首页 > 最新文献

Biosensors-Basel最新文献

英文 中文
A Truncated Multi-Thiol Aptamer-Based SARS-CoV-2 Electrochemical Biosensor: Towards Variant-Specific Point-of-Care Detection with Optimized Fabrication.
IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-06 DOI: 10.3390/bios15010024
Sergio Roberto Molina Ramirez, Nafiseh Samiseresht, Mateo Alejandro Martínez-Roque, Ferdinando Catania, Kevin Graef, Martin Rabe, Andreas Offenhäusser, Dirk Mayer, Gabriela Figueroa-Miranda

With the goal of fast and accurate diagnosis of infectious diseases, this study presents a novel electrochemical biosensor that employs a refined aptamer (C9t) for the detection of spike (S) protein SARS-CoV-2 variants in a flexible multielectrode aptasensor array with PoC capabilities. Two aptamer modifications were employed: removing the primer binding sites and including two dithiol phosphoramidite anchor molecules. Thus, reducing fabrication time from 24 to 3 h and increasing the stability and sparseness for multi-thiol aptasensors compared to a standard aptasensor using single thiols, without a reduction in aptamer density. The biosensor fabrication, optimization, and detection were verified in detail by electrochemistry, QCM-D, SPR, and XPS. The analyte-receptor binding was further confirmed spectroscopically at the level of individual molecules by AFM-IR. The aptasensor possesses a low limit of detection (8.0 fg/mL), the highest sensitivity reported for S protein (209.5 signal per concentration decade), and a wide dynamic detection range (8.0 fg/mL-38 ng/mL) in nasopharyngeal samples, covering the clinically relevant range. Furthermore, the C9t aptasensor showed high selectivity for SARS-CoV-2 S proteins over biomarkers for MERS-CoV, RSV, and Influenza. Even more, it showed a three times higher sensitivity for the Omicron in comparison to the Wuhan strain (wild type), alpha, and beta variants of the SARS-CoV-2 virus. Those results demonstrate the creation of an affordable and variant-selective refined C9t aptasensor that outperformed current rapid diagnosis tests.

为了实现快速、准确诊断传染病的目标,本研究提出了一种新型电化学生物传感器,该传感器在具有 PoC 功能的灵活多电极灵敏度传感器阵列中采用了一种精制的适配体(C9t)来检测尖峰(S)蛋白 SARS-CoV-2 变体。我们采用了两种适配体改良方法:去除引物结合位点和加入两个二硫代磷酰胺锚定分子。因此,与使用单一硫醇的标准灵敏传感器相比,多硫醇灵敏传感器的制作时间从 24 小时缩短到 3 小时,并且提高了稳定性和稀疏性,同时不会降低灵敏元件的密度。电化学、QCM-D、SPR 和 XPS 对生物传感器的制造、优化和检测进行了详细验证。分析物与受体的结合还通过原子力显微镜-红外光谱在单个分子水平上得到了进一步证实。该灵敏传感器的检测限低(8.0 fg/mL),灵敏度最高(209.5 信号/浓度十进制),在鼻咽样本中的动态检测范围宽(8.0 fg/mL-38 ng/mL),涵盖了临床相关范围。此外,与 MERS-CoV、RSV 和流感的生物标记物相比,C9t aptasensor 对 SARS-CoV-2 S 蛋白具有很高的选择性。此外,与 SARS-CoV-2 病毒的武汉株(野生型)、α 和 beta 变种相比,它对 Omicron 的灵敏度高出三倍。这些结果表明,一种经济实惠且具有变异选择性的精制 C9t 快速感应器已经问世,其性能优于目前的快速诊断测试。
{"title":"A Truncated Multi-Thiol Aptamer-Based SARS-CoV-2 Electrochemical Biosensor: Towards Variant-Specific Point-of-Care Detection with Optimized Fabrication.","authors":"Sergio Roberto Molina Ramirez, Nafiseh Samiseresht, Mateo Alejandro Martínez-Roque, Ferdinando Catania, Kevin Graef, Martin Rabe, Andreas Offenhäusser, Dirk Mayer, Gabriela Figueroa-Miranda","doi":"10.3390/bios15010024","DOIUrl":"10.3390/bios15010024","url":null,"abstract":"<p><p>With the goal of fast and accurate diagnosis of infectious diseases, this study presents a novel electrochemical biosensor that employs a refined aptamer (C9t) for the detection of spike (S) protein SARS-CoV-2 variants in a flexible multielectrode aptasensor array with PoC capabilities. Two aptamer modifications were employed: removing the primer binding sites and including two dithiol phosphoramidite anchor molecules. Thus, reducing fabrication time from 24 to 3 h and increasing the stability and sparseness for multi-thiol aptasensors compared to a standard aptasensor using single thiols, without a reduction in aptamer density. The biosensor fabrication, optimization, and detection were verified in detail by electrochemistry, QCM-D, SPR, and XPS. The analyte-receptor binding was further confirmed spectroscopically at the level of individual molecules by AFM-IR. The aptasensor possesses a low limit of detection (8.0 fg/mL), the highest sensitivity reported for S protein (209.5 signal per concentration decade), and a wide dynamic detection range (8.0 fg/mL-38 ng/mL) in nasopharyngeal samples, covering the clinically relevant range. Furthermore, the C9t aptasensor showed high selectivity for SARS-CoV-2 S proteins over biomarkers for MERS-CoV, RSV, and Influenza. Even more, it showed a three times higher sensitivity for the Omicron in comparison to the Wuhan strain (wild type), alpha, and beta variants of the SARS-CoV-2 virus. Those results demonstrate the creation of an affordable and variant-selective refined C9t aptasensor that outperformed current rapid diagnosis tests.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Validation of LAMP Assays for Distinguishing MPXV Clades with Fluorescent and Colorimetric Readouts.
IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-06 DOI: 10.3390/bios15010023
Nazente Atceken, Sara Asghari Dilmani, Ahmed Choukri Abdullah, Mutlu Sarıkaya, Defne Yigci, Gozde Korkmaz, Savas Tasoglu

