Katelyn O'Dell, Shobha Kondragunta, Hai Zhang, Daniel L. Goldberg, Gaige Hunter Kerr, Zigang Wei, Barron H. Henderson, Susan C. Anenberg
Despite improvements in ambient air quality in the US in recent decades, many people still experience unhealthy levels of pollution. At present, national-level alert-day identification relies predominately on surface monitor networks and forecasters. Satellite-based estimates of surface air quality have rapidly advanced and have the capability to inform exposure-reducing actions to protect public health. At present, we lack a robust framework to quantify public health benefits of these advances in applications of satellite-based atmospheric composition data. Here, we assess possible health benefits of using geostationary satellite data, over polar orbiting satellite data, for identifying particulate air quality alert days (24hr PM2.5 > 35 μg m−3) in 2020. We find the more extensive spatiotemporal coverage of geostationary satellite data leads to a 60% increase in identification of person-alerts (alert days × population) in 2020 over polar-orbiting satellite data. We apply pre-existing estimates of PM2.5 exposure reduction by individual behavior modification and find these additional person-alerts may lead to 1,200 (800–1,500) or 54% more averted PM2.5-attributable premature deaths per year, if geostationary, instead of polar orbiting, satellite data alone are used to identify alert days. These health benefits have an associated economic value of 13 (8.8–17) billion dollars ($2019) per year. Our results highlight one of many potential applications of atmospheric composition data from geostationary satellites for improving public health. Identifying these applications has important implications for guiding use of current satellite data and planning future geostationary satellite missions.
{"title":"Public Health Benefits From Improved Identification of Severe Air Pollution Events With Geostationary Satellite Data","authors":"Katelyn O'Dell, Shobha Kondragunta, Hai Zhang, Daniel L. Goldberg, Gaige Hunter Kerr, Zigang Wei, Barron H. Henderson, Susan C. Anenberg","doi":"10.1029/2023GH000890","DOIUrl":"10.1029/2023GH000890","url":null,"abstract":"<p>Despite improvements in ambient air quality in the US in recent decades, many people still experience unhealthy levels of pollution. At present, national-level alert-day identification relies predominately on surface monitor networks and forecasters. Satellite-based estimates of surface air quality have rapidly advanced and have the capability to inform exposure-reducing actions to protect public health. At present, we lack a robust framework to quantify public health benefits of these advances in applications of satellite-based atmospheric composition data. Here, we assess possible health benefits of using geostationary satellite data, over polar orbiting satellite data, for identifying particulate air quality alert days (24hr PM<sub>2.5</sub> > 35 μg m<sup>−3</sup>) in 2020. We find the more extensive spatiotemporal coverage of geostationary satellite data leads to a 60% increase in identification of person-alerts (alert days × population) in 2020 over polar-orbiting satellite data. We apply pre-existing estimates of PM<sub>2.5</sub> exposure reduction by individual behavior modification and find these additional person-alerts may lead to 1,200 (800–1,500) or 54% more averted PM<sub>2.5</sub>-attributable premature deaths per year, if geostationary, instead of polar orbiting, satellite data alone are used to identify alert days. These health benefits have an associated economic value of 13 (8.8–17) billion dollars ($2019) per year. Our results highlight one of many potential applications of atmospheric composition data from geostationary satellites for improving public health. Identifying these applications has important implications for guiding use of current satellite data and planning future geostationary satellite missions.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000890","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139517353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingze Yu, Anning Zhu, Miaoxin Liu, Jiyuan Dong, Rentong Chen, Tian Tian, Tong Liu, Li Ma, Ye Ruan
Extensive evidence has shown that air pollution increases the risk of cardiovascular disease (CVD) admissions. We aimed to explore the short-term effect of air pollution on CVD admissions in Lanzhou residents and their lag effects. Meteorological data, air pollution data, and a total of 309,561 daily hospitalizations for CVD among urban residents in Lanzhou were collected from 2013 to 2020. Distributed lag non-linear model was used to analyze the relationship between air pollutants and CVD admissions, stratified by gender, age, and season. PM2.5, NO2, and CO have the strongest harmful effects at lag03, while SO2 at lag3. The relative risks of CVD admissions were 1.0013(95% CI: 1.0003, 1.0023), 1.0032(95% CI: 1.0008, 1.0056), and 1.0040(95% CI: 1.0024, 1.0057) when PM2.5, SO2, and NO2 concentrations were increased by 10 μg/m³, respectively. Each 1 mg/m3 increase in CO concentration was associated with a relative risk of cardiovascular hospitalization of risk was 1.0909(95% CI: 1.0367, 1.1479). We observed a relative risk of 0.9981(95% CI: 0.9972, 0.9991) for each 10 μg/m³ increase in O3 for CVD admissions at lag06. We found a significant lag effects of air pollutants on CVD admissions. NO2 and CO pose a greater risk of hospitalization for women, while PM2.5 and SO2 have a greater impact on men. PM2.5, NO2, and CO have a greater impact on CVD admissions in individuals aged <65 years, whereas SO2 affects those aged ≥65 years. Our research indicates a possible short-term impact of air pollution on CVD. Local public health and environmental policies should take these preliminary findings into account.
