首页 > 最新文献

Infomat最新文献

英文 中文
Advances in 3D printing for polymer composites: A review 聚合物复合材料 3D 打印技术的进展:综述
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-04 DOI: 10.1002/inf2.12568
Tengbo Ma, Yali Zhang, Kunpeng Ruan, Hua Guo, Mukun He, Xuetao Shi, Yongqiang Guo, Jie Kong, Junwei Gu

The potential of three-dimensional (3D) printing technology in the fabrication of advanced polymer composites is becoming increasingly evident. This review discusses the latest research developments and applications of 3D printing in polymer composites. First, it focuses on the optimization of 3D printing technology, that is, by upgrading the equipment or components or adjusting the printing parameters, to make them more adaptable to the processing characteristics of polymer composites and to improve the comprehensive performance of the products. Second, it focuses on the 3D printable novel consumables for polymer composites, which mainly include the new printing filaments, printing inks, photosensitive resins, and printing powders, introducing the unique properties of the new consumables and different ways to apply them to 3D printing. Finally, the applications of 3D printing technology in the preparation of functional polymer composites (such as thermal conductivity, electromagnetic interference shielding, biomedicine, self-healing, and environmental responsiveness) are explored, with a focus on the distribution of the functional fillers and the influence of the topological shapes on the properties and functional characteristics of the 3D printed products. The aim of this review is to deepen the understanding of the convergence between 3D printing technology and polymer composites and to anticipate future trends and applications.

三维(3D)打印技术在制造先进聚合物复合材料方面的潜力日益明显。本综述讨论了三维打印技术在聚合物复合材料中的最新研究进展和应用。首先,重点介绍三维打印技术的优化,即通过升级设备或部件或调整打印参数,使其更加适应聚合物复合材料的加工特性,提高产品的综合性能。其次,重点介绍了聚合物复合材料的3D打印新型耗材,主要包括新型打印长丝、打印油墨、光敏树脂、打印粉末等,介绍了新型耗材的独特性能以及应用于3D打印的不同方式。最后,探讨了三维打印技术在制备功能性聚合物复合材料(如导热性、电磁干扰屏蔽、生物医学、自愈性和环境响应性等)中的应用,重点介绍了功能性填料的分布以及拓扑形状对三维打印产品特性和功能特征的影响。本综述旨在加深对 3D 打印技术与聚合物复合材料融合的理解,并预测未来的发展趋势和应用。
{"title":"Advances in 3D printing for polymer composites: A review","authors":"Tengbo Ma,&nbsp;Yali Zhang,&nbsp;Kunpeng Ruan,&nbsp;Hua Guo,&nbsp;Mukun He,&nbsp;Xuetao Shi,&nbsp;Yongqiang Guo,&nbsp;Jie Kong,&nbsp;Junwei Gu","doi":"10.1002/inf2.12568","DOIUrl":"10.1002/inf2.12568","url":null,"abstract":"<p>The potential of three-dimensional (3D) printing technology in the fabrication of advanced polymer composites is becoming increasingly evident. This review discusses the latest research developments and applications of 3D printing in polymer composites. First, it focuses on the optimization of 3D printing technology, that is, by upgrading the equipment or components or adjusting the printing parameters, to make them more adaptable to the processing characteristics of polymer composites and to improve the comprehensive performance of the products. Second, it focuses on the 3D printable novel consumables for polymer composites, which mainly include the new printing filaments, printing inks, photosensitive resins, and printing powders, introducing the unique properties of the new consumables and different ways to apply them to 3D printing. Finally, the applications of 3D printing technology in the preparation of functional polymer composites (such as thermal conductivity, electromagnetic interference shielding, biomedicine, self-healing, and environmental responsiveness) are explored, with a focus on the distribution of the functional fillers and the influence of the topological shapes on the properties and functional characteristics of the 3D printed products. The aim of this review is to deepen the understanding of the convergence between 3D printing technology and polymer composites and to anticipate future trends and applications.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 6","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12568","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141388020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unusual bendable soft molecule-based ferroelectric crystals enabling the flexible photo-pyroelectric detection 基于软分子的非同寻常的可弯曲铁电晶体,可实现灵活的光聚合电探测
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-04 DOI: 10.1002/inf2.12593
Liwei Tang, Xinxu Zhu, Yu Ma, Haojie Xu, Shiguo Han, Yi Liu, Yaoyao Chen, Daohua Wang, Junhua Luo, Zhihua Sun

Soft molecule-based ferroelectrics with unique structural flexibility hold a promise for versatile applications of non-volatile memory, imaging and photovoltaic devices. Except for few polymers (e.g., polyvinylidene fluoride, PVDF), it is challenging to exploit soft ferroelectric crystals toward free-standing flexible photoactive devices. We here report a multiaxial soft molecule-based ferroelectric, (n-PA)2PbCl4 (1, where n-PA+ is n-pentylammonium), of which spontaneous polarization can be reversibly switched in both crystal and powder forms. Strikingly, single crystals of 1 have unusual structural flexibility and bendability, achieving the self-standing bending with a bending radius of ~0.22 mm. Besides, the pyroelectric activities are also preserved for these single crystals after several bending cycles. Further, the bendable crystal-based photodetector of 1 allows broadband photoactivities via the photo-pyroelectric effect, covering a wide range from 405 to 940 nm spectral region, breaking through the limit of optical absorption bandgap. As the first study of bendable free-standing photo-pyroelectric detectors in ferroelectric crystals, our work sheds light on the assembly of flexible smart photoelectric devices.