Human monkeypox (Mpox) is a zoonotic disease caused by the Monkeypox virus (MPXV). As of 14 August 2024, the World Health Organization (WHO) has declared it a global health emergency. For Mpox, this was the second public health emergency of global significance in the past two years. MPXV belongs to the Poxviridae family and is phylogenetically and epidemically divided into two clades: the Congo Basin (Clade-I) and the West African (Clade-II) clades. Clade-I has been associated with more severe disease progression and higher mortality compared to Clade-II, and thus the differentiation between clades can play an important role in predicting disease prognosis. The LAMP technique has the advantages of not requiring thermal cycling and achieving higher amplification in a shorter time compared to qPCR. Different types of LAMP assays were developed in this study to benefit from these advantages. We report the development of LAMP-1 and LAMP-2 assays using the LAMP method to detect MPXV Clade-I and Clade-II, respectively. The LAMP-1 assay includes both fluorescence and visible colorimetric readout tests developed with sensitivities of 103 and 107 copies, respectively. For the LAMP-2 assay, a probe-based test utilizing the Novel R-Duplex DARQ probe was developed, offering fluorescence detection at a sensitivity of 103 copies. As a result, we successfully developed three highly specific molecular diagnostic tests that distinctly differentiate between MPXV clades, delivering essential tools for the precise diagnosis and effective control of Mpox.

{"title":"Development and Validation of LAMP Assays for Distinguishing MPXV Clades with Fluorescent and Colorimetric Readouts.","authors":"Nazente Atceken, Sara Asghari Dilmani, Ahmed Choukri Abdullah, Mutlu Sarıkaya, Defne Yigci, Gozde Korkmaz, Savas Tasoglu","doi":"10.3390/bios15010023","DOIUrl":"10.3390/bios15010023","url":null,"abstract":"<p><p>Human monkeypox (Mpox) is a zoonotic disease caused by the Monkeypox virus (MPXV). As of 14 August 2024, the World Health Organization (WHO) has declared it a global health emergency. For Mpox, this was the second public health emergency of global significance in the past two years. MPXV belongs to the <i>Poxviridae</i> family and is phylogenetically and epidemically divided into two clades: the Congo Basin (Clade-I) and the West African (Clade-II) clades. Clade-I has been associated with more severe disease progression and higher mortality compared to Clade-II, and thus the differentiation between clades can play an important role in predicting disease prognosis. The LAMP technique has the advantages of not requiring thermal cycling and achieving higher amplification in a shorter time compared to qPCR. Different types of LAMP assays were developed in this study to benefit from these advantages. We report the development of LAMP-1 and LAMP-2 assays using the LAMP method to detect MPXV Clade-I and Clade-II, respectively. The LAMP-1 assay includes both fluorescence and visible colorimetric readout tests developed with sensitivities of 10<sup>3</sup> and 10<sup>7</sup> copies, respectively. For the LAMP-2 assay, a probe-based test utilizing the Novel R-Duplex DARQ probe was developed, offering fluorescence detection at a sensitivity of 10<sup>3</sup> copies. As a result, we successfully developed three highly specific molecular diagnostic tests that distinctly differentiate between MPXV clades, delivering essential tools for the precise diagnosis and effective control of Mpox.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
p54-Fc-Labeled Gold Nanoparticle-Based Lateral Flow Strip-Assisted Portable Devices for Rapid and Quantitative Point-of-Care Detection of ASFV Antibodies.
IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-06 DOI: 10.3390/bios15010025
Yang Yang, Yuhao Li, Ziyang Wang, Minglong Tong, Pengcheng Zhu, Juanxian Deng, Zongjie Li, Ke Liu, Beibei Li, Donghua Shao, Zhongren Zhou, Yafeng Qiu, Zhiyong Ma, Jianchao Wei