{"title":"Association Between Air Pollution and Cardiovascular Disease Hospitalizations in Lanzhou City, 2013–2020: A Time Series Analysis","authors":"Jingze Yu, Anning Zhu, Miaoxin Liu, Jiyuan Dong, Rentong Chen, Tian Tian, Tong Liu, Li Ma, Ye Ruan","doi":"10.1029/2022GH000780","DOIUrl":"10.1029/2022GH000780","url":null,"abstract":"<p>Extensive evidence has shown that air pollution increases the risk of cardiovascular disease (CVD) admissions. We aimed to explore the short-term effect of air pollution on CVD admissions in Lanzhou residents and their lag effects. Meteorological data, air pollution data, and a total of 309,561 daily hospitalizations for CVD among urban residents in Lanzhou were collected from 2013 to 2020. Distributed lag non-linear model was used to analyze the relationship between air pollutants and CVD admissions, stratified by gender, age, and season. PM<sub>2.5</sub>, NO<sub>2</sub>, and CO have the strongest harmful effects at lag03, while SO<sub>2</sub> at lag3. The relative risks of CVD admissions were 1.0013(95% CI: 1.0003, 1.0023), 1.0032(95% CI: 1.0008, 1.0056), and 1.0040(95% CI: 1.0024, 1.0057) when PM<sub>2.5</sub>, SO<sub>2</sub>, and NO<sub>2</sub> concentrations were increased by 10 μg/m³, respectively. Each 1 mg/m<sup>3</sup> increase in CO concentration was associated with a relative risk of cardiovascular hospitalization of risk was 1.0909(95% CI: 1.0367, 1.1479). We observed a relative risk of 0.9981(95% CI: 0.9972, 0.9991) for each 10 μg/m³ increase in O<sub>3</sub> for CVD admissions at lag06. We found a significant lag effects of air pollutants on CVD admissions. NO<sub>2</sub> and CO pose a greater risk of hospitalization for women, while PM<sub>2.5</sub> and SO<sub>2</sub> have a greater impact on men. PM<sub>2.5</sub>, NO<sub>2</sub>, and CO have a greater impact on CVD admissions in individuals aged <65 years, whereas SO<sub>2</sub> affects those aged ≥65 years. Our research indicates a possible short-term impact of air pollution on CVD. Local public health and environmental policies should take these preliminary findings into account.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For the population of a given US city, the risk of premature death associated with heat exposure increases as temperatures rise, but risks in hotter cities are generally lower than in cooler cities at equivalent temperatures due to factors such as acclimatization. Those living in especially hot neighborhoods within cities might therefore suffer much more than average if such adaptation is only at the city-wide level, whereas they might not experience greatly increased risk if adjustment is at the neighborhood level. To compare these possibilities, we use high spatial resolution temperature data to evaluated heat-related deaths assuming either adjustment at the city-wide or at the neighborhood scale in 10 large US cities. On average, we find that if inhabitants are adjusted to their local conditions, a neighborhood that was 10°C hotter than a cooler one would experience only about 1.0–1.5 excess heat deaths per year per 100,000 persons. By contrast, if inhabitants are acclimatized to city-wide temperatures, the hotter neighborhood would experience about 15 excess deaths per year per 100,000 persons. Using idealized analyses, we demonstrate that current city-wide epidemiological data do not differentiate between these differing adjustments. Given the very large effects of assumptions about neighborhood-level acclimatization found here, as well as the fact that current literature is conflicting on the spatial scale of acclimatization, more neighborhood-level epidemiological data are urgently needed to determine the health impacts of variations in heat exposure within urban areas, better constrain projected changes, and inform mitigation efforts.