基于软分子的铁电体具有独特的结构柔性,有望在非易失性存储器、成像和光电设备等领域得到广泛应用。除少数聚合物(如聚偏氟乙烯)外,利用软铁电晶体制造独立的柔性光电器件具有挑战性。我们在此报告了一种基于软分子的多轴铁电体--(n-PA)2PbCl4(1,其中 n-PA+ 为正戊基铵),它的自发极化可以在晶体和粉末两种形态下进行可逆切换。引人注目的是,1 的单晶体具有非同寻常的结构柔韧性和可弯曲性,可实现自立弯曲,弯曲半径约为 0.22 毫米。此外,这些单晶体在多次弯曲后仍能保持热释电活性。此外,1 的可弯曲晶体光电探测器通过光致热释电效应实现了宽带光电活动,覆盖了从 405 纳米到 940 纳米的宽光谱范围,突破了光吸收带隙的限制。作为首次在铁电晶体中研究可弯曲的独立光电探测器,我们的工作为组装柔性智能光电器件提供了启示。
{"title":"Unusual bendable soft molecule-based ferroelectric crystals enabling the flexible photo-pyroelectric detection","authors":"Liwei Tang,&nbsp;Xinxu Zhu,&nbsp;Yu Ma,&nbsp;Haojie Xu,&nbsp;Shiguo Han,&nbsp;Yi Liu,&nbsp;Yaoyao Chen,&nbsp;Daohua Wang,&nbsp;Junhua Luo,&nbsp;Zhihua Sun","doi":"10.1002/inf2.12593","DOIUrl":"10.1002/inf2.12593","url":null,"abstract":"<p>Soft molecule-based ferroelectrics with unique structural flexibility hold a promise for versatile applications of non-volatile memory, imaging and photovoltaic devices. Except for few polymers (e.g., polyvinylidene fluoride, PVDF), it is challenging to exploit soft ferroelectric crystals toward free-standing flexible photoactive devices. We here report a multiaxial soft molecule-based ferroelectric, (<i>n-</i>PA)<sub>2</sub>PbCl<sub>4</sub> (<b>1</b>, where <i>n-</i>PA<sup>+</sup> is <i>n</i>-pentylammonium), of which spontaneous polarization can be reversibly switched in both crystal and powder forms. Strikingly, single crystals of <b>1</b> have unusual structural flexibility and bendability, achieving the self-standing bending with a bending radius of ~0.22 mm. Besides, the pyroelectric activities are also preserved for these single crystals after several bending cycles. Further, the bendable crystal-based photodetector of <b>1</b> allows broadband photoactivities via the photo-pyroelectric effect, covering a wide range from 405 to 940 nm spectral region, breaking through the limit of optical absorption bandgap. As the first study of bendable free-standing photo-pyroelectric detectors in ferroelectric crystals, our work sheds light on the assembly of flexible smart photoelectric devices.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 10","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12593","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NIR regeneration and visible luminescence modification in photochromic glass: A novel encryption and 3D optical storage medium 光致变色玻璃中的近红外再生和可见光发光修饰:新型加密和 3D 光学存储介质
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-29 DOI: 10.1002/inf2.12546
Heping Zhao, Yuewei Li, Chao Mi, Yingzhu Zi, Xue Bai, Asif Ali Haider, Yangke Cun, Anjun Huang, Yue Liu, Jianbei Qiu, Zhiguo Song, Jiayan Liao, Ji Zhou, Zhengwen Yang

Photochromic glass shows great promise for 3D optical information encryption and storage applications. The formation of Ag nanoclusters by light irradiation has been a significant development in the field of photochromic glass research. However, extending this approach to other metal nanoclusters remains a challenge. In this study, we present a pioneering method for crafting photochromic glass with reliably adjustable dual-mode luminescence in both the NIR and visible spectra. This was achieved by leveraging bimetallic clusters of bismuth, resulting in a distinct and novel photochromic glass. When rare-earth-doped, bismuth-based glass is irradiated with a 473 nm laser, and it undergoes a color transformation from yellow to red, accompanied by visible and broad NIR luminescence. This phenomenon is attributed to the formation of laser-induced (Bi+, Bi0) nanoclusters. We achieved reversible manipulation of the NIR luminescence of these nanoclusters and visible rare-earth luminescence by alternating exposure to a 473 nm laser and thermal stimulation. Information patterns can be inscribed and erased on a glass surface or in 3D space, and the readout is enabled by modulating visible and NIR luminescence. This study introduces a pioneering strategy for designing photochromic glasses with extensive NIR luminescence and significant potential for applications in high-capacity information encryption, optical data storage, optical communication, and NIR imaging. The exploration of bimetallic cluster formation in Bi represents a vital contribution to the advancement of multifunctional glass systems with augmented optical functionalities and versatile applications.