In this study, a novel rapid immunochromatographic (IC) test for African swine fever virus (ASFV) antibodies is presented. An immunochromatographic test (IC) is a detection technique that combines membrane chromatography with immunolabeling. This approach saves time for antibody preparation, resulting in a shorter production cycle. p54 is an important structural protein of African swine fever, and an ideal protein for serotype diagnosis. Gold nanoparticles are attached to the ASFV p54-Fc fusion protein, and the ASFV-specific antigen p54 and Staphylococcus aureus protein A (SPA) are labeled on a nitrocellulose membrane, at positions T and C, respectively. We developed a SPA double sandwich IC test strip, and assessed its feasibility using ASFV p54 and p54-Fc fusion proteins as antigens. ASFV p54 and p54-Fc fusion proteins were expressed and purified. A sandwich cross-flow detection method for p54, which is the primary structural protein of ASFV, was established, using colloidal gold conjugation. Our method can detect ASFV antibodies in field serum samples in about 15 min using a portable colloidal gold detector, demonstrating high specificity and sensitivity (1:320), and the coincidence rate was 98% using a commercial ELISA kit. The dilution of the serum sample can be determined by substituting the absorbance (T-line) interpreted by portable devices into the calibration curve function formula of an African swine fever virus standard serum. In summary, our method is rapid, cost-effective, precise, and highly selective. Additionally, it introduces a new approach for constructing IC test strips using SPA protein without antibody preparation, making it a reliable on-site antibody test for ASFV.

本研究提出了一种新型的非洲猪瘟病毒(ASFV)抗体快速免疫层析(IC)检测方法。免疫层析检测(IC)是一种结合了膜层析和免疫标记的检测技术。p54 是非洲猪瘟的重要结构蛋白,也是血清型诊断的理想蛋白。金纳米粒子附着在 ASFV p54-Fc 融合蛋白上,ASFV 特异性抗原 p54 和金黄色葡萄球菌蛋白 A(SPA)分别标记在硝酸纤维素膜上的 T 和 C 位。我们开发了一种 SPA 双夹心 IC 检测试纸条,并使用 ASFV p54 和 p54-Fc 融合蛋白作为抗原评估了其可行性。我们表达并纯化了 ASFV p54 和 p54-Fc 融合蛋白。利用胶体金共轭,建立了针对 p54(ASFV 的主要结构蛋白)的夹心交叉流检测方法。使用便携式胶体金检测器,我们的方法可在 15 分钟内检测出野外血清样本中的 ASFV 抗体,特异性和灵敏度高(1:320),使用商业 ELISA 试剂盒的吻合率为 98%。通过将便携式设备解读出的吸光度(T 线)代入非洲猪瘟病毒标准血清的校准曲线函数公式,可确定血清样本的稀释度。总之,我们的方法快速、经济、精确、选择性高。此外,它还引入了一种无需制备抗体即可使用 SPA 蛋白构建 IC 检测条的新方法,使其成为一种可靠的现场非洲猪瘟病毒抗体检测方法。
{"title":"p54-Fc-Labeled Gold Nanoparticle-Based Lateral Flow Strip-Assisted Portable Devices for Rapid and Quantitative Point-of-Care Detection of ASFV Antibodies.","authors":"Yang Yang, Yuhao Li, Ziyang Wang, Minglong Tong, Pengcheng Zhu, Juanxian Deng, Zongjie Li, Ke Liu, Beibei Li, Donghua Shao, Zhongren Zhou, Yafeng Qiu, Zhiyong Ma, Jianchao Wei","doi":"10.3390/bios15010025","DOIUrl":"10.3390/bios15010025","url":null,"abstract":"<p><p>In this study, a novel rapid immunochromatographic (IC) test for African swine fever virus (ASFV) antibodies is presented. An immunochromatographic test (IC) is a detection technique that combines membrane chromatography with immunolabeling. This approach saves time for antibody preparation, resulting in a shorter production cycle. p54 is an important structural protein of African swine fever, and an ideal protein for serotype diagnosis. Gold nanoparticles are attached to the ASFV p54-Fc fusion protein, and the ASFV-specific antigen p54 and Staphylococcus aureus protein A (SPA) are labeled on a nitrocellulose membrane, at positions T and C, respectively. We developed a SPA double sandwich IC test strip, and assessed its feasibility using ASFV p54 and p54-Fc fusion proteins as antigens. ASFV p54 and p54-Fc fusion proteins were expressed and purified. A sandwich cross-flow detection method for p54, which is the primary structural protein of ASFV, was established, using colloidal gold conjugation. Our method can detect ASFV antibodies in field serum samples in about 15 min using a portable colloidal gold detector, demonstrating high specificity and sensitivity (1:320), and the coincidence rate was 98% using a commercial ELISA kit. The dilution of the serum sample can be determined by substituting the absorbance (T-line) interpreted by portable devices into the calibration curve function formula of an African swine fever virus standard serum. In summary, our method is rapid, cost-effective, precise, and highly selective. Additionally, it introduces a new approach for constructing IC test strips using SPA protein without antibody preparation, making it a reliable on-site antibody test for ASFV.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763327/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection and Engineering of Novel Brighter Bioluminescent Reporter Gene and Color- Tuning Luciferase for pH-Sensing in Mammalian Cells.
IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-04 DOI: 10.3390/bios15010018
Vanessa R Bevilaqua, Gabriel F Pelentir, Moema A Hausen, Eliana A R Duek, Vadim R Viviani