{"title":"Premature Deaths Due To Heat Exposure: The Potential Effects of Neighborhood-Level Versus City-Level Acclimatization Within US Cities","authors":"D. Shindell, R. Hunter, G. Faluvegi, L. Parsons","doi":"10.1029/2023GH000970","DOIUrl":"10.1029/2023GH000970","url":null,"abstract":"<p>For the population of a given US city, the risk of premature death associated with heat exposure increases as temperatures rise, but risks in hotter cities are generally lower than in cooler cities at equivalent temperatures due to factors such as acclimatization. Those living in especially hot neighborhoods within cities might therefore suffer much more than average if such adaptation is only at the city-wide level, whereas they might not experience greatly increased risk if adjustment is at the neighborhood level. To compare these possibilities, we use high spatial resolution temperature data to evaluated heat-related deaths assuming either adjustment at the city-wide or at the neighborhood scale in 10 large US cities. On average, we find that if inhabitants are adjusted to their local conditions, a neighborhood that was 10°C hotter than a cooler one would experience only about 1.0–1.5 excess heat deaths per year per 100,000 persons. By contrast, if inhabitants are acclimatized to city-wide temperatures, the hotter neighborhood would experience about 15 excess deaths per year per 100,000 persons. Using idealized analyses, we demonstrate that current city-wide epidemiological data do not differentiate between these differing adjustments. Given the very large effects of assumptions about neighborhood-level acclimatization found here, as well as the fact that current literature is conflicting on the spatial scale of acclimatization, more neighborhood-level epidemiological data are urgently needed to determine the health impacts of variations in heat exposure within urban areas, better constrain projected changes, and inform mitigation efforts.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000970","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139079099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephanie N. Dawrs, Ravleen Virdi, Grant J. Norton, Tamar Elias, Nabeeh A. Hasan, Schuyler Robinson, Jobel Matriz, L. Elaine Epperson, Cody M. Glickman, Sean Beagle, James L. Crooks, Stephen T. Nelson, Edward D. Chan, David E. Damby, Michael Strong, Jennifer R. Honda
Nontuberculous mycobacteria (NTM) are environmentally acquired opportunistic pathogens that can cause chronic lung disease. Within the U.S., Hawai'i shows the highest prevalence rates of NTM lung infections. Here, we investigated a potential role for active volcanism at the Kīlauea Volcano located on Hawai'i Island in promoting NTM growth and diversity. We recovered NTM that are known to cause lung disease from plumbing biofilms and soils collected from the Kīlauea environment. We also discovered viable Mycobacterium avium, Mycobacterium abscessus, and Mycobacterium intracellulare subsp. chimaera on volcanic ash collected during the 2018 Kīlauea eruption. Analysis of soil samples showed that NTM prevalence is positively associated with bulk content of phosphorus, sulfur, and total organic carbon. In growth assays, we showed that phosphorus utilization is essential for proliferation of Kīlauea-derived NTM, and demonstrate that NTM cultured with volcanic ash adhere to ash surfaces and remain viable. Ambient dust collected on O'ahu concurrent with the 2018 eruption contained abundant fresh volcanic glass, suggestive of inter-island ash transport. Phylogenomic analyses using whole genome sequencing revealed that Kīlauea-derived NTM are genetically similar to respiratory isolates identified on other Hawaiian Islands. Consequently, we posit that volcanic eruptions could redistribute environmental microorganisms over large scales. While additional studies are needed to confirm a direct role of ash in NTM dispersal, our results suggest that volcanic particulates harbor and can redistribute NTM and should therefore be studied as a fomite for these burgeoning, environmentally acquired respiratory infections.
