Driven by their exceptional optical characteristics, robust chemical stability, and facile bioconjugation, gold nanoparticles (AuNPs) have emerged as a preferred material for detection and biosensing applications in scientific research. This study involves the development of a simple, rapid, and cost-effective colorimetric immuno-sensing probe to detect aflatoxin B1 and zearalenone using AuNP antibody (AuNP-mAb) conjugates. Anti-toxin antibodies were attached to the AuNPs by using the physical adsorption method. The colorimetric immunosensor developed operates on the principle that the optical properties of the AuNP are very sensitive to aggregation, which can be induced by a critical high salt concentration. Although the presence of antibodies on the AuNP surface inhibits the aggregation, these antibodies bind to the toxin with higher affinity, which leads to exposure of the surface of AuNPs and aggregation in a salt environment. The aggregation triggers a noticeable but variable alteration in color from red to purple and blueish gray, as a result of a red shift in the surface plasmon resonance band of the AuNPs. The extent of the shift is dependent on the toxin exposure dose and can be quantified using a calibration curve through UV-Visible-NIR spectroscopy. The limit of detection using this assay was determined to be as low as 0.15 ng/mL for both zearalenone and aflatoxin B1. The specificity of the prepared immunoprobe was analyzed for a particular mycotoxin in the presence of other mycotoxins. The developed immunoprobe was evaluated for real-world applicability using artificially spiked samples. This colorimetric immunoprobe based on localized surface plasmon resonance (LSPR) has a reduced detection limit compared to other immunoassays, a rapid readout, low cost, and facile fabrication.
{"title":"Mycotoxin Detection through Colorimetric Immunoprobing with Gold Nanoparticle Antibody Conjugates.","authors":"Vinayak Sharma, Bilal Javed, Hugh J Byrne, Furong Tian","doi":"10.3390/bios14100491","DOIUrl":"https://doi.org/10.3390/bios14100491","url":null,"abstract":"<p><p>Driven by their exceptional optical characteristics, robust chemical stability, and facile bioconjugation, gold nanoparticles (AuNPs) have emerged as a preferred material for detection and biosensing applications in scientific research. This study involves the development of a simple, rapid, and cost-effective colorimetric immuno-sensing probe to detect aflatoxin B1 and zearalenone using AuNP antibody (AuNP-mAb) conjugates. Anti-toxin antibodies were attached to the AuNPs by using the physical adsorption method. The colorimetric immunosensor developed operates on the principle that the optical properties of the AuNP are very sensitive to aggregation, which can be induced by a critical high salt concentration. Although the presence of antibodies on the AuNP surface inhibits the aggregation, these antibodies bind to the toxin with higher affinity, which leads to exposure of the surface of AuNPs and aggregation in a salt environment. The aggregation triggers a noticeable but variable alteration in color from red to purple and blueish gray, as a result of a red shift in the surface plasmon resonance band of the AuNPs. The extent of the shift is dependent on the toxin exposure dose and can be quantified using a calibration curve through UV-Visible-NIR spectroscopy. The limit of detection using this assay was determined to be as low as 0.15 ng/mL for both zearalenone and aflatoxin B1. The specificity of the prepared immunoprobe was analyzed for a particular mycotoxin in the presence of other mycotoxins. The developed immunoprobe was evaluated for real-world applicability using artificially spiked samples. This colorimetric immunoprobe based on localized surface plasmon resonance (LSPR) has a reduced detection limit compared to other immunoassays, a rapid readout, low cost, and facile fabrication.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The modern healthcare system strives to provide patients with more comfortable and less invasive experiences, focusing on noninvasive and painless diagnostic and treatment methods. A key priority is the early diagnosis of life-threatening diseases, which can significantly improve patient outcomes by enabling treatment at earlier stages. While most patients must undergo diagnostic procedures before beginning treatment, many existing methods are invasive, time-consuming, and inconvenient. To address these challenges, electrochemical-based wearable and point-of-care (PoC) sensing devices have emerged, playing a crucial role in the noninvasive, continuous, periodic, and remote monitoring of key biomarkers. Due to their numerous advantages, several wearable and PoC devices have been developed. In this focused review, we explore the advancements in metal-organic frameworks (MOFs)-based wearable and PoC devices. MOFs are porous crystalline materials that are cost-effective, biocompatible, and can be synthesized sustainably on a large scale, making them promising candidates for sensor development. However, research on MOF-based wearable and PoC sensors remains limited, and no comprehensive review has yet to synthesize the existing knowledge in this area. This review aims to fill that gap by emphasizing the design of materials, fabrication methodologies, sensing mechanisms, device construction, and real-world applicability of these sensors. Additionally, we underscore the importance and potential of MOF-based wearable and PoC sensors for advancing healthcare technologies. In conclusion, this review sheds light on the current state of the art, the challenges faced, and the opportunities ahead in MOF-based wearable and PoC sensing technologies.