Firefly luciferases have been extensively used for bioanalytical applications, including their use as bioluminescent reporters, biosensors, and for bioimaging biological and pathological processes. Due to their intrinsic pH- sensitivity, in recent years we have demonstrated that firefly luciferases can also be harnessed as color- tuning sensors of intracellular pH. However, it is known that mammalian cells require temperatures higher than 36 °C, which red-shift the bioluminescence spectra of most firefly luciferases, decreasing their activities and the resolution of ratiometric pH analysis. Therefore, we prospected and engineered novel pH-sensitive firefly luciferases for mammalian cells. We humanized the luciferases of Amydetes vivianii (Amy-Luc) and Cratomorphus distinctus (Crt-Luc) fireflies, inserted them into the pCDNA3 vector, and compared their bioluminescence and pH-sensing properties with those of Macrolampis firefly luciferase (Mac-Luc) inside fibroblasts. The transfected COS-1 with Mac-Luc and Crt-Luc displayed lower bioluminescence activity and considerably red-shifted spectra (611 and 564 nm, respectively) at 37 °C, whereas Amy-Luc displayed the highest bioluminescence activity and spectral stability at 37 °C inside cells, displaying the most blue-shifted spectrum at such temperatures (548 nm) and the best spectral resolution at different pH values, making it possible to ratiometrically estimate the pH from 6.0 to 8.0. These results show that Amy-Luc is a novel brighter reporter gene and suitable pH- indicator for mammalian cells. Furthermore, whereas at pH 8.0 the spectrum was thermally stable, at pH 6.0 Amy-Luc showed higher temperature sensitivity, raising the possibility of using this luciferase as an intracellular temperature sensor. Thus, the improved bioluminescence properties as compared to existing luciferases could offer advantages for in vivo imaging and pH- sensing for the study of mammalian cellular physiology.

{"title":"Selection and Engineering of Novel Brighter Bioluminescent Reporter Gene and Color- Tuning Luciferase for pH-Sensing in Mammalian Cells.","authors":"Vanessa R Bevilaqua, Gabriel F Pelentir, Moema A Hausen, Eliana A R Duek, Vadim R Viviani","doi":"10.3390/bios15010018","DOIUrl":"10.3390/bios15010018","url":null,"abstract":"<p><p>Firefly luciferases have been extensively used for bioanalytical applications, including their use as bioluminescent reporters, biosensors, and for bioimaging biological and pathological processes. Due to their intrinsic pH- sensitivity, in recent years we have demonstrated that firefly luciferases can also be harnessed as color- tuning sensors of intracellular pH. However, it is known that mammalian cells require temperatures higher than 36 °C, which red-shift the bioluminescence spectra of most firefly luciferases, decreasing their activities and the resolution of ratiometric pH analysis. Therefore, we prospected and engineered novel pH-sensitive firefly luciferases for mammalian cells. We humanized the luciferases of <i>Amydetes vivianii</i> (Amy-Luc) and <i>Cratomorphus distinctus</i> (Crt-Luc) fireflies, inserted them into the pCDNA3 vector, and compared their bioluminescence and pH-sensing properties with those of <i>Macrolampis</i> firefly luciferase (Mac-Luc) inside fibroblasts. The transfected COS-1 with Mac-Luc and Crt-Luc displayed lower bioluminescence activity and considerably red-shifted spectra (611 and 564 nm, respectively) at 37 °C, whereas Amy-Luc displayed the highest bioluminescence activity and spectral stability at 37 °C inside cells, displaying the most blue-shifted spectrum at such temperatures (548 nm) and the best spectral resolution at different pH values, making it possible to ratiometrically estimate the pH from 6.0 to 8.0. These results show that Amy-Luc is a novel brighter reporter gene and suitable pH- indicator for mammalian cells. Furthermore, whereas at pH 8.0 the spectrum was thermally stable, at pH 6.0 Amy-Luc showed higher temperature sensitivity, raising the possibility of using this luciferase as an intracellular temperature sensor. Thus, the improved bioluminescence properties as compared to existing luciferases could offer advantages for in vivo imaging and pH- sensing for the study of mammalian cellular physiology.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SPR Biosensor Based on Bilayer MoS2 for SARS-CoV-2 Sensing.
IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-04 DOI: 10.3390/bios15010021
Talia Tene, Stefano Bellucci, Cristian Vacacela Gomez