{"title":"Hawaiian Volcanic Ash, an Airborne Fomite for Nontuberculous Mycobacteria","authors":"Stephanie N. Dawrs, Ravleen Virdi, Grant J. Norton, Tamar Elias, Nabeeh A. Hasan, Schuyler Robinson, Jobel Matriz, L. Elaine Epperson, Cody M. Glickman, Sean Beagle, James L. Crooks, Stephen T. Nelson, Edward D. Chan, David E. Damby, Michael Strong, Jennifer R. Honda","doi":"10.1029/2023GH000889","DOIUrl":"10.1029/2023GH000889","url":null,"abstract":"<p>Nontuberculous mycobacteria (NTM) are environmentally acquired opportunistic pathogens that can cause chronic lung disease. Within the U.S., Hawai'i shows the highest prevalence rates of NTM lung infections. Here, we investigated a potential role for active volcanism at the Kīlauea Volcano located on Hawai'i Island in promoting NTM growth and diversity. We recovered NTM that are known to cause lung disease from plumbing biofilms and soils collected from the Kīlauea environment. We also discovered viable <i>Mycobacterium avium, Mycobacterium abscessus</i>, and <i>Mycobacterium intracellulare</i> subsp. <i>chimaera</i> on volcanic ash collected during the 2018 Kīlauea eruption. Analysis of soil samples showed that NTM prevalence is positively associated with bulk content of phosphorus, sulfur, and total organic carbon. In growth assays, we showed that phosphorus utilization is essential for proliferation of Kīlauea-derived NTM, and demonstrate that NTM cultured with volcanic ash adhere to ash surfaces and remain viable. Ambient dust collected on O'ahu concurrent with the 2018 eruption contained abundant fresh volcanic glass, suggestive of inter-island ash transport. Phylogenomic analyses using whole genome sequencing revealed that Kīlauea-derived NTM are genetically similar to respiratory isolates identified on other Hawaiian Islands. Consequently, we posit that volcanic eruptions could redistribute environmental microorganisms over large scales. While additional studies are needed to confirm a direct role of ash in NTM dispersal, our results suggest that volcanic particulates harbor and can redistribute NTM and should therefore be studied as a fomite for these burgeoning, environmentally acquired respiratory infections.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000889","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Susan T. Glassmeyer, Emily E. Burns, Michael J. Focazio, Edward T. Furlong, Matthew O. Gribble, Michael A. Jahne, Scott P. Keely, Alison R. Kennicutt, Dana W. Kolpin, Elizabeth K. Medlock Kakaley, Stacy L. Pfaller
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
{"title":"Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies","authors":"Susan T. Glassmeyer, Emily E. Burns, Michael J. Focazio, Edward T. Furlong, Matthew O. Gribble, Michael A. Jahne, Scott P. Keely, Alison R. Kennicutt, Dana W. Kolpin, Elizabeth K. Medlock Kakaley, Stacy L. Pfaller","doi":"10.1029/2022GH000716","DOIUrl":"10.1029/2022GH000716","url":null,"abstract":"<p>The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"7 12","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022GH000716","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139051758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia Xu, Nan Zhang, Yujuan Zhang, Penghui Li, Jinbao Han, Shuang Gao, Xinhua Wang, Chunmei Geng, Wen Yang, Liwen Zhang, Bin Han, Zhipeng Bai
Environmental exposure to ambient polycyclic aromatic hydrocarbons (PAHs) can disturb the immune response. However, the evidence on adverse health effects caused by exposure to PAHs emitted from specific sources among different vulnerable subpopulations is limited. In this cross-sectional study, we aimed to evaluate whether exposure to source-specific PAHs could increase systemic inflammation in older adults. The present study included community-dwelling older adults and collected filter samples of personal exposure to PM2.5 during the winter of 2011. Blood samples were collected after the PM2.5 sample collection. We analyzed PM2.5 bound PAHs and serum inflammatory cytokines (interleukin (IL)1β, IL6, and tumor necrosis factor alpha levels. The Positive Matrix Factorization model was used to identify PAH sources. We used a linear regression model to assess the relative effects of source-specific PM2.5 bound PAHs on the levels of measured inflammatory cytokines. After controlling for confounders, exposure to PAHs emitted from biomass burning or diesel vehicle emission was significantly associated with increased serum inflammatory cytokines and systemic inflammation. These findings highlight the importance of considering exposure sources in epidemiological studies and controlling exposures to organic materials from specific sources.
