bandgap lead-free perovskite solar cells enabled by a natural Vitamin H (Biotin) complex 由天然维生素H(生物素)复合物实现的宽禁带无铅钙钛矿太阳能电池的创纪录功率转换效率
IF 22.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-07-21 DOI: 10.1002/inf2.70052
SungWon Cho, Padmini Pandey, Huān Bì, Jiaqi Liu, Han-Gyun Lim, Hyungju Ahn, Saemon Yoon, Jun Ryu, Qing Shen, Shuzi Hayase, Dong-Won Kang

This study introduces a multifunctional coordination approach to enhance wide bandgap (WBG) tin (Sn) perovskite solar cells (PSCs) by incorporating a naturally derived Vitamin H (Biotin) complex into the perovskite precursor. The Biotin complex exhibits strong chemical interaction with Sn2+ via its ureido ring (CO, NH), valeric acid chain (COO), and tetrahydrothiophene (SC) functionalities. This multidentate interaction further helps to regulate crystal growth kinetics, resulting in compact, pinhole-free films with enhanced surface homogeneity. Furthermore, Biotin effectively passivates uncoordinated Sn sites, mitigates Sn2+ oxidation, and suppresses antisite defects, thereby reducing non-radiative recombination and ion migration. As a result, the optimized device demonstrates a record-high power conversion efficiency of 12.8% (independently certified at 12.5%) and an open-circuit voltage (Voc) of 1.03 V for WBG Sn PSCs. Notably, the device exhibits outstanding ambient stability, retaining almost 80% of its initial efficiency after 1460 h of storage without encapsulation, highlighting the potential of the Biotin complex for high-performance and durable lead-free perovskite photovoltaics.

本研究介绍了一种多功能配位方法,通过将天然衍生的维生素H(生物素)复合物掺入钙钛矿前体中来增强宽带隙(WBG)锡(Sn)钙钛矿太阳能电池(PSCs)。生物素配合物通过其脲基环(C - O, - - nhh)、戊酸链(- - COO−)和四氢噻吩(- - S - - - C)官能团与Sn2+表现出强烈的化学相互作用。这种多齿相互作用进一步有助于调节晶体生长动力学,从而形成致密、无针孔、表面均匀性增强的薄膜。此外,生物素有效地钝化了非配位的Sn位点,减轻了Sn2+氧化,抑制了对位缺陷,从而减少了非辐射重组和离子迁移。结果,优化后的器件显示出创纪录的12.8%的功率转换效率(独立认证为12.5%)和1.03 V的开路电压(Voc)用于WBG Sn pssc。值得注意的是,该器件表现出出色的环境稳定性,在没有封装的情况下存储1460小时后保持了近80%的初始效率,突出了生物素复合物在高性能和耐用无铅钙钛矿光伏发电方面的潜力。
{"title":"Record power conversion efficiency in wide bandgap lead-free perovskite solar cells enabled by a natural Vitamin H (Biotin) complex","authors":"SungWon Cho,&nbsp;Padmini Pandey,&nbsp;Huān Bì,&nbsp;Jiaqi Liu,&nbsp;Han-Gyun Lim,&nbsp;Hyungju Ahn,&nbsp;Saemon Yoon,&nbsp;Jun Ryu,&nbsp;Qing Shen,&nbsp;Shuzi Hayase,&nbsp;Dong-Won Kang","doi":"10.1002/inf2.70052","DOIUrl":"https://doi.org/10.1002/inf2.70052","url":null,"abstract":"<p>This study introduces a multifunctional coordination approach to enhance wide bandgap (WBG) tin (Sn) perovskite solar cells (PSCs) by incorporating a naturally derived Vitamin H (Biotin) complex into the perovskite precursor. The Biotin complex exhibits strong chemical interaction with Sn<sup>2+</sup> via its ureido ring (CO, <span></span>NH), valeric acid chain (<span></span>COO<sup>−</sup>), and tetrahydrothiophene (S<span></span>C) functionalities. This multidentate interaction further helps to regulate crystal growth kinetics, resulting in compact, pinhole-free films with enhanced surface homogeneity. Furthermore, Biotin effectively passivates uncoordinated Sn sites, mitigates Sn<sup>2+</sup> oxidation, and suppresses antisite defects, thereby reducing non-radiative recombination and ion migration. As a result, the optimized device demonstrates a record-high power conversion efficiency of 12.8% (independently certified at 12.5%) and an open-circuit voltage (<i>V</i><sub>oc</sub>) of 1.03 V for WBG Sn PSCs. Notably, the device exhibits outstanding ambient stability, retaining almost 80% of its initial efficiency after 1460 h of storage without encapsulation, highlighting the potential of the Biotin complex for high-performance and durable lead-free perovskite photovoltaics.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 10","pages":""},"PeriodicalIF":22.3,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145426165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unique single-phase electrocatalyst for excellent overall water splitting facilitated by multi-atom synergistic effects 独特的单相电催化剂,在多原子协同作用下实现优异的整体水分解
IF 22.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-07-15 DOI: 10.1002/inf2.70053
Yalei Fan, Shengjie Zhang, Xubin Ye, Jing Zhou, Qingyu Kong, Jihao Zhang, Youwen Long, Jian-Qiang Wang, Zhiwei Hu, Linjuan Zhang