The COVID-19 pandemic has highlighted the urgent need for rapid, sensitive, and reliable diagnostic tools for detecting SARS-CoV-2. In this study, we developed and optimized a surface plasmon resonance (SPR) biosensor incorporating advanced materials to enhance its sensitivity and specificity. Key parameters, including the thickness of the silver layer, silicon nitride dielectric layer, molybdenum disulfide (MoS2) layers, and ssDNA recognition layer, were systematically optimized to achieve the best balance between sensitivity, resolution, and attenuation. The optimized configuration, consisting of a 45 nm silver layer, a 13 nm silicon nitride layer, 2 MoS2 layers, and a 5 nm ssDNA layer, demonstrated superior performance for detecting SARS-CoV-2 in PBS solution. The biosensor exhibited high sensitivity at low viral concentrations, achieving a sensitivity of 375.01°/RIU, a detection accuracy of 0.002, and a quality factor of 38.34 at 1.0 mM SARS-CoV-2 concentration. Performance metrics validated the sensor's capability for reliable detection, particularly in early-stage diagnostics where timely intervention is critical. Moreover, the biosensor's linear response to refractive index changes confirmed its potential for quantitative viral concentration analysis. This study underlines the significance of integrating advanced materials, such as MoS2 and silicon nitride, to enhance SPR biosensor performance. The findings establish the proposed biosensor as a robust and precise diagnostic tool for SARS-CoV-2 detection, with potential applications in clinical diagnostics and epidemiological monitoring.

{"title":"SPR Biosensor Based on Bilayer MoS<sub>2</sub> for SARS-CoV-2 Sensing.","authors":"Talia Tene, Stefano Bellucci, Cristian Vacacela Gomez","doi":"10.3390/bios15010021","DOIUrl":"10.3390/bios15010021","url":null,"abstract":"<p><p>The COVID-19 pandemic has highlighted the urgent need for rapid, sensitive, and reliable diagnostic tools for detecting SARS-CoV-2. In this study, we developed and optimized a surface plasmon resonance (SPR) biosensor incorporating advanced materials to enhance its sensitivity and specificity. Key parameters, including the thickness of the silver layer, silicon nitride dielectric layer, molybdenum disulfide (MoS<sub>2</sub>) layers, and ssDNA recognition layer, were systematically optimized to achieve the best balance between sensitivity, resolution, and attenuation. The optimized configuration, consisting of a 45 nm silver layer, a 13 nm silicon nitride layer, 2 MoS<sub>2</sub> layers, and a 5 nm ssDNA layer, demonstrated superior performance for detecting SARS-CoV-2 in PBS solution. The biosensor exhibited high sensitivity at low viral concentrations, achieving a sensitivity of 375.01°/RIU, a detection accuracy of 0.002, and a quality factor of 38.34 at 1.0 mM SARS-CoV-2 concentration. Performance metrics validated the sensor's capability for reliable detection, particularly in early-stage diagnostics where timely intervention is critical. Moreover, the biosensor's linear response to refractive index changes confirmed its potential for quantitative viral concentration analysis. This study underlines the significance of integrating advanced materials, such as MoS<sub>2</sub> and silicon nitride, to enhance SPR biosensor performance. The findings establish the proposed biosensor as a robust and precise diagnostic tool for SARS-CoV-2 detection, with potential applications in clinical diagnostics and epidemiological monitoring.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning-Based Quantification of Lateral Flow Assay Using Smartphone-Captured Images.
IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-04 DOI: 10.3390/bios15010019
Anne M Davis, Asahi Tomitaka

Lateral flow assay has been extensively used for at-home testing and point-of-care diagnostics in rural areas. Despite its advantages as convenient and low-cost testing, it suffers from poor quantification capacity where only yes/no or positive/negative diagnostics are achieved. In this study, machine learning and deep learning models were developed to quantify the analyte load from smartphone-captured images of the lateral flow assay test. The comparative analysis identified that random forest and convolutional neural network (CNN) models performed well in classifying the lateral flow assay results compared to other well-established machine learning models. When trained on small-size images, random forest models excelled CNN models in image classification. Contrarily, CNN models outperformed random forest models in classifying noisy images.