{"title":"Personal Exposure to Source-Specific Particulate Polycyclic Aromatic Hydrocarbons and Systemic Inflammation: A Cross-Sectional Study of Urban-Dwelling Older Adults in China","authors":"Jia Xu, Nan Zhang, Yujuan Zhang, Penghui Li, Jinbao Han, Shuang Gao, Xinhua Wang, Chunmei Geng, Wen Yang, Liwen Zhang, Bin Han, Zhipeng Bai","doi":"10.1029/2023GH000933","DOIUrl":"10.1029/2023GH000933","url":null,"abstract":"<p>Environmental exposure to ambient polycyclic aromatic hydrocarbons (PAHs) can disturb the immune response. However, the evidence on adverse health effects caused by exposure to PAHs emitted from specific sources among different vulnerable subpopulations is limited. In this cross-sectional study, we aimed to evaluate whether exposure to source-specific PAHs could increase systemic inflammation in older adults. The present study included community-dwelling older adults and collected filter samples of personal exposure to PM<sub>2.5</sub> during the winter of 2011. Blood samples were collected after the PM<sub>2.5</sub> sample collection. We analyzed PM<sub>2.5</sub> bound PAHs and serum inflammatory cytokines (interleukin (IL)1β, IL6, and tumor necrosis factor alpha levels. The Positive Matrix Factorization model was used to identify PAH sources. We used a linear regression model to assess the relative effects of source-specific PM<sub>2.5</sub> bound PAHs on the levels of measured inflammatory cytokines. After controlling for confounders, exposure to PAHs emitted from biomass burning or diesel vehicle emission was significantly associated with increased serum inflammatory cytokines and systemic inflammation. These findings highlight the importance of considering exposure sources in epidemiological studies and controlling exposures to organic materials from specific sources.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"7 12","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000933","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138822688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. M. Amos, N. K. Skaff, S. Schollaert Uz, F. S. Policelli, D. Slayback, E. Macorps, M. J. Jo, K. Patel, C. A. Keller, P. Abue, V. Buchard, A. K. Werner
Exposure to environmental hazards is an important determinant of health, and the frequency and severity of exposures is expected to be impacted by climate change. Through a partnership with the U.S. National Aeronautics and Space Administration, the U.S. Centers for Disease Control and Prevention's National Environmental Public Health Tracking Network is integrating timely observations and model data of priority environmental hazards into its publicly accessible Data Explorer (https://ephtracking.cdc.gov/DataExplorer/). Newly integrated data sets over the contiguous U.S. (CONUS) include: daily 5-day forecasts of air quality based on the Goddard Earth Observing System Composition Forecast, daily historical (1980-present) concentrations of speciated PM2.5 based on the modern era retrospective analysis for research and applications, version 2, and Moderate Resolution Imaging Spectroradiometer (MODIS) daily near real-time maps of flooding (MCDWD). Data integrated into the CDC Tracking Network are broadly intended to improve community health through action by informing both research and early warning activities, including (a) describing temporal and spatial trends in disease and potential environmental exposures, (b) identifying populations most affected, (c) generating hypotheses about associations between health and environmental exposures, and (d) developing, guiding, and assessing environmental public health policies and interventions aimed at reducing or eliminating health outcomes associated with environmental factors.
{"title":"Public Health Data Applications Using the CDC Tracking Network: Augmenting Environmental Hazard Information With Lower-Latency NASA Data","authors":"H. M. Amos, N. K. Skaff, S. Schollaert Uz, F. S. Policelli, D. Slayback, E. Macorps, M. J. Jo, K. Patel, C. A. Keller, P. Abue, V. Buchard, A. K. Werner","doi":"10.1029/2023GH000971","DOIUrl":"https://doi.org/10.1029/2023GH000971","url":null,"abstract":"<p>Exposure to environmental hazards is an important determinant of health, and the frequency and severity of exposures is expected to be impacted by climate change. Through a partnership with the U.S. National Aeronautics and Space Administration, the U.S. Centers for Disease Control and Prevention's National Environmental Public Health Tracking Network is integrating timely observations and model data of priority environmental hazards into its publicly accessible Data Explorer (https://ephtracking.cdc.gov/DataExplorer/). Newly integrated data sets over the contiguous U.S. (CONUS) include: daily 5-day forecasts of air quality based on the Goddard Earth Observing System Composition Forecast, daily historical (1980-present) concentrations of speciated PM<sub>2.5</sub> based on the modern era retrospective analysis for research and applications, version 2, and Moderate Resolution Imaging Spectroradiometer (MODIS) daily near real-time maps of flooding (MCDWD). Data integrated into the CDC Tracking Network are broadly intended to improve community health through action by informing both research and early warning activities, including (a) describing temporal and spatial trends in disease and potential environmental exposures, (b) identifying populations most affected, (c) generating hypotheses about associations between health and environmental exposures, and (d) developing, guiding, and assessing environmental public health policies and interventions aimed at reducing or eliminating health outcomes associated with environmental factors.