Hydrogen production via water electrolysis offers a sustainable pathway to decarbonize energy systems, yet the development of cost-effective, efficient bifunctional electrocatalysts for overall water splitting (OWS) still remains a critical challenge. Current catalysts often rely on complex multiphase heterostructures to optimize oxygen and hydrogen evolution reactions (OER/HER), but their intricate designs increase costs and hinder scalability. Here, we present a single-phase bifunctional electrocatalyst, CaCu3Co2Ru2O12 (CCCRO), which exhibited exceptional performance for OWS in alkaline conditions, specifically, 1.536 V at 10 mA cm−2 and 1.629 V at 100 mA cm−2, along with 500 h of operational stability at a current density of 100 mA cm−2. In situ x-ray absorption spectroscopy (XAS) revealed the valence-state transition from Cu2+/Co3+/Ru5+ to Cu2+/Co3.5+/Ru5.5+ during OER, but both valence state reduction and structural reconstruction into a CuCoRu nanoalloy occurred under HER conditions. Density functional theory (DFT) calculations indicated that synergistic effects among Cu, Co, and Ru ions enhance catalytic activities for both OER and HER. This work demonstrates that structurally simple yet compositionally tuned oxides can surpass complex catalysts in both the efficiency and durability of OWS, offering a scalable design paradigm for advancing green hydrogen technologies.

通过水电解制氢为能源系统脱碳提供了一条可持续的途径,但开发经济高效的双功能电催化剂用于全面水分解(OWS)仍然是一个关键挑战。目前的催化剂通常依赖于复杂的多相异质结构来优化氧和氢的析出反应(OER/HER),但其复杂的设计增加了成本并阻碍了可扩展性。在此,我们提出了一种单相双功能电催化剂CaCu3Co2Ru2O12 (CCCRO),它在碱性条件下表现出优异的OWS性能,特别是在10 mA cm - 2时1.536 V和100 mA cm - 2时1.629 V,以及在100 mA cm - 2电流密度下500小时的工作稳定性。原位x射线吸收光谱(XAS)显示,在OER过程中,Cu2+/Co3+/Ru5+的价态转变为Cu2+/Co3.5+/Ru5.5+,但在HER条件下,价态还原和结构重构都发生在CuCoRu纳米合金中。密度泛函理论(DFT)计算表明,Cu、Co和Ru离子之间的协同效应增强了OER和HER的催化活性。这项工作表明,结构简单但成分调整的氧化物在OWS的效率和耐用性方面可以超越复杂的催化剂,为推进绿色氢技术提供了可扩展的设计范例。
{"title":"Unique single-phase electrocatalyst for excellent overall water splitting facilitated by multi-atom synergistic effects","authors":"Yalei Fan,&nbsp;Shengjie Zhang,&nbsp;Xubin Ye,&nbsp;Jing Zhou,&nbsp;Qingyu Kong,&nbsp;Jihao Zhang,&nbsp;Youwen Long,&nbsp;Jian-Qiang Wang,&nbsp;Zhiwei Hu,&nbsp;Linjuan Zhang","doi":"10.1002/inf2.70053","DOIUrl":"https://doi.org/10.1002/inf2.70053","url":null,"abstract":"<p>Hydrogen production via water electrolysis offers a sustainable pathway to decarbonize energy systems, yet the development of cost-effective, efficient bifunctional electrocatalysts for overall water splitting (OWS) still remains a critical challenge. Current catalysts often rely on complex multiphase heterostructures to optimize oxygen and hydrogen evolution reactions (OER/HER), but their intricate designs increase costs and hinder scalability. Here, we present a single-phase bifunctional electrocatalyst, CaCu<sub>3</sub>Co<sub>2</sub>Ru<sub>2</sub>O<sub>12</sub> (CCCRO), which exhibited exceptional performance for OWS in alkaline conditions, specifically, 1.536 V at 10 mA cm<sup>−2</sup> and 1.629 V at 100 mA cm<sup>−2</sup>, along with 500 h of operational stability at a current density of 100 mA cm<sup>−2</sup>. In situ x-ray absorption spectroscopy (XAS) revealed the valence-state transition from Cu<sup>2+</sup>/Co<sup>3+</sup>/Ru<sup>5+</sup> to Cu<sup>2+</sup>/Co<sup>3.5+</sup>/Ru<sup>5.5+</sup> during OER, but both valence state reduction and structural reconstruction into a CuCoRu nanoalloy occurred under HER conditions. Density functional theory (DFT) calculations indicated that synergistic effects among Cu, Co, and Ru ions enhance catalytic activities for both OER and HER. This work demonstrates that structurally simple yet compositionally tuned oxides can surpass complex catalysts in both the efficiency and durability of OWS, offering a scalable design paradigm for advancing green hydrogen technologies.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 10","pages":""},"PeriodicalIF":22.3,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145426156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-assembled monolayers accelerating perovskite/silicon tandem solar cells 自组装单层加速钙钛矿/硅串联太阳能电池
IF 22.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-07-13 DOI: 10.1002/inf2.70050
Shenghan Wu, Zilong Wu, Yuliang Xu, Juncheng Wang, Jingwei Zhu, Wenbo Jiao, Zhiyu Gao, Hao Zhang, Shengqiang Ren, Cong chen, Zhongke Yuan, Dewei Zhao