{"title":"Machine Learning-Based Quantification of Lateral Flow Assay Using Smartphone-Captured Images.","authors":"Anne M Davis, Asahi Tomitaka","doi":"10.3390/bios15010019","DOIUrl":"10.3390/bios15010019","url":null,"abstract":"<p><p>Lateral flow assay has been extensively used for at-home testing and point-of-care diagnostics in rural areas. Despite its advantages as convenient and low-cost testing, it suffers from poor quantification capacity where only yes/no or positive/negative diagnostics are achieved. In this study, machine learning and deep learning models were developed to quantify the analyte load from smartphone-captured images of the lateral flow assay test. The comparative analysis identified that random forest and convolutional neural network (CNN) models performed well in classifying the lateral flow assay results compared to other well-established machine learning models. When trained on small-size images, random forest models excelled CNN models in image classification. Contrarily, CNN models outperformed random forest models in classifying noisy images.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucose Sensor Design Based on Monte Carlo Simulation.
IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-04 DOI: 10.3390/bios15010017
Gang Xue, Ruiping Zhang, Yihao Chen, Wei Xu, Changxing Zhang

Continuous glucose monitoring based on the minimally invasive implantation of glucose sensor is characterized by high accuracy and good stability. At present, glucose concentration monitoring based on fluorescent glucose capsule sensor is a new development trend. In this paper, we design a fluorescent glucose capsule sensor with a design optimization study. The motion trajectory of incident light in the fluorescent gel layer is simulated based on the Monte Carlo method, and the cloud maps of light intensity with the light intensity distribution at the light-receiving layer are plotted. Altering the density of fluorescent molecules, varying the thickness of tissue layers, and adjusting the angle of incidence deflection, the study investigates the influence of these parameter changes on the optimal position of reflected light at the bottom. Finally, the simulation results were utilized to design and fabricate a fluorescent glucose capsule sensor. Rabbit subcutaneous tissue glucose level tests and real-time glucose solution concentration monitoring experiments were performed. This work contributes to the real-time monitoring of glucose levels and opens up new avenues for research on fabricating glucose sensors.

{"title":"Glucose Sensor Design Based on Monte Carlo Simulation.","authors":"Gang Xue, Ruiping Zhang, Yihao Chen, Wei Xu, Changxing Zhang","doi":"10.3390/bios15010017","DOIUrl":"10.3390/bios15010017","url":null,"abstract":"<p><p>Continuous glucose monitoring based on the minimally invasive implantation of glucose sensor is characterized by high accuracy and good stability. At present, glucose concentration monitoring based on fluorescent glucose capsule sensor is a new development trend. In this paper, we design a fluorescent glucose capsule sensor with a design optimization study. The motion trajectory of incident light in the fluorescent gel layer is simulated based on the Monte Carlo method, and the cloud maps of light intensity with the light intensity distribution at the light-receiving layer are plotted. Altering the density of fluorescent molecules, varying the thickness of tissue layers, and adjusting the angle of incidence deflection, the study investigates the influence of these parameter changes on the optimal position of reflected light at the bottom. Finally, the simulation results were utilized to design and fabricate a fluorescent glucose capsule sensor. Rabbit subcutaneous tissue glucose level tests and real-time glucose solution concentration monitoring experiments were performed. This work contributes to the real-time monitoring of glucose levels and opens up new avenues for research on fabricating glucose sensors.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating Normalization Methods for Robust Spectral Performance Assessments of Hyperspectral Imaging Cameras.
IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-04 DOI: 10.3390/bios15010020
Siavash Mazdeyasna, Mohammed Shahriar Arefin, Andrew Fales, Silas J Leavesley, T Joshua Pfefer, Quanzeng Wang

Hyperspectral imaging (HSI) technology, which offers both spatial and spectral information, holds significant potential for enhancing diagnostic performance during endoscopy and other medical procedures. However, quantitative evaluation of HSI cameras is challenging due to various influencing factors (e.g., light sources, working distance, and illumination angle) that can alter the reflectance spectra of the same target as these factors vary. Towards robust, universal test methods, we evaluated several data normalization methods aimed at minimizing the impact of these factors. Using a high-resolution HSI camera, we measured the reflectance spectra of diffuse reflectance targets illuminated by two different light sources. These spectra, along with the reference spectra from the target manufacturer, were normalized with nine different methods (e.g., area under the curve, standard normal variate, and centering power methods), followed by a uniform scaling step. We then compared the measured spectra to the reference to evaluate the capability of each normalization method in ensuring a consistent, standardized performance evaluation. Our results demonstrate that normalization can mitigate the impact of some factors during HSI camera evaluation, with performance varying across methods. Generally, noisy spectra pose challenges for normalization methods that rely on limited reflectance values, while methods based on reflectance values across the entire spectrum (such as standard normal variate) perform better. The findings also suggest that absolute reflectance spectral measurements may be less effective for clinical diagnostics, whereas normalized spectral measurements are likely more appropriate. These findings provide a foundation for standardized performance testing of HSI-based medical devices, promoting the adoption of high-quality HSI technology for critical applications such as early cancer detection.