光致变色玻璃在三维光学信息加密和存储应用方面前景广阔。通过光照射形成银纳米团簇是光致变色玻璃研究领域的一项重大进展。然而,将这种方法扩展到其他金属纳米团簇仍然是一个挑战。在本研究中,我们提出了一种开创性的方法,用于制造在近红外光谱和可见光谱中都能可靠调节双模发光的光致变色玻璃。这是通过利用双金属铋簇来实现的,从而产生了一种独特而新颖的光致变色玻璃。当稀土掺杂的铋基玻璃受到 473 纳米激光照射时,其颜色会从黄色转变为红色,并伴有可见光和宽近红外发光。这一现象归因于激光诱导(Bi+、Bi0)纳米团簇的形成。我们通过交替照射 473 纳米激光和热刺激,实现了对这些纳米团簇的近红外发光和可见稀土发光的可逆操纵。信息图案可以在玻璃表面或三维空间中刻写和擦除,并通过调节可见光和近红外发光实现读出。这项研究为设计具有广泛近红外发光特性的光致变色玻璃介绍了一种开创性的策略,它在大容量信息加密、光学数据存储、光通信和近红外成像等领域具有巨大的应用潜力。对 Bi 中双金属团簇形成的探索,是对开发具有增强光学功能和多种应用的多功能玻璃系统的重要贡献。
{"title":"NIR regeneration and visible luminescence modification in photochromic glass: A novel encryption and 3D optical storage medium","authors":"Heping Zhao,&nbsp;Yuewei Li,&nbsp;Chao Mi,&nbsp;Yingzhu Zi,&nbsp;Xue Bai,&nbsp;Asif Ali Haider,&nbsp;Yangke Cun,&nbsp;Anjun Huang,&nbsp;Yue Liu,&nbsp;Jianbei Qiu,&nbsp;Zhiguo Song,&nbsp;Jiayan Liao,&nbsp;Ji Zhou,&nbsp;Zhengwen Yang","doi":"10.1002/inf2.12546","DOIUrl":"10.1002/inf2.12546","url":null,"abstract":"<p>Photochromic glass shows great promise for 3D optical information encryption and storage applications. The formation of Ag nanoclusters by light irradiation has been a significant development in the field of photochromic glass research. However, extending this approach to other metal nanoclusters remains a challenge. In this study, we present a pioneering method for crafting photochromic glass with reliably adjustable dual-mode luminescence in both the NIR and visible spectra. This was achieved by leveraging bimetallic clusters of bismuth, resulting in a distinct and novel photochromic glass. When rare-earth-doped, bismuth-based glass is irradiated with a 473 nm laser, and it undergoes a color transformation from yellow to red, accompanied by visible and broad NIR luminescence. This phenomenon is attributed to the formation of laser-induced (Bi<sup>+</sup>, Bi<sup>0</sup>) nanoclusters. We achieved reversible manipulation of the NIR luminescence of these nanoclusters and visible rare-earth luminescence by alternating exposure to a 473 nm laser and thermal stimulation. Information patterns can be inscribed and erased on a glass surface or in 3D space, and the readout is enabled by modulating visible and NIR luminescence. This study introduces a pioneering strategy for designing photochromic glasses with extensive NIR luminescence and significant potential for applications in high-capacity information encryption, optical data storage, optical communication, and NIR imaging. The exploration of bimetallic cluster formation in Bi represents a vital contribution to the advancement of multifunctional glass systems with augmented optical functionalities and versatile applications.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 9","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12546","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilization of halide perovskites with silicon compounds for optoelectronic, catalytic, and bioimaging applications 用硅化合物稳定卤化物包晶,用于光电、催化和生物成像应用
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-26 DOI: 10.1002/inf2.12559
Atanu Jana, Sangeun Cho, Abhishek Meena, Abu Talha Aqueel Ahmed, Vijaya Gopalan Sree, Youngsin Park, Hyungsang Kim, Hyunsik Im, Robert A. Taylor

Silicon belongs to group 14 elements along with carbon, germanium, tin, and lead in the periodic table. Similar to carbon, silicon is capable of forming a wide range of stable compounds, including silicon hydrides, organosilicons, silicic acids, silicon oxides, and silicone polymers. These materials have been used extensively in optoelectronic devices, sensing, catalysis, and biomedical applications. In recent years, silicon compounds have also been shown to be suitable for stabilizing delicate halide perovskite structures. These composite materials are now receiving a lot of interest for their potential use in various real-world applications. Despite exhibiting outstanding performance in various optoelectronic devices, halide perovskites are susceptible to breakdown in the presence of moisture, oxygen, heat, and UV light. Silicon compounds are thought to be excellent materials for improving both halide perovskite stability and the performance of perovskite-based optoelectronic devices. In this work, a wide range of silicon compounds that have been used in halide perovskite research and their applications in various fields are discussed. The interfacial stability, structure–property correlations, and various application aspects of perovskite and silicon compounds are also analyzed at the molecular level. This study also explores the developments, difficulties, and potential future directions associated with the synthesis and application of perovskite-silicon compounds.