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"7 12","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000971","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138634040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A combination of accelerated population growth and severe droughts has created pressure on food security and driven the development of irrigation schemes across sub-Saharan Africa. Irrigation has been associated with increased malaria risk, but risk prediction remains difficult due to the heterogeneity of irrigation and the environment. While investigating transmission dynamics is helpful, malaria models cannot be applied directly in irrigated regions as they typically rely only on rainfall as a source of water to quantify larval habitats. By coupling a hydrologic model with an agent-based malaria model for a sugarcane plantation site in Arjo, Ethiopia, we demonstrated how incorporating hydrologic processes to estimate larval habitats can affect malaria transmission. Using the coupled model, we then examined the impact of an existing irrigation scheme on malaria transmission dynamics. The inclusion of hydrologic processes increased the variability of larval habitat area by around two-fold and resulted in reduction in malaria transmission by 60%. In addition, irrigation increased all habitat types in the dry season by up to 7.4 times. It converted temporary and semi-permanent habitats to permanent habitats during the rainy season, which grew by about 24%. Consequently, malaria transmission was sustained all-year round and intensified during the main transmission season, with the peak shifted forward by around 1 month. Lastly, we evaluated the spatiotemporal distribution of adult vectors under the effect of irrigation by resolving habitat heterogeneity. These findings could help larval source management by identifying transmission hotspots and prioritizing resources for malaria elimination planning.
{"title":"Investigating the Impact of Irrigation on Malaria Vector Larval Habitats and Transmission Using a Hydrology-Based Model","authors":"Ai-Ling Jiang, Ming-Chieh Lee, Prashanth Selvaraj, Teshome Degefa, Hallelujah Getachew, Hailu Merga, Delenasaw Yewhalaw, Guiyun Yan, Kuolin Hsu","doi":"10.1029/2023GH000868","DOIUrl":"https://doi.org/10.1029/2023GH000868","url":null,"abstract":"<p>A combination of accelerated population growth and severe droughts has created pressure on food security and driven the development of irrigation schemes across sub-Saharan Africa. Irrigation has been associated with increased malaria risk, but risk prediction remains difficult due to the heterogeneity of irrigation and the environment. While investigating transmission dynamics is helpful, malaria models cannot be applied directly in irrigated regions as they typically rely only on rainfall as a source of water to quantify larval habitats. By coupling a hydrologic model with an agent-based malaria model for a sugarcane plantation site in Arjo, Ethiopia, we demonstrated how incorporating hydrologic processes to estimate larval habitats can affect malaria transmission. Using the coupled model, we then examined the impact of an existing irrigation scheme on malaria transmission dynamics. The inclusion of hydrologic processes increased the variability of larval habitat area by around two-fold and resulted in reduction in malaria transmission by 60%. In addition, irrigation increased all habitat types in the dry season by up to 7.4 times. It converted temporary and semi-permanent habitats to permanent habitats during the rainy season, which grew by about 24%. Consequently, malaria transmission was sustained all-year round and intensified during the main transmission season, with the peak shifted forward by around 1 month. Lastly, we evaluated the spatiotemporal distribution of adult vectors under the effect of irrigation by resolving habitat heterogeneity. These findings could help larval source management by identifying transmission hotspots and prioritizing resources for malaria elimination planning.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"7 12","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000868","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138564702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dust is an important and complex constituent of the atmospheric system, having significant impacts on the environment, climate, air quality, and human health. Although dust events are common across many regions of the United States, their impacts are not often prioritized in air quality mitigation strategies. We argue that there are at least three factors that result in underestimation of the social and environmental impact of dust events, making them receive less attention. These include (a) sparse monitoring stations with irregular spatial distribution in dust-influenced regions, (b) inconsistency with dust sampling methods, and (c) sampling frequency and schedules, which can lead to missed dust events or underestimation of dust particle concentrations. Without addressing these three factors, it is challenging to characterize and understand the full air quality impacts of dust events in the United States. This paper highlights the need for additional monitoring to measure these events so that we can more fully evaluate and understand their impacts, as they are predicted to increase with climate change.