高光谱成像(HSI)技术可提供空间和光谱信息,在提高内窥镜检查和其他医疗程序的诊断性能方面具有巨大潜力。然而,由于各种影响因素(如光源、工作距离和照明角度)会随着这些因素的变化而改变同一目标的反射光谱,因此对 HSI 相机进行定量评估具有挑战性。为了实现稳健、通用的测试方法,我们评估了几种数据归一化方法,旨在将这些因素的影响降至最低。我们使用高分辨率 HSI 相机测量了由两种不同光源照射的漫反射目标的反射光谱。这些光谱以及目标制造商提供的参考光谱采用九种不同的方法进行归一化处理(如曲线下面积法、标准正态变分法和居中功率法),然后再进行均匀缩放。然后,我们将测量到的光谱与参照物进行比较,以评估每种归一化方法在确保性能评估的一致性和标准化方面的能力。我们的结果表明,归一化可以减轻人脸图像传感器相机评估过程中某些因素的影响,不同方法的性能各不相同。一般来说,嘈杂的光谱会给依赖于有限反射率值的归一化方法带来挑战,而基于整个光谱反射率值的方法(如标准正态方差)则表现更好。研究结果还表明,绝对反射率光谱测量对于临床诊断可能不太有效,而归一化光谱测量可能更合适。这些发现为基于 HSI 的医疗设备的标准化性能测试奠定了基础,促进了高质量 HSI 技术在早期癌症检测等关键应用领域的应用。
{"title":"Evaluating Normalization Methods for Robust Spectral Performance Assessments of Hyperspectral Imaging Cameras.","authors":"Siavash Mazdeyasna, Mohammed Shahriar Arefin, Andrew Fales, Silas J Leavesley, T Joshua Pfefer, Quanzeng Wang","doi":"10.3390/bios15010020","DOIUrl":"10.3390/bios15010020","url":null,"abstract":"<p><p>Hyperspectral imaging (HSI) technology, which offers both spatial and spectral information, holds significant potential for enhancing diagnostic performance during endoscopy and other medical procedures. However, quantitative evaluation of HSI cameras is challenging due to various influencing factors (e.g., light sources, working distance, and illumination angle) that can alter the reflectance spectra of the same target as these factors vary. Towards robust, universal test methods, we evaluated several data normalization methods aimed at minimizing the impact of these factors. Using a high-resolution HSI camera, we measured the reflectance spectra of diffuse reflectance targets illuminated by two different light sources. These spectra, along with the reference spectra from the target manufacturer, were normalized with nine different methods (e.g., area under the curve, standard normal variate, and centering power methods), followed by a uniform scaling step. We then compared the measured spectra to the reference to evaluate the capability of each normalization method in ensuring a consistent, standardized performance evaluation. Our results demonstrate that normalization can mitigate the impact of some factors during HSI camera evaluation, with performance varying across methods. Generally, noisy spectra pose challenges for normalization methods that rely on limited reflectance values, while methods based on reflectance values across the entire spectrum (such as standard normal variate) perform better. The findings also suggest that absolute reflectance spectral measurements may be less effective for clinical diagnostics, whereas normalized spectral measurements are likely more appropriate. These findings provide a foundation for standardized performance testing of HSI-based medical devices, promoting the adoption of high-quality HSI technology for critical applications such as early cancer detection.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theranostic Contact Lens for Ocular Cystinosis Utilizing Gold Nanoparticles.
IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-03 DOI: 10.3390/bios15010016
Eunbe Ha, Hwajeong Kang, Hyeran Noh

Ocular cystinosis is a disease in which accumulated cystine crystals cause damage to the eyes, necessitating timely treatment and ongoing monitoring of cystine levels. The current treatment involves frequent administration of cysteamine eye drops, which suffer from low bioavailability and can lead to drug toxicity, making it essential to prescribe an appropriate dosage based on the patient's condition. Additionally, cystine crystal levels are typically assessed subjectively via slit-lamp examination, requiring frequent clinical visits and causing discomfort for the patient. In this study, we propose a theranostic contact lens that simultaneously performs therapy and diagnosis on a single platform utilizing gold nanoparticles (GNPs). The binding interactions between GNPs and cystine were confirmed in solution, and thermodynamic analysis further elucidated the bonding force between the two substances. With a comprehensive understanding of these interactions, we investigated the potential of the theranostic GNP-loaded contact lens (GNP-CL). Upon exposure to various concentrations of cystine, the GNP-CL demonstrated distinct color changes, transitioning from red to blue. This color shift enabled quantitative monitoring of cystine levels. The treatment efficacy was validated by confirming a reduction in cystine concentration following the reaction. This platform has the potential to improve disease management in ocular cystinosis by reducing the reliance on cysteamine and offering an objective self-monitoring tool that does not require specialized equipment.