在元素周期表中,硅与碳、锗、锡和铅同属第 14 族元素。与碳相似,硅也能形成多种稳定的化合物,包括硅氢化物、有机硅、硅酸、硅氧化物和硅聚合物。这些材料已广泛应用于光电设备、传感、催化和生物医学领域。近年来,硅化合物还被证明适用于稳定微妙的卤化物包晶结构。这些复合材料因其在各种实际应用中的潜在用途而备受关注。尽管卤化物包光体在各种光电设备中表现出卓越的性能,但在潮湿、氧气、热量和紫外线的作用下很容易分解。硅化合物被认为是提高卤化物包晶稳定性和基于包晶的光电器件性能的绝佳材料。在本研究中,我们讨论了一系列用于卤化物透镜研究的硅化合物及其在各个领域的应用。此外,还从分子层面分析了透辉石和硅化合物的界面稳定性、结构-性能相关性以及各种应用方面。本研究还探讨了与包晶硅化合物的合成和应用相关的发展、困难和潜在的未来方向。
{"title":"Stabilization of halide perovskites with silicon compounds for optoelectronic, catalytic, and bioimaging applications","authors":"Atanu Jana,&nbsp;Sangeun Cho,&nbsp;Abhishek Meena,&nbsp;Abu Talha Aqueel Ahmed,&nbsp;Vijaya Gopalan Sree,&nbsp;Youngsin Park,&nbsp;Hyungsang Kim,&nbsp;Hyunsik Im,&nbsp;Robert A. Taylor","doi":"10.1002/inf2.12559","DOIUrl":"10.1002/inf2.12559","url":null,"abstract":"<p>Silicon belongs to group 14 elements along with carbon, germanium, tin, and lead in the periodic table. Similar to carbon, silicon is capable of forming a wide range of stable compounds, including silicon hydrides, organosilicons, silicic acids, silicon oxides, and silicone polymers. These materials have been used extensively in optoelectronic devices, sensing, catalysis, and biomedical applications. In recent years, silicon compounds have also been shown to be suitable for stabilizing delicate halide perovskite structures. These composite materials are now receiving a lot of interest for their potential use in various real-world applications. Despite exhibiting outstanding performance in various optoelectronic devices, halide perovskites are susceptible to breakdown in the presence of moisture, oxygen, heat, and UV light. Silicon compounds are thought to be excellent materials for improving both halide perovskite stability and the performance of perovskite-based optoelectronic devices. In this work, a wide range of silicon compounds that have been used in halide perovskite research and their applications in various fields are discussed. The interfacial stability, structure–property correlations, and various application aspects of perovskite and silicon compounds are also analyzed at the molecular level. This study also explores the developments, difficulties, and potential future directions associated with the synthesis and application of perovskite-silicon compounds.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 12","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12559","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser-processed lithium niobate wafer for pyroelectric sensor 用于热释电传感器的激光加工铌酸锂晶片
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-23 DOI: 10.1002/inf2.12557
Di Xin, Jing Han, Wei Song, Wenbin Han, Meng Wang, Zhimeng Li, Yunwu Zhang, Yang Li, Hong Liu, Xiaoyan Liu, Dehui Sun, Weijia Zhou

During the past few decades, pyroelectric sensors have attracted extensive attention due to their prominent features. However, their effectiveness is hindered by low electric output. In this study, the laser processed lithium niobate (LPLN) wafers are fabricated to improve the temperature–voltage response. These processed wafers are utilized to construct pyroelectric sensors as well as human–machine interfaces. The laser induces escape of oxygen and the formation of oxygen vacancies, which enhance the charge transport capability on the surface of lithium niobate (LN). Therefore, the electrodes gather an increased quantity of charges, increasing the pyroelectric voltage on the LPLN wafers to a 1.3 times higher voltage than that of LN wafers. For the human–machine interfaces, tactile information in various modes can be recognized by a sensor array and the temperature warning system operates well. Therefore, the laser modification approach is promising to enhance the performance of pyroelectric devices for applications in human–machine interfaces.