{"title":"Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring.","authors":"K Theyagarajan, Young-Joon Kim","doi":"10.3390/bios14100492","DOIUrl":"https://doi.org/10.3390/bios14100492","url":null,"abstract":"<p><p>The modern healthcare system strives to provide patients with more comfortable and less invasive experiences, focusing on noninvasive and painless diagnostic and treatment methods. A key priority is the early diagnosis of life-threatening diseases, which can significantly improve patient outcomes by enabling treatment at earlier stages. While most patients must undergo diagnostic procedures before beginning treatment, many existing methods are invasive, time-consuming, and inconvenient. To address these challenges, electrochemical-based wearable and point-of-care (PoC) sensing devices have emerged, playing a crucial role in the noninvasive, continuous, periodic, and remote monitoring of key biomarkers. Due to their numerous advantages, several wearable and PoC devices have been developed. In this focused review, we explore the advancements in metal-organic frameworks (MOFs)-based wearable and PoC devices. MOFs are porous crystalline materials that are cost-effective, biocompatible, and can be synthesized sustainably on a large scale, making them promising candidates for sensor development. However, research on MOF-based wearable and PoC sensors remains limited, and no comprehensive review has yet to synthesize the existing knowledge in this area. This review aims to fill that gap by emphasizing the design of materials, fabrication methodologies, sensing mechanisms, device construction, and real-world applicability of these sensors. Additionally, we underscore the importance and potential of MOF-based wearable and PoC sensors for advancing healthcare technologies. In conclusion, this review sheds light on the current state of the art, the challenges faced, and the opportunities ahead in MOF-based wearable and PoC sensing technologies.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myoung Gyu Kim, Seulki Kim, Juho Jang, Jinkwan Lee, Namheon Kim, Yeji Yu, A Reum Kim, Seungjin Lim, Moonsuk Bae, Yong Shin
Scrub typhus is caused by the Gram-negative obligate intracellular bacterium Orientia tsutsugamushi, and this tick-borne disease is difficult to distinguish from other acute febrile illnesses as it typically presents with symptoms such as rash, crusting at the bite site, headache, myalgia, lymphadenopathy, and elevated liver transaminases. It can often be diagnosed clinically, but not all patients present with characteristic symptoms, so serological diagnosis and molecular techniques may be required. However, existing diagnostic tests often have low sensitivity and specificity, making early detection difficult. This study presents a nucleic acid extraction method using large volumes of plasma and buffy coat to increase sensitivity, as well as an improved detection method using two target genes. Using the I-PULL device, nucleic acids can be extracted from up to 4 mL of sample in 30 min, avoiding contamination. The extracted DNA detects two genes of O. tsutsugamushi, increasing sensitivity compared to single-gene detection. Clinical validation in 38 patient samples showed 100% specificity and 95.24% sensitivity for the single target gene, with specificity and sensitivity rising to 100% when both genes are analyzed. This molecular diagnostic platform can be useful for distinguishing scrub typhus from similar diseases.