{"title":"Theranostic Contact Lens for Ocular Cystinosis Utilizing Gold Nanoparticles.","authors":"Eunbe Ha, Hwajeong Kang, Hyeran Noh","doi":"10.3390/bios15010016","DOIUrl":"10.3390/bios15010016","url":null,"abstract":"<p><p>Ocular cystinosis is a disease in which accumulated cystine crystals cause damage to the eyes, necessitating timely treatment and ongoing monitoring of cystine levels. The current treatment involves frequent administration of cysteamine eye drops, which suffer from low bioavailability and can lead to drug toxicity, making it essential to prescribe an appropriate dosage based on the patient's condition. Additionally, cystine crystal levels are typically assessed subjectively via slit-lamp examination, requiring frequent clinical visits and causing discomfort for the patient. In this study, we propose a theranostic contact lens that simultaneously performs therapy and diagnosis on a single platform utilizing gold nanoparticles (GNPs). The binding interactions between GNPs and cystine were confirmed in solution, and thermodynamic analysis further elucidated the bonding force between the two substances. With a comprehensive understanding of these interactions, we investigated the potential of the theranostic GNP-loaded contact lens (GNP-CL). Upon exposure to various concentrations of cystine, the GNP-CL demonstrated distinct color changes, transitioning from red to blue. This color shift enabled quantitative monitoring of cystine levels. The treatment efficacy was validated by confirming a reduction in cystine concentration following the reaction. This platform has the potential to improve disease management in ocular cystinosis by reducing the reliance on cysteamine and offering an objective self-monitoring tool that does not require specialized equipment.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection.
IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-03 DOI: 10.3390/bios15010015
Suthira Pushparajah, Mahnaz Shafiei, Aimin Yu

Carbendazim (CBZ) is used to prevent fungal infections in agricultural crops. Given its high persistence and potential for long-term health effects, it is crucial to quickly identify pesticide residues in food and the environment in order to mitigate excessive exposure. Aptamer-based sensors offer a promising solution for pesticide detection due to their exceptional selectivity, design versatility, ease of use, and affordability. Herein, we report the development of an electrochemical aptasensor for CBZ detection. The sensor was fabricated through a one-step electrodeposition of platinum nanoparticles (Pt NPs) and reduced graphene oxide (rGO) on a glassy carbon electrode (GCE). Then, a CBZ-specific aptamer was attached via Pt-sulfur bonds. Upon combining CBZ with the aptamer on the electrode surface, the redox reaction of the electrochemical probe K4[Fe(CN)6] is hindered, resulting in a current drop. Under optimized conditions (pH of 7.5 and 25 min of incubation time), the proposed aptasensor showed a linear current reduction to CBZ concentrations between 0.5 and 15 nM. The limit of detection (LOD) for this proposed aptasensor is 0.41 nM. Along with its repeatable character, the aptasensor demonstrated better selectivity for CBZ compared to other potential compounds. The recovery rates for detecting CBZ in skim milk and tap water using the standard addition method were 98% and 96%, respectively. The proposed aptasensor demonstrated simplicity, sensitivity, and selectivity for detecting CBZ with satisfactory repeatability. It establishes a strong foundation for environmental monitoring of CBZ.

{"title":"A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection.","authors":"Suthira Pushparajah, Mahnaz Shafiei, Aimin Yu","doi":"10.3390/bios15010015","DOIUrl":"10.3390/bios15010015","url":null,"abstract":"<p><p>Carbendazim (CBZ) is used to prevent fungal infections in agricultural crops. Given its high persistence and potential for long-term health effects, it is crucial to quickly identify pesticide residues in food and the environment in order to mitigate excessive exposure. Aptamer-based sensors offer a promising solution for pesticide detection due to their exceptional selectivity, design versatility, ease of use, and affordability. Herein, we report the development of an electrochemical aptasensor for CBZ detection. The sensor was fabricated through a one-step electrodeposition of platinum nanoparticles (Pt NPs) and reduced graphene oxide (rGO) on a glassy carbon electrode (GCE). Then, a CBZ-specific aptamer was attached via Pt-sulfur bonds. Upon combining CBZ with the aptamer on the electrode surface, the redox reaction of the electrochemical probe K<sub>4</sub>[Fe(CN)<sub>6</sub>] is hindered, resulting in a current drop. Under optimized conditions (pH of 7.5 and 25 min of incubation time), the proposed aptasensor showed a linear current reduction to CBZ concentrations between 0.5 and 15 nM. The limit of detection (LOD) for this proposed aptasensor is 0.41 nM. Along with its repeatable character, the aptasensor demonstrated better selectivity for CBZ compared to other potential compounds. The recovery rates for detecting CBZ in skim milk and tap water using the standard addition method were 98% and 96%, respectively. The proposed aptasensor demonstrated simplicity, sensitivity, and selectivity for detecting CBZ with satisfactory repeatability. It establishes a strong foundation for environmental monitoring of CBZ.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biosensors-Basel
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1