在过去的几十年里,热释电传感器因其突出的特点而受到广泛关注。然而,低电输出阻碍了它们的有效性。本研究采用激光加工铌酸锂(LPLN)晶片来改善温度-电压响应。这些经过加工的晶片可用于构建热释电传感器和人机界面。激光诱导氧气逸出并形成氧空位,从而增强了铌酸锂(LN)表面的电荷传输能力。因此,电极聚集了更多的电荷,使 LPLN 晶圆上的热释电电压比 LN 晶圆高 1.3 倍。在人机界面方面,传感器阵列可以识别各种模式的触觉信息,温度预警系统运行良好。因此,激光改性方法有望提高热释电器件在人机界面中的应用性能。
{"title":"Laser-processed lithium niobate wafer for pyroelectric sensor","authors":"Di Xin,&nbsp;Jing Han,&nbsp;Wei Song,&nbsp;Wenbin Han,&nbsp;Meng Wang,&nbsp;Zhimeng Li,&nbsp;Yunwu Zhang,&nbsp;Yang Li,&nbsp;Hong Liu,&nbsp;Xiaoyan Liu,&nbsp;Dehui Sun,&nbsp;Weijia Zhou","doi":"10.1002/inf2.12557","DOIUrl":"10.1002/inf2.12557","url":null,"abstract":"<p>During the past few decades, pyroelectric sensors have attracted extensive attention due to their prominent features. However, their effectiveness is hindered by low electric output. In this study, the laser processed lithium niobate (LPLN) wafers are fabricated to improve the temperature–voltage response. These processed wafers are utilized to construct pyroelectric sensors as well as human–machine interfaces. The laser induces escape of oxygen and the formation of oxygen vacancies, which enhance the charge transport capability on the surface of lithium niobate (LN). Therefore, the electrodes gather an increased quantity of charges, increasing the pyroelectric voltage on the LPLN wafers to a 1.3 times higher voltage than that of LN wafers. For the human–machine interfaces, tactile information in various modes can be recognized by a sensor array and the temperature warning system operates well. Therefore, the laser modification approach is promising to enhance the performance of pyroelectric devices for applications in human–machine interfaces.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 10","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12557","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141107529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast interfacial electrocatalytic desolvation enabling low-temperature and long-cycle-life aqueous Zn batteries 快速界面电催化脱溶实现低温长循环寿命锌水电池
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-23 DOI: 10.1002/inf2.12558
Jian Wang, Hongfei Hu, Lujie Jia, Jing Zhang, Quan Zhuang, Linge Li, Yongzheng Zhang, Dong Wang, Qinghua Guan, Huimin Hu, Meinan Liu, Liang Zhan, Henry Adenusi, Stefano Passerini, Hongzhen Lin

Low-temperature zinc batteries (LT-ZIBs) based on aqueous electrolytes show great promise for practical applications owing to their natural resource abundance and low cost. However, they suffer from sluggish kinetics with elevated energy barriers due to the dissociation of bulky Zn(H2O)62+ solvation structure and free Zn2+ diffusion, resulting in unsatisfactory lifespan and performance. Herein, dissimilar to solvation shell tuning or layer spacing enlargement engineering, delocalized electrons in cathode through constructing intrinsic defect engineering is proposed to achieve a rapid electrocatalytic desolvation to obtain free Zn2+ for insertion/extraction. As revealed by density functional theory calculations and interfacial spectroscopic characterizations, the intrinsic delocalized electron distribution propels the Zn(H2O)62+ dissociation, forming a reversible interphase and facilitating Zn2+ diffusion across the electrolyte/cathode interface. The as-fabricated oxygen defect-rich V2O5 on hierarchical porous carbon (ODVO@HPC) electrode exhibits high capacity robustness from 25 to −20°C. Operating at −20°C, the ODVO@HPC delivers 191 mAh g−1 at 50 A g−1 and lasts for 50 000 cycles at 10 A g−1, significantly enhancing the power density and lifespan under low-temperature environments in comparison to previous reports. Even with areal mass loading of ~13 mg cm−2, both coin cells and pouch batteries maintain excellent stability and areal capacities, realizing practical high-performance LT-ZIBs.

基于水性电解质的低温锌电池(LT-ZIBs)因其自然资源丰富、成本低廉而在实际应用中大有可为。然而,由于笨重的 Zn(H2O)62+ 溶胶结构的解离和自由 Zn2+ 扩散,它们的动力学缓慢,能垒升高,导致寿命和性能不尽人意。与溶壳调整或层间距增大工程不同,本文提出通过构建固有缺陷工程使电子在阴极中脱域,从而实现快速电催化解溶,获得自由 Zn2+ 以进行插入/提取。密度泛函理论计算和界面光谱特性分析表明,固有的脱局域电子分布推动了 Zn(H2O)62+ 的解离,形成了可逆的间相,促进了 Zn2+ 在电解质/阴极界面上的扩散。在分层多孔碳(ODVO@HPC)上制造的富氧缺陷 V2O5 电极在 25 至 -20°C 的温度范围内表现出高容量稳定性。在-20°C下工作时,ODVO@HPC在50 A g-1的条件下可提供191 mAh g-1的电量,在10 A g-1的条件下可持续50 000次循环,与之前的报告相比,显著提高了低温环境下的功率密度和使用寿命。即使钮扣电池和袋装电池的平均质量负载为 ~13 mg cm-2,它们仍能保持出色的稳定性和平均容量,实现了实用的高性能 LT-ZIB。
{"title":"Fast interfacial electrocatalytic desolvation enabling low-temperature and long-cycle-life aqueous Zn batteries","authors":"Jian Wang,&nbsp;Hongfei Hu,&nbsp;Lujie Jia,&nbsp;Jing Zhang,&nbsp;Quan Zhuang,&nbsp;Linge Li,&nbsp;Yongzheng Zhang,&nbsp;Dong Wang,&nbsp;Qinghua Guan,&nbsp;Huimin Hu,&nbsp;Meinan Liu,&nbsp;Liang Zhan,&nbsp;Henry Adenusi,&nbsp;Stefano Passerini,&nbsp;Hongzhen Lin","doi":"10.1002/inf2.12558","DOIUrl":"10.1002/inf2.12558","url":null,"abstract":"<p>Low-temperature zinc batteries (LT-ZIBs) based on aqueous electrolytes show great promise for practical applications owing to their natural resource abundance and low cost. However, they suffer from sluggish kinetics with elevated energy barriers due to the dissociation of bulky Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup> solvation structure and free Zn<sup>2+</sup> diffusion, resulting in unsatisfactory lifespan and performance. Herein, dissimilar to solvation shell tuning or layer spacing enlargement engineering, delocalized electrons in cathode through constructing intrinsic defect engineering is proposed to achieve a rapid electrocatalytic desolvation to obtain free Zn<sup>2+</sup> for insertion/extraction. As revealed by density functional theory calculations and interfacial spectroscopic characterizations, the intrinsic delocalized electron distribution propels the Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup> dissociation, forming a reversible interphase and facilitating Zn<sup>2+</sup> diffusion across the electrolyte/cathode interface. The as-fabricated oxygen defect-rich V<sub>2</sub>O<sub>5</sub> on hierarchical porous carbon (ODVO@HPC) electrode exhibits high capacity robustness from 25 to −20°C. Operating at −20°C, the ODVO@HPC delivers 191 mAh g<sup>−1</sup> at 50 A g<sup>−1</sup> and lasts for 50 000 cycles at 10 A g<sup>−1</sup>, significantly enhancing the power density and lifespan under low-temperature environments in comparison to previous reports. Even with areal mass loading of ~13 mg cm<sup>−2</sup>, both coin cells and pouch batteries maintain excellent stability and areal capacities, realizing practical high-performance LT-ZIBs.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 7","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12558","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141102900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back cover image 封底图片
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-20 DOI: 10.1002/inf2.12564
Chengquan Zhong, Jingzi Zhang, Yuelin Wang, Yanwu Long, Pengzhou Zhu, Jiakai Liu, Kailong Hu, Junjie Chen, Xi Lin