The simple solution processing of perovskite materials, combined with the high efficiency potential of tandem structures and the mature silicon infrastructure, makes perovskite/silicon tandems highly attractive for advancing cost-effective and high-performance photovoltaic technologies. In recent years, lots of work has been reported in improving device efficiency and enhancing long-term stability by optimizing the hole transport layer (HTL). In this perspective, we outline the limitations of conventional hole transport materials used for wide-bandgap (WBG) perovskite subcells in tandem devices. We then briefly summarize the development of perovskite/silicon tandem solar cells (PS-TSCs) and highlight the landmark breakthroughs. Finally, we emphatically discuss and comment on the application and challenge of self-assembled monolayers (SAMs) in perovskite/silicon tandems. We hope this perspective will enable researchers to have a clearer understanding of recent research based on perovskite/silicon tandem and inspire more meaningful work in the future.

钙钛矿材料的简单溶液处理,结合串联结构的高效率潜力和成熟的硅基础设施,使得钙钛矿/硅串联在推进成本效益和高性能光伏技术方面具有很高的吸引力。近年来,通过优化空穴传输层(HTL)来提高器件效率和增强长期稳定性的工作被大量报道。从这个角度来看,我们概述了用于串联器件中宽带隙(WBG)钙钛矿亚电池的传统空穴传输材料的局限性。然后,我们简要总结了钙钛矿/硅串联太阳能电池(PS-TSCs)的发展,并重点介绍了具有里程碑意义的突破。最后,我们重点讨论了自组装单层膜(sam)在钙钛矿/硅串联中的应用和挑战。我们希望这一观点能够使研究人员对最近基于钙钛矿/硅串联的研究有更清晰的理解,并在未来激发更多有意义的工作。
{"title":"Self-assembled monolayers accelerating perovskite/silicon tandem solar cells","authors":"Shenghan Wu,&nbsp;Zilong Wu,&nbsp;Yuliang Xu,&nbsp;Juncheng Wang,&nbsp;Jingwei Zhu,&nbsp;Wenbo Jiao,&nbsp;Zhiyu Gao,&nbsp;Hao Zhang,&nbsp;Shengqiang Ren,&nbsp;Cong chen,&nbsp;Zhongke Yuan,&nbsp;Dewei Zhao","doi":"10.1002/inf2.70050","DOIUrl":"https://doi.org/10.1002/inf2.70050","url":null,"abstract":"<p>The simple solution processing of perovskite materials, combined with the high efficiency potential of tandem structures and the mature silicon infrastructure, makes perovskite/silicon tandems highly attractive for advancing cost-effective and high-performance photovoltaic technologies. In recent years, lots of work has been reported in improving device efficiency and enhancing long-term stability by optimizing the hole transport layer (HTL). In this perspective, we outline the limitations of conventional hole transport materials used for wide-bandgap (WBG) perovskite subcells in tandem devices. We then briefly summarize the development of perovskite/silicon tandem solar cells (PS-TSCs) and highlight the landmark breakthroughs. Finally, we emphatically discuss and comment on the application and challenge of self-assembled monolayers (SAMs) in perovskite/silicon tandems. We hope this perspective will enable researchers to have a clearer understanding of recent research based on perovskite/silicon tandem and inspire more meaningful work in the future.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 9","pages":""},"PeriodicalIF":22.3,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145181524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic reversible evolution of vicinal/bonding heteronuclear diatoms drives relay reductive C–N coupling for enhancive urea electrosynthesis 邻近/成键异核硅藻动态可逆演化驱动接力还原性C-N偶联以增强尿素电合成
IF 22.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-07-10 DOI: 10.1002/inf2.70051
Su Wang, Min Zhou, Zhengyi Li, Jinyan Liang, Yaqiong Su, Jinguang Hu, Hu Li