{"title":"Highly Sensitive Molecular Diagnostic Platform for Scrub Typhus Diagnosis Using <i>O. tsutsugamushi</i> Enrichment and Nucleic Acid Extraction.","authors":"Myoung Gyu Kim, Seulki Kim, Juho Jang, Jinkwan Lee, Namheon Kim, Yeji Yu, A Reum Kim, Seungjin Lim, Moonsuk Bae, Yong Shin","doi":"10.3390/bios14100493","DOIUrl":"https://doi.org/10.3390/bios14100493","url":null,"abstract":"<p><p>Scrub typhus is caused by the Gram-negative obligate intracellular bacterium <i>Orientia tsutsugamushi</i>, and this tick-borne disease is difficult to distinguish from other acute febrile illnesses as it typically presents with symptoms such as rash, crusting at the bite site, headache, myalgia, lymphadenopathy, and elevated liver transaminases. It can often be diagnosed clinically, but not all patients present with characteristic symptoms, so serological diagnosis and molecular techniques may be required. However, existing diagnostic tests often have low sensitivity and specificity, making early detection difficult. This study presents a nucleic acid extraction method using large volumes of plasma and buffy coat to increase sensitivity, as well as an improved detection method using two target genes. Using the I-PULL device, nucleic acids can be extracted from up to 4 mL of sample in 30 min, avoiding contamination. The extracted DNA detects two genes of <i>O. tsutsugamushi</i>, increasing sensitivity compared to single-gene detection. Clinical validation in 38 patient samples showed 100% specificity and 95.24% sensitivity for the single target gene, with specificity and sensitivity rising to 100% when both genes are analyzed. This molecular diagnostic platform can be useful for distinguishing scrub typhus from similar diseases.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingyun Jiang, Shuai Shao, Na Li, Zhengyao Zhang, Bo Liu
For rapid and convenient detection of living endothelial cells (ECs) specifically without immunostaining, we developed a biosensor based on turn-on fluorescent protein, named LV-EcpG. It includes a high-affinity peptide E12P obtained through phage display technology for specifically recognizing ECs and a turn-on EGFP fused with two linker peptides. The "on-off" switching mechanism of this genetically encoded fluorescent protein-based biosensor (FPB) ensured that fluorescence signals were activated only when binding with ECs, thus enabling these FPB characters for direct, visual, and non-invasive detection of ECs. Its specificity and multicolor imaging capability established LV-EcpG as a powerful tool for live EC research, with significant potential for diagnosing and treating cardiovascular diseases and tumor angiogenesis.
{"title":"Non-Invasive On-Off Fluorescent Biosensor for Endothelial Cell Detection.","authors":"Qingyun Jiang, Shuai Shao, Na Li, Zhengyao Zhang, Bo Liu","doi":"10.3390/bios14100489","DOIUrl":"https://doi.org/10.3390/bios14100489","url":null,"abstract":"<p><p>For rapid and convenient detection of living endothelial cells (ECs) specifically without immunostaining, we developed a biosensor based on turn-on fluorescent protein, named LV-EcpG. It includes a high-affinity peptide E12P obtained through phage display technology for specifically recognizing ECs and a turn-on EGFP fused with two linker peptides. The \"on-off\" switching mechanism of this genetically encoded fluorescent protein-based biosensor (FPB) ensured that fluorescence signals were activated only when binding with ECs, thus enabling these FPB characters for direct, visual, and non-invasive detection of ECs. Its specificity and multicolor imaging capability established LV-EcpG as a powerful tool for live EC research, with significant potential for diagnosing and treating cardiovascular diseases and tumor angiogenesis.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaotong Liu, Hui Xu, Jiameng Li, Yanqing Liu, Haojun Fan
Liquid metal, as a novel material, has become ideal for the fabrication of flexible conductive fibers and has shown great potential in the field of biomedical sensing. This paper presents a comprehensive review of the unique properties of liquid metals such as gallium-based alloys, including their excellent electrical conductivity, mobility, and biocompatibility. These properties make liquid metals ideal for the fabrication of flexible and malleable biosensors. The article explores common preparation methods for liquid metal conductive fibers, such as internal liquid metal filling, surface printing with liquid metal, and liquid metal coating techniques, and their applications in health monitoring, neural interfaces, and wearable devices. By summarizing and analyzing the current research, this paper aims to reveal the current status and challenges of liquid metal conductive fibers in the field of biosensors and to look forward to their development in the future, which will provide valuable references and insights for researchers in the field of biomedical engineering.
{"title":"Review of Liquid Metal Fiber Based Biosensors and Bioelectronics.","authors":"Xiaotong Liu, Hui Xu, Jiameng Li, Yanqing Liu, Haojun Fan","doi":"10.3390/bios14100490","DOIUrl":"https://doi.org/10.3390/bios14100490","url":null,"abstract":"<p><p>Liquid metal, as a novel material, has become ideal for the fabrication of flexible conductive fibers and has shown great potential in the field of biomedical sensing. This paper presents a comprehensive review of the unique properties of liquid metals such as gallium-based alloys, including their excellent electrical conductivity, mobility, and biocompatibility. These properties make liquid metals ideal for the fabrication of flexible and malleable biosensors. The article explores common preparation methods for liquid metal conductive fibers, such as internal liquid metal filling, surface printing with liquid metal, and liquid metal coating techniques, and their applications in health monitoring, neural interfaces, and wearable devices. By summarizing and analyzing the current research, this paper aims to reveal the current status and challenges of liquid metal conductive fibers in the field of biosensors and to look forward to their development in the future, which will provide valuable references and insights for researchers in the field of biomedical engineering.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena V Daboss, Maria A Komkova, Vita N Nikitina, Egor A Andreev, Darya V Vokhmyanina, Arkady A Karyakin
We report on the possibility of noninvasive diabetes monitoring through continuous analysis of sweat. The prediction of the blood glucose level in diabetic patients is possible on the basis of their sweat glucose content due to the positive correlation discovered. The ratio between the blood glucose and sweat glucose concentrations for a certain diabetic subject is stable within weeks, excluding requirements for frequent blood probing. The glucose variations in sweat display allometric (non-linear) dependence on those in blood, allowing more precise blood glucose estimation. Selective (avoiding false-positive responses) and sensitive (sweat glucose is on average 30-50 times lower) detection is possible with biosensors based on the glucose oxidase enzyme coupled with a Prussian Blue transducer. Reliable glucose detection in just secreted sweat would allow noninvasive monitoring of the glycemia level in diabetic patients.