Based on transmittance contrast of MXene electrodes, a general strategy for constructing self-powered photodetectors with high response is proposed.

根据 MXene 电极的透射率对比,提出了构建高响应自供电光电探测器的一般策略。
{"title":"Back cover image","authors":"Chengquan Zhong,&nbsp;Jingzi Zhang,&nbsp;Yuelin Wang,&nbsp;Yanwu Long,&nbsp;Pengzhou Zhu,&nbsp;Jiakai Liu,&nbsp;Kailong Hu,&nbsp;Junjie Chen,&nbsp;Xi Lin","doi":"10.1002/inf2.12564","DOIUrl":"https://doi.org/10.1002/inf2.12564","url":null,"abstract":"<p>Based on transmittance contrast of MXene electrodes, a general strategy for constructing self-powered photodetectors with high response is proposed.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 5","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12564","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141073742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broad-range, high-linearity, and fast-response pressure sensing enabled by nanomechanical resonators based on 2D non-layered material: β-In2S3 基于二维非层状材料:β-In2S3 的纳米机械谐振器实现宽范围、高线性度和快速响应压力传感
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-19 DOI: 10.1002/inf2.12553
Junzhi Zhu, Song Wu, Luming Wang, Jiaqi Wu, Jiankai Zhu, Luwei Zou, Fei Xiao, Ziluo Su, Chenyin Jiao, Shenghai Pei, Zejuan Zhang, Jiaze Qin, Bo Xu, Yu Zhou, Juan Xia, Zenghui Wang

Two-dimensional (2D) non-layered materials, along with their unique surface properties, offer intriguing prospects for sensing applications. Introducing mechanical degrees of freedom is expected to enrich the sensing performances of 2D non-layered devices, such as high frequency, high tunability, and large dynamic range, which could lead to new types of high performance nanosensors. Here, we demonstrate 2D non-layered nanomechanical resonant sensors based on β-In2S3, where the devices exhibit robust nanomechanical vibrations up to the very high frequency (VHF) band. We show that such device can operate as pressure sensor with broad range (from 10−3 Torr to atmospheric pressure), high linearity (with a nonlinearity factor as low as 0.0071), and fast response (with an intrinsic response time less than 1 μs). We further unveil the frequency scaling law in these β-In2S3 nanomechanical sensors and successfully extract both the Young's modulus and pretension for the crystal. Our work paves the way towards future wafer-scale design and integrated sensors based on 2D non-layered materials.

