Photochromic glass shows great promise for 3D optical information encryption and storage applications. The formation of Ag nanoclusters by light irradiation has been a significant development in the field of photochromic glass research. However, extending this approach to other metal nanoclusters remains a challenge. In this study, we present a pioneering method for crafting photochromic glass with reliably adjustable dual-mode luminescence in both the NIR and visible spectra. This was achieved by leveraging bimetallic clusters of bismuth, resulting in a distinct and novel photochromic glass. When rare-earth-doped, bismuth-based glass is irradiated with a 473 nm laser, and it undergoes a color transformation from yellow to red, accompanied by visible and broad NIR luminescence. This phenomenon is attributed to the formation of laser-induced (Bi+, Bi0) nanoclusters. We achieved reversible manipulation of the NIR luminescence of these nanoclusters and visible rare-earth luminescence by alternating exposure to a 473 nm laser and thermal stimulation. Information patterns can be inscribed and erased on a glass surface or in 3D space, and the readout is enabled by modulating visible and NIR luminescence. This study introduces a pioneering strategy for designing photochromic glasses with extensive NIR luminescence and significant potential for applications in high-capacity information encryption, optical data storage, optical communication, and NIR imaging. The exploration of bimetallic cluster formation in Bi represents a vital contribution to the advancement of multifunctional glass systems with augmented optical functionalities and versatile applications.