{"title":"Noninvasive Monitoring of Glycemia Level in Diabetic Patients by Wearable Advanced Biosensors.","authors":"Elena V Daboss, Maria A Komkova, Vita N Nikitina, Egor A Andreev, Darya V Vokhmyanina, Arkady A Karyakin","doi":"10.3390/bios14100486","DOIUrl":"https://doi.org/10.3390/bios14100486","url":null,"abstract":"<p><p>We report on the possibility of noninvasive diabetes monitoring through continuous analysis of sweat. The prediction of the blood glucose level in diabetic patients is possible on the basis of their sweat glucose content due to the positive correlation discovered. The ratio between the blood glucose and sweat glucose concentrations for a certain diabetic subject is stable within weeks, excluding requirements for frequent blood probing. The glucose variations in sweat display allometric (non-linear) dependence on those in blood, allowing more precise blood glucose estimation. Selective (avoiding false-positive responses) and sensitive (sweat glucose is on average 30-50 times lower) detection is possible with biosensors based on the glucose oxidase enzyme coupled with a Prussian Blue transducer. Reliable glucose detection in just secreted sweat would allow noninvasive monitoring of the glycemia level in diabetic patients.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices.
{"title":"Tear-Based Ocular Wearable Biosensors for Human Health Monitoring.","authors":"Arunima Rajan, Jithin Vishnu, Balakrishnan Shankar","doi":"10.3390/bios14100483","DOIUrl":"https://doi.org/10.3390/bios14100483","url":null,"abstract":"<p><p>Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, we report a study of a zinc sulfide (ZnS) nanocrystal and reduced graphene oxide (RGO) nanocomposite-based non-enzymatic uric acid biosensor. ZnS nanocrystals with different morphologies were synthesized through a hydrothermal method, and both pure nanocrystals and related ZnS/RGO were characterized with SEM, XRD and an absorption spectrum and resistance test. It was found that compared to ZnS nanoparticles, the ZnS nanoflakes had stronger UV light absorption ability at the wavelength of 280 nm of UV light. The RGO significantly enhanced the electron transfer efficiency of the ZnS nanoflakes, which further led to a better photoelectrochemical property of the ZnS/RGO nanocomposites. The ZnS nanoflake/RGO nanocomposite-based biosensor showed an excellent uric acid detecting sensitivity of 534.5 μA·cm-2·mM-1 in the linear range of 0.01 to 2 mM and a detection limit of 0.048 μM. These results will help to improve non-enzymatic biosensor properties for the rapid and accurate clinical detection of uric acid.