二维(2D)非层状材料及其独特的表面特性为传感应用提供了引人入胜的前景。引入机械自由度有望丰富二维非分层器件的传感性能,如高频率、高可调性和大动态范围,这将带来新型高性能纳米传感器。在这里,我们展示了基于 β-In2S3 的二维非层状纳米机械谐振传感器,该器件表现出高达甚高频(VHF)频段的稳健纳米机械振动。我们的研究表明,这种器件可用作压力传感器,具有范围广(从 10-3 托到大气压)、线性度高(非线性系数低至 0.0071)和响应速度快(固有响应时间小于 1 μs)的特点。我们进一步揭示了这些 β-In2S3 纳米机械传感器的频率缩放规律,并成功提取了晶体的杨氏模量和预拉力。我们的工作为未来基于二维非层状材料的晶圆级设计和集成传感器铺平了道路。
{"title":"Broad-range, high-linearity, and fast-response pressure sensing enabled by nanomechanical resonators based on 2D non-layered material: β-In2S3","authors":"Junzhi Zhu,&nbsp;Song Wu,&nbsp;Luming Wang,&nbsp;Jiaqi Wu,&nbsp;Jiankai Zhu,&nbsp;Luwei Zou,&nbsp;Fei Xiao,&nbsp;Ziluo Su,&nbsp;Chenyin Jiao,&nbsp;Shenghai Pei,&nbsp;Zejuan Zhang,&nbsp;Jiaze Qin,&nbsp;Bo Xu,&nbsp;Yu Zhou,&nbsp;Juan Xia,&nbsp;Zenghui Wang","doi":"10.1002/inf2.12553","DOIUrl":"10.1002/inf2.12553","url":null,"abstract":"<p>Two-dimensional (2D) non-layered materials, along with their unique surface properties, offer intriguing prospects for sensing applications. Introducing mechanical degrees of freedom is expected to enrich the sensing performances of 2D non-layered devices, such as high frequency, high tunability, and large dynamic range, which could lead to new types of high performance nanosensors. Here, we demonstrate 2D non-layered nanomechanical resonant sensors based on <i>β</i>-In<sub>2</sub>S<sub>3</sub>, where the devices exhibit robust nanomechanical vibrations up to the very high frequency (VHF) band. We show that such device can operate as pressure sensor with broad range (from 10<sup>−3</sup> Torr to atmospheric pressure), high linearity (with a nonlinearity factor as low as 0.0071), and fast response (with an intrinsic response time less than 1 μs). We further unveil the frequency scaling law in these <i>β</i>-In<sub>2</sub>S<sub>3</sub> nanomechanical sensors and successfully extract both the Young's modulus and pretension for the crystal. Our work paves the way towards future wafer-scale design and integrated sensors based on 2D non-layered materials.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 8","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12553","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141123926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hot-carrier engineering for two-dimensional integrated infrared optoelectronics 二维集成红外光电的热载流子工程
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-13 DOI: 10.1002/inf2.12556
Yuanfang Yu, Jialin Zhang, Lianhui Wang, Zhenhua Ni, Junpeng Lu, Li Gao

Plasmonic hot carrier engineering holds great promise for advanced infrared optoelectronic devices. The process of hot carrier transfer has the potential to surpass the spectral limitations of semiconductors, enabling detection of sub-bandgap infrared photons. By harvesting hot carriers prior to thermalization, energy dissipation is minimized, leading to highly efficient photoelectric conversion. Distinguished from conventional band-edge carriers, the ultrafast interfacial transfer and ballistic transport of hot carriers present unprecedented opportunities for high-speed photoelectric conversion. However, a complete description on the underlying mechanism of hot-carrier infrared optoelectronic device is still lacking, and the utilization of this strategy for tailoring infrared response is in its early stages. This review aims to provide a comprehensive overview of the generation, transfer and transport dynamics of hot carriers. Basic principles of hot-carrier conversion in heterostructures are discussed in detail. In addition, progresses of two-dimensional (2D) infrared hot-carrier optoelectronic devices are summarized, with a specific emphasis on photodetectors, solar cells, light-emitting devices and novel functionalities through hot-carrier engineering. Furthermore, challenges and prospects of hot-carrier device towards infrared applications are highlighted.

等离子体热载流子工程为先进的红外光电设备带来了巨大前景。热载流子传输过程有可能超越半导体的光谱限制,实现对亚带隙红外光子的检测。通过在热化之前收集热载流子,可以最大限度地减少能量耗散,从而实现高效光电转换。有别于传统的带边载流子,热载流子的超快界面转移和弹道传输为高速光电转换提供了前所未有的机遇。然而,目前对热载流子红外光电器件的基本机理还缺乏完整的描述,利用这种策略来定制红外响应也还处于早期阶段。本综述旨在全面概述热载流子的产生、转移和传输动力学。文中详细讨论了异质结构中热载流子转换的基本原理。此外,还总结了二维(2D)红外热载流子光电器件的进展,特别强调了光电探测器、太阳能电池、发光器件以及通过热载流子工程实现的新功能。此外,还强调了热载流子器件在红外应用方面面临的挑战和前景。
{"title":"Hot-carrier engineering for two-dimensional integrated infrared optoelectronics","authors":"Yuanfang Yu,&nbsp;Jialin Zhang,&nbsp;Lianhui Wang,&nbsp;Zhenhua Ni,&nbsp;Junpeng Lu,&nbsp;Li Gao","doi":"10.1002/inf2.12556","DOIUrl":"10.1002/inf2.12556","url":null,"abstract":"<p>Plasmonic hot carrier engineering holds great promise for advanced infrared optoelectronic devices. The process of hot carrier transfer has the potential to surpass the spectral limitations of semiconductors, enabling detection of sub-bandgap infrared photons. By harvesting hot carriers prior to thermalization, energy dissipation is minimized, leading to highly efficient photoelectric conversion. Distinguished from conventional band-edge carriers, the ultrafast interfacial transfer and ballistic transport of hot carriers present unprecedented opportunities for high-speed photoelectric conversion. However, a complete description on the underlying mechanism of hot-carrier infrared optoelectronic device is still lacking, and the utilization of this strategy for tailoring infrared response is in its early stages. This review aims to provide a comprehensive overview of the generation, transfer and transport dynamics of hot carriers. Basic principles of hot-carrier conversion in heterostructures are discussed in detail. In addition, progresses of two-dimensional (2D) infrared hot-carrier optoelectronic devices are summarized, with a specific emphasis on photodetectors, solar cells, light-emitting devices and novel functionalities through hot-carrier engineering. Furthermore, challenges and prospects of hot-carrier device towards infrared applications are highlighted.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 9","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12556","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140984260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dual-range Janus-structure pressure sensor with broad detection range and high resolution combining triboelectricity and piezoelectricity 具有宽检测范围和高分辨率的双量程 Janus 结构压力传感器,兼具三电性和压电性
IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-09 DOI: 10.1002/inf2.12552
Shilong Zhao, Chaojie Chen, Zhiyuan Wang, Caofeng Pan, Cheng Yang