{"title":"Dust Under the Radar: Rethinking How to Evaluate the Impacts of Dust Events on Air Quality in the United States","authors":"K. Ardon-Dryer, K. R. Clifford, J. L. Hand","doi":"10.1029/2023GH000953","DOIUrl":"https://doi.org/10.1029/2023GH000953","url":null,"abstract":"<p>Dust is an important and complex constituent of the atmospheric system, having significant impacts on the environment, climate, air quality, and human health. Although dust events are common across many regions of the United States, their impacts are not often prioritized in air quality mitigation strategies. We argue that there are at least three factors that result in underestimation of the social and environmental impact of dust events, making them receive less attention. These include (a) sparse monitoring stations with irregular spatial distribution in dust-influenced regions, (b) inconsistency with dust sampling methods, and (c) sampling frequency and schedules, which can lead to missed dust events or underestimation of dust particle concentrations. Without addressing these three factors, it is challenging to characterize and understand the full air quality impacts of dust events in the United States. This paper highlights the need for additional monitoring to measure these events so that we can more fully evaluate and understand their impacts, as they are predicted to increase with climate change.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"7 12","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000953","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138550458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew J. Ward, Meytar Sorek-Hamer, Jennifer A. Henke, Eliza Little, Aman Patel, Jeffery Shaman, Krishna Vemuri, Nicholas B. DeFelice
West Nile virus (WNV) is the most significant arbovirus in the United States in terms of both morbidity and mortality. West Nile exists in a complex transmission cycle between avian hosts and the arthropod vector, Culex spp. mosquitoes. Human spillover events occur when humans are bitten by an infected mosquito and predicting these rates of infection and therefore the risk to humans may be associated with fluctuations in environmental conditions. In this study, we evaluate the hydrological and meteorological drivers associated with mosquito biology and viral development to determine if these associations can be used to forecast seasonal mosquito infection rates with WNV in the Coachella Valley of California. We developed and tested a spatially resolved ensemble forecast model of the WNV mosquito infection rate in the Coachella Valley using 17 years of mosquito surveillance data and North American Land Data Assimilation System-2 environmental data. Our multi-model inference system indicated that the combination of a cooler and dryer winter, followed by a wetter and warmer spring, and a cooler than normal summer was most predictive of the prevalence of West Nile positive mosquitoes in the Coachella Valley. The ability to make accurate early season predictions of West Nile risk has the potential to allow local abatement districts and public health entities to implement early season interventions such as targeted adulticiding and public health messaging before human transmission occurs. Such early and targeted interventions could better mitigate the risk of WNV to humans.
{"title":"A Spatially Resolved and Environmentally Informed Forecast Model of West Nile Virus in Coachella Valley, California","authors":"Matthew J. Ward, Meytar Sorek-Hamer, Jennifer A. Henke, Eliza Little, Aman Patel, Jeffery Shaman, Krishna Vemuri, Nicholas B. DeFelice","doi":"10.1029/2023GH000855","DOIUrl":"10.1029/2023GH000855","url":null,"abstract":"<p>West Nile virus (WNV) is the most significant arbovirus in the United States in terms of both morbidity and mortality. West Nile exists in a complex transmission cycle between avian hosts and the arthropod vector, <i>Culex</i> spp. mosquitoes. Human spillover events occur when humans are bitten by an infected mosquito and predicting these rates of infection and therefore the risk to humans may be associated with fluctuations in environmental conditions. In this study, we evaluate the hydrological and meteorological drivers associated with mosquito biology and viral development to determine if these associations can be used to forecast seasonal mosquito infection rates with WNV in the Coachella Valley of California. We developed and tested a spatially resolved ensemble forecast model of the WNV mosquito infection rate in the Coachella Valley using 17 years of mosquito surveillance data and North American Land Data Assimilation System-2 environmental data. Our multi-model inference system indicated that the combination of a cooler and dryer winter, followed by a wetter and warmer spring, and a cooler than normal summer was most predictive of the prevalence of West Nile positive mosquitoes in the Coachella Valley. The ability to make accurate early season predictions of West Nile risk has the potential to allow local abatement districts and public health entities to implement early season interventions such as targeted adulticiding and public health messaging before human transmission occurs. Such early and targeted interventions could better mitigate the risk of WNV to humans.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"7 12","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023GH000855","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138547136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}