{"title":"ZnS and Reduced Graphene Oxide Nanocomposite-Based Non-Enzymatic Biosensor for the Photoelectrochemical Detection of Uric Acid.","authors":"Yao Zhao, Niancai Peng, Weizhuo Gao, Fei Hu, Chuanyu Zhang, Xueyong Wei","doi":"10.3390/bios14100488","DOIUrl":"https://doi.org/10.3390/bios14100488","url":null,"abstract":"<p><p>In this work, we report a study of a zinc sulfide (ZnS) nanocrystal and reduced graphene oxide (RGO) nanocomposite-based non-enzymatic uric acid biosensor. ZnS nanocrystals with different morphologies were synthesized through a hydrothermal method, and both pure nanocrystals and related ZnS/RGO were characterized with SEM, XRD and an absorption spectrum and resistance test. It was found that compared to ZnS nanoparticles, the ZnS nanoflakes had stronger UV light absorption ability at the wavelength of 280 nm of UV light. The RGO significantly enhanced the electron transfer efficiency of the ZnS nanoflakes, which further led to a better photoelectrochemical property of the ZnS/RGO nanocomposites. The ZnS nanoflake/RGO nanocomposite-based biosensor showed an excellent uric acid detecting sensitivity of 534.5 μA·cm<sup>-2</sup>·mM<sup>-1</sup> in the linear range of 0.01 to 2 mM and a detection limit of 0.048 μM. These results will help to improve non-enzymatic biosensor properties for the rapid and accurate clinical detection of uric acid.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Hunt, Sri Ramulu Torati, Gymama Slaughter
Cancer is the second leading cause of death globally, with 9.7 million fatalities in 2022. While routine screenings are vital for early detection, healthcare disparities persist, highlighting the need for equitable solutions. Recent advancements in cancer biomarker identification, particularly microRNAs (miRs), have improved early detection. MiR-21 is notably overexpressed in various cancers and can be a valuable diagnostic tool. Traditional detection methods, though accurate, are costly and complex, limiting their use in resource-limited settings. Paper-based electrochemical biosensors offer a promising alternative, providing cost-effective, sensitive, and rapid diagnostics suitable for point-of-care use. This study introduces an innovative electrochemical paper-based biosensor that leverages gold inkjet printing for the quantitative detection of miR-21. The biosensor, aimed at developing cost-effective point-of-care devices for low-resource settings, uses thiolated self-assembled monolayers to immobilize single-stranded DNA-21 (ssDNA-21) on electrodeposited gold nanoparticles (AuNPs) on the printed gold surface, facilitating specific miR-21 capture. The hybridization of ssDNA-21 with miR-21 increases the anionic barrier density, impeding electron transfer from the redox probe and resulting in a current suppression that correlates with miR-21 concentration. The biosensor exhibited a linear detection range from 1 fM to 1 nM miR-21 with a sensitivity of 7.69 fM µA-1 cm2 and a rapid response time (15 min). With a low detection limit of 0.35 fM miR-21 in serum, the biosensor also demonstrates excellent selectivity against interferent species. This study introduces an electrochemical paper-based biosensor that uses gold inkjet printing to precisely detect miR-21, a key biomarker overexpressed in various cancers. This innovative device highlights the potential for cost-effective, accessible cancer diagnostics in underserved areas.
{"title":"Paper-Based DNA Biosensor for Rapid and Selective Detection of miR-21.","authors":"Alexander Hunt, Sri Ramulu Torati, Gymama Slaughter","doi":"10.3390/bios14100485","DOIUrl":"https://doi.org/10.3390/bios14100485","url":null,"abstract":"<p><p>Cancer is the second leading cause of death globally, with 9.7 million fatalities in 2022. While routine screenings are vital for early detection, healthcare disparities persist, highlighting the need for equitable solutions. Recent advancements in cancer biomarker identification, particularly microRNAs (miRs), have improved early detection. MiR-21 is notably overexpressed in various cancers and can be a valuable diagnostic tool. Traditional detection methods, though accurate, are costly and complex, limiting their use in resource-limited settings. Paper-based electrochemical biosensors offer a promising alternative, providing cost-effective, sensitive, and rapid diagnostics suitable for point-of-care use. This study introduces an innovative electrochemical paper-based biosensor that leverages gold inkjet printing for the quantitative detection of miR-21. The biosensor, aimed at developing cost-effective point-of-care devices for low-resource settings, uses thiolated self-assembled monolayers to immobilize single-stranded DNA-21 (ssDNA-21) on electrodeposited gold nanoparticles (AuNPs) on the printed gold surface, facilitating specific miR-21 capture. The hybridization of ssDNA-21 with miR-21 increases the anionic barrier density, impeding electron transfer from the redox probe and resulting in a current suppression that correlates with miR-21 concentration. The biosensor exhibited a linear detection range from 1 fM to 1 nM miR-21 with a sensitivity of 7.69 fM µA<sup>-1</sup> cm<sup>2</sup> and a rapid response time (15 min). With a low detection limit of 0.35 fM miR-21 in serum, the biosensor also demonstrates excellent selectivity against interferent species. This study introduces an electrochemical paper-based biosensor that uses gold inkjet printing to precisely detect miR-21, a key biomarker overexpressed in various cancers. This innovative device highlights the potential for cost-effective, accessible cancer diagnostics in underserved areas.