Enabling pressure sensors with high resolution and a broad detection range is of paramount importance yet challenging due to the limitations of each known sensing method. Overlying different sensing mechanisms to achieve complementary functions is a promising approach, but it often leads to increased device thickness, crosstalk signals and complex signal channel management. Herein, we present a dual-functional conformable pressure sensor that adopts a Janus thin film layout, enabling simultaneous piezoelectric and triboelectric signal detection capabilities between just one electrode pair, showing a most compact device configuration. Notably, despite its thin thickness (~80 μm for a packaged device), it exhibits a broad-range detection capability with high signal resolution and fast response time, demonstrating a distinct signal-relay characteristic corresponding to piezoelectricity and triboelectricity. Despite the slimness and simple structure, it shows an impressive signal resolution of 0.93 V·kPa−1 in the range of 0.1–140 kPa and 0.05 V·kPa−1 in the range of 140–380 kPa. Moreover, the device fabrication can be combined with the kirigami method to improve fitting to joint surfaces. This work introduces an innovative paradigm for designing advanced pressure sensing mechanisms, enabling a single device that can meet diverse application scenarios through its simplicity, slim layout, conformable, and self-powered characteristics to adapt to multiple scenarios.

使压力传感器具有高分辨率和宽检测范围是至关重要的,但由于每种已知传感方法的局限性,使其具有挑战性。将不同的传感机制叠加在一起以实现互补功能是一种很有前景的方法,但这往往会导致设备厚度增加、信号串扰和复杂的信号通道管理。在这里,我们提出了一种采用 Janus 薄膜布局的双功能保形压力传感器,只需一对电极就能同时实现压电和三电信号检测功能,展现了最紧凑的器件配置。值得注意的是,尽管其厚度很薄(封装器件约为 80 μm),但却具有宽范围检测能力、高信号分辨率和快速响应时间,显示出与压电和三电相对应的明显信号中继特性。尽管该器件外形纤薄、结构简单,但在 0.1-140 kPa 和 140-380 kPa 范围内的信号分辨率分别为 0.93 V-kPa-1 和 0.05 V-kPa-1,令人印象深刻。此外,该装置的制造还可与叽里咕噜法相结合,以提高与接合面的贴合度。这项工作为设计先进的压力传感机制引入了一种创新范式,通过其简洁、纤薄的布局、可适配和自供电的特性,使单一装置就能满足多种应用场景。
{"title":"A dual-range Janus-structure pressure sensor with broad detection range and high resolution combining triboelectricity and piezoelectricity","authors":"Shilong Zhao,&nbsp;Chaojie Chen,&nbsp;Zhiyuan Wang,&nbsp;Caofeng Pan,&nbsp;Cheng Yang","doi":"10.1002/inf2.12552","DOIUrl":"10.1002/inf2.12552","url":null,"abstract":"<p>Enabling pressure sensors with high resolution and a broad detection range is of paramount importance yet challenging due to the limitations of each known sensing method. Overlying different sensing mechanisms to achieve complementary functions is a promising approach, but it often leads to increased device thickness, crosstalk signals and complex signal channel management. Herein, we present a dual-functional conformable pressure sensor that adopts a Janus thin film layout, enabling simultaneous piezoelectric and triboelectric signal detection capabilities between just one electrode pair, showing a most compact device configuration. Notably, despite its thin thickness (~80 μm for a packaged device), it exhibits a broad-range detection capability with high signal resolution and fast response time, demonstrating a distinct signal-relay characteristic corresponding to piezoelectricity and triboelectricity. Despite the slimness and simple structure, it shows an impressive signal resolution of 0.93 V·kPa<sup>−1</sup> in the range of 0.1–140 kPa and 0.05 V·kPa<sup>−1</sup> in the range of 140–380 kPa. Moreover, the device fabrication can be combined with the kirigami method to improve fitting to joint surfaces. This work introduces an innovative paradigm for designing advanced pressure sensing mechanisms, enabling a single device that can meet diverse application scenarios through its simplicity, slim layout, conformable, and self-powered characteristics to adapt to multiple scenarios.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 10","pages":""},"PeriodicalIF":22.7,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12552","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140936437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Infomat
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1