The precise construction of dual active sites has been uncovered for the electroreduction of C- and N-based precursors to synthesize urea. However, these strategies often face adsorption scaling constraints and spatial restrictions that hinder C–N coupling, resulting in suboptimal activity and selectivity. Here, we showcase a dynamically reversible evolution between vicinal Fe/Cu diatoms and alloy-like Fe–Cu sites, enabling cascade protonation and efficient C–N coupling. This approach markedly enhances urea electrosynthesis from CO2 and NO3, achieving an ultrahigh urea yield of 2421.2 μg h−1 mg−1, Faraday efficiency (FE) of 70.4%, and C-selectivity of 96.7%, surpassing state-of-the-art dual-site electrocatalysts. Operando spectroscopy and theoretical calculations reveal that neighboring Fe/Cu diatoms facilitate the selective adsorption and hydrogenation of NO3 and CO2 into the key intermediates (*NO and *CO). Furthermore, alloy-like Fe–Cu sites, formed in situ due to declined metal surface free energy driven by electron transfer, facilitate C–N coupling and subsequent protonation to selectively produce urea, while dynamically reverting to vicinal Fe/Cu diatoms. This work provides new insights into the relay catalytic strategy for urea electrosynthesis by modulating the dynamic atomic-scale evolution of active sites.

揭示了电还原C基和n基前驱体合成尿素的双活性位点的精确构造。然而,这些策略往往面临吸附结垢约束和阻碍C-N耦合的空间限制,导致活性和选择性不理想。在这里,我们展示了邻近的Fe/Cu硅藻和合金状Fe - Cu位点之间的动态可逆演化,实现了级联质子化和高效的C-N耦合。该方法显著提高了CO2和NO3−电合成尿素的效率,尿素产率达到2421.2 μg h−1 mg−1,法拉第效率(FE)为70.4%,c -选择性为96.7%,超过了目前最先进的双位点电催化剂。Operando光谱和理论计算表明,邻近的Fe/Cu硅藻有助于NO3−和CO2选择性吸附和加氢到关键中间体(*NO和*CO)中。此外,由于电子转移导致金属表面自由能下降,在原位形成了合金状的Fe - Cu位点,促进了C-N偶联和随后的质子化,选择性地产生尿素,同时动态地还原为邻近的Fe/Cu硅藻。这项工作为尿素电合成的接力催化策略提供了新的见解,通过调节活性位点的动态原子尺度演化。
{"title":"Dynamic reversible evolution of vicinal/bonding heteronuclear diatoms drives relay reductive C–N coupling for enhancive urea electrosynthesis","authors":"Su Wang,&nbsp;Min Zhou,&nbsp;Zhengyi Li,&nbsp;Jinyan Liang,&nbsp;Yaqiong Su,&nbsp;Jinguang Hu,&nbsp;Hu Li","doi":"10.1002/inf2.70051","DOIUrl":"https://doi.org/10.1002/inf2.70051","url":null,"abstract":"<p>The precise construction of dual active sites has been uncovered for the electroreduction of C- and N-based precursors to synthesize urea. However, these strategies often face adsorption scaling constraints and spatial restrictions that hinder C–N coupling, resulting in suboptimal activity and selectivity. Here, we showcase a dynamically reversible evolution between vicinal Fe/Cu diatoms and alloy-like Fe–Cu sites, enabling cascade protonation and efficient C–N coupling. This approach markedly enhances urea electrosynthesis from CO<sub>2</sub> and NO<sub>3</sub><sup>−</sup>, achieving an ultrahigh urea yield of 2421.2 μg h<sup>−1</sup> mg<sup>−1</sup>, Faraday efficiency (FE) of 70.4%, and C-selectivity of 96.7%, surpassing state-of-the-art dual-site electrocatalysts. Operando spectroscopy and theoretical calculations reveal that neighboring Fe/Cu diatoms facilitate the selective adsorption and hydrogenation of NO<sub>3</sub><sup>−</sup> and CO<sub>2</sub> into the key intermediates (*NO and *CO). Furthermore, alloy-like Fe–Cu sites, formed in situ due to declined metal surface free energy driven by electron transfer, facilitate C–N coupling and subsequent protonation to selectively produce urea, while dynamically reverting to vicinal Fe/Cu diatoms. This work provides new insights into the relay catalytic strategy for urea electrosynthesis by modulating the dynamic atomic-scale evolution of active sites.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 11","pages":""},"PeriodicalIF":22.3,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145601127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Infomat
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1