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial fuel cells (MFCs) represent a promising technology for sustainable energy generation, which leverages the metabolic activities of microorganisms to convert organic substrates into electrical energy. In oil spill scenarios, hydrocarbonoclastic biofilms naturally form at the water-oil interface, creating a distinct environment for microbial activity. In this work, we engineered a novel MFC that harnesses these biofilms by strategically positioning the positive electrode at this critical junction, integrating the biofilm's natural properties into the MFC design. These biofilms, composed of specialized hydrocarbon-degrading bacteria, are vital in supporting electron transfer, significantly enhancing the system's power generation. Next-generation sequencing and scanning electron microscopy were used to characterize the microbial community, revealing a significant enrichment of hydrocarbonoclastic Gammaproteobacteria within the biofilm. Notably, key genera such as Paenalcaligenes, Providencia, and Pseudomonas were identified as dominant members, each contributing to the degradation of complex hydrocarbons and supporting the electrogenic activity of the MFCs. An electrochemical analysis demonstrated that the MFC achieved a stable power output of 51.5 μW under static conditions, with an internal resistance of about 1.05 kΩ. The system showed remarkable long-term stability, which maintained consistent performance over a 5-day testing period, with an average daily energy storage of approximately 216 mJ. Additionally, the MFC effectively recovered after deep discharge cycles, sustaining power output for up to 7.5 h before requiring a recovery period. Overall, the study indicates that MFCs based on hydrocarbonoclastic biofilms provide a dual-functionality system, combining renewable energy generation with environmental remediation, particularly in wastewater treatment. Despite lower power output compared to other hydrocarbon-degrading MFCs, the results highlight the potential of this technology for autonomous sensor networks and other low-power applications, which required sustainable energy sources. Moreover, the hydrocarbonoclastic biofilm-based MFC presented here offer significant potential as a biosensor for real-time monitoring of hydrocarbons and other contaminants in water. The biofilm's electrogenic properties enable the detection of organic compound degradation, positioning this system as ideal for environmental biosensing applications.
{"title":"Hydrocarbonoclastic Biofilm-Based Microbial Fuel Cells: Exploiting Biofilms at Water-Oil Interface for Renewable Energy and Wastewater Remediation.","authors":"Nicola Lovecchio, Roberto Giuseppetti, Lucia Bertuccini, Sandra Columba-Cabezas, Valentina Di Meo, Mario Figliomeni, Francesca Iosi, Giulia Petrucci, Michele Sonnessa, Fabio Magurano, Emilio D'Ugo","doi":"10.3390/bios14100484","DOIUrl":"https://doi.org/10.3390/bios14100484","url":null,"abstract":"<p><p>Microbial fuel cells (MFCs) represent a promising technology for sustainable energy generation, which leverages the metabolic activities of microorganisms to convert organic substrates into electrical energy. In oil spill scenarios, hydrocarbonoclastic biofilms naturally form at the water-oil interface, creating a distinct environment for microbial activity. In this work, we engineered a novel MFC that harnesses these biofilms by strategically positioning the positive electrode at this critical junction, integrating the biofilm's natural properties into the MFC design. These biofilms, composed of specialized hydrocarbon-degrading bacteria, are vital in supporting electron transfer, significantly enhancing the system's power generation. Next-generation sequencing and scanning electron microscopy were used to characterize the microbial community, revealing a significant enrichment of hydrocarbonoclastic <i>Gammaproteobacteria</i> within the biofilm. Notably, key genera such as <i>Paenalcaligenes</i>, <i>Providencia</i>, and <i>Pseudomonas</i> were identified as dominant members, each contributing to the degradation of complex hydrocarbons and supporting the electrogenic activity of the MFCs. An electrochemical analysis demonstrated that the MFC achieved a stable power output of 51.5 μW under static conditions, with an internal resistance of about 1.05 kΩ. The system showed remarkable long-term stability, which maintained consistent performance over a 5-day testing period, with an average daily energy storage of approximately 216 mJ. Additionally, the MFC effectively recovered after deep discharge cycles, sustaining power output for up to 7.5 h before requiring a recovery period. Overall, the study indicates that MFCs based on hydrocarbonoclastic biofilms provide a dual-functionality system, combining renewable energy generation with environmental remediation, particularly in wastewater treatment. Despite lower power output compared to other hydrocarbon-degrading MFCs, the results highlight the potential of this technology for autonomous sensor networks and other low-power applications, which required sustainable energy sources. Moreover, the hydrocarbonoclastic biofilm-based MFC presented here offer significant potential as a biosensor for real-time monitoring of hydrocarbons and other contaminants in water. The biofilm's electrogenic properties enable the detection of organic compound degradation, positioning this system as ideal for environmental biosensing applications.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506689/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}