Pub Date : 2024-08-15DOI: 10.1016/j.wace.2024.100715
Xuezheng Zong , Yang Liu , Yunhe Yin
Terrestrial vegetation plays a vital role in global carbon recycling, but it is also affected by compound events (CEs); however, little is known about the impacts of these CEs on vegetation in terms of their occurrence and magnitude. Using meteorological observations and vegetation indices (leaf area index (LAI), gross primary productivity (GPP), and net primary productivity (NPP)) from 1981 to 2020, we explored the occurrence of 13 CEs types and identified the dominant CEs types across different eco-geographical regions of China, and quantified the response of various vegetation types to dominant CEs. We found that CEs of extreme hot-dry, extreme hot-dry-high fire weather, dry-high fire weather, and high fire weather-strong wind were the dominant types of compound events during the growing season in China, and their hazards increased at a rate of >0.1HI/10a during 1981–2020. We further detected that more than 60% of the total vegetation areas showed a strong negative correlation with compound extreme hot-dry-high fire weather-strong wind events, which was relatively higher than compound extreme hot-dry events. The response of vegetation to compound events varied at the national scale, which was related to the vegetation type, dominant compound event type, and local natural conditions. This study highlights the benefits of a multivariate perspective on compound events and reveals the regional differences in the response of vegetation to compound events, which can provide initial guidance to assess the regional compound event risk of vegetation against the background of carbon neutrality by 2060.
{"title":"Identifying the dominant compound events and their impacts on vegetation growth in China","authors":"Xuezheng Zong , Yang Liu , Yunhe Yin","doi":"10.1016/j.wace.2024.100715","DOIUrl":"10.1016/j.wace.2024.100715","url":null,"abstract":"<div><p>Terrestrial vegetation plays a vital role in global carbon recycling, but it is also affected by compound events (CEs); however, little is known about the impacts of these CEs on vegetation in terms of their occurrence and magnitude. Using meteorological observations and vegetation indices (leaf area index (LAI), gross primary productivity (GPP), and net primary productivity (NPP)) from 1981 to 2020, we explored the occurrence of 13 CEs types and identified the dominant CEs types across different eco-geographical regions of China, and quantified the response of various vegetation types to dominant CEs. We found that CEs of extreme hot-dry, extreme hot-dry-high fire weather, dry-high fire weather, and high fire weather-strong wind were the dominant types of compound events during the growing season in China, and their hazards increased at a rate of >0.1HI/10a during 1981–2020. We further detected that more than 60% of the total vegetation areas showed a strong negative correlation with compound extreme hot-dry-high fire weather-strong wind events, which was relatively higher than compound extreme hot-dry events. The response of vegetation to compound events varied at the national scale, which was related to the vegetation type, dominant compound event type, and local natural conditions. This study highlights the benefits of a multivariate perspective on compound events and reveals the regional differences in the response of vegetation to compound events, which can provide initial guidance to assess the regional compound event risk of vegetation against the background of carbon neutrality by 2060.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"45 ","pages":"Article 100715"},"PeriodicalIF":6.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000768/pdfft?md5=5ac0164140a1652ae0bc2b61a0bf46b4&pid=1-s2.0-S2212094724000768-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.wace.2024.100709
Abhishekh Kumar Srivastava , Michael Wehner , Céline Bonfils , Paul Aaron Ullrich , Mark Risser
In this work, we compare the rate of warming of summertime extreme temperatures (summer maximum value of daily maximum temperature; TXx) relative to the local mean (summer mean daily maximum temperature; TXm) over the Northern Hemisphere in observations and one set of large ensemble (LE) simulations. During the 1979–2021 historical period, observations and simulations show robust warming trends in both TXm and TXx almost everywhere in the Northern Hemisphere, except over the eastern U.S. where observations show a slight cooling trend in TXx, which may be a manifestation of internal variability. We find that the observed warming rate in TXx is significantly smaller than in TXm in North Africa, western North America, Siberia, and Eastern Asia, whereas the warming rate in TXx is significantly larger over the Eastern U.S., the U.K., and Northwestern Europe. This observed geographical pattern is successfully reproduced by the vast majority of the LE members over the historical period, and is persistent (although less intense) in future climate projections over the 2051–2100 period. We also find that these relative warming patterns are mostly driven by the local hydroclimate conditions. TXx warms slower than TXm in the hyper-arid, arid, semi-arid and moist regions, where trends in the partitioning of the turbulent surface fluxes between the latent and sensible heat flux are similar during regular and extreme hot days. In contrast, TXx warms faster than TXm in dry-subhumid regions where trends in the partitioning of the surface fluxes are significantly different between regular and extreme hot days, with a larger role of sensible heat flux during the extreme hot days.
{"title":"Local hydroclimate drives differential warming rates between regular summer days and extreme hot days in the Northern Hemisphere","authors":"Abhishekh Kumar Srivastava , Michael Wehner , Céline Bonfils , Paul Aaron Ullrich , Mark Risser","doi":"10.1016/j.wace.2024.100709","DOIUrl":"10.1016/j.wace.2024.100709","url":null,"abstract":"<div><p>In this work, we compare the rate of warming of summertime extreme temperatures (summer maximum value of daily maximum temperature; TXx) relative to the local mean (summer mean daily maximum temperature; TXm) over the Northern Hemisphere in observations and one set of large ensemble (LE) simulations. During the 1979–2021 historical period, observations and simulations show robust warming trends in both TXm and TXx almost everywhere in the Northern Hemisphere, except over the eastern U.S. where observations show a slight cooling trend in TXx, which may be a manifestation of internal variability. We find that the observed warming rate in TXx is significantly smaller than in TXm in North Africa, western North America, Siberia, and Eastern Asia, whereas the warming rate in TXx is significantly larger over the Eastern U.S., the U.K., and Northwestern Europe. This observed geographical pattern is successfully reproduced by the vast majority of the LE members over the historical period, and is persistent (although less intense) in future climate projections over the 2051–2100 period. We also find that these relative warming patterns are mostly driven by the local hydroclimate conditions. TXx warms slower than TXm in the hyper-arid, arid, semi-arid and moist regions, where trends in the partitioning of the turbulent surface fluxes between the latent and sensible heat flux are similar during regular and extreme hot days. In contrast, TXx warms faster than TXm in dry-subhumid regions where trends in the partitioning of the surface fluxes are significantly different between regular and extreme hot days, with a larger role of sensible heat flux during the extreme hot days.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"45 ","pages":"Article 100709"},"PeriodicalIF":6.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000707/pdfft?md5=934d7902725ef23702e14949168e6ad1&pid=1-s2.0-S2212094724000707-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.wace.2024.100712
Yue Xin , Wenting Hu , Anmin Duan , Bin Tang , Yuheng Tang
The frequency of heatwaves in the Arctic is on the rise under global warming. These occurrences not only profoundly impact the local ecological environment but also exert remote effects on East Asia and even the global climate. Yet, there exists a noticeable dearth of research focus on Arctic compound daytime-nighttime heatwaves, limiting our comprehension of Arctic climate dynamics. We investigated the occurrence and extinction mechanism for compound daytime-nighttime heatwaves in the Barents–Kara Sea (BKS) during the boreal autumn and explored their association with the sea ice variability. Our results show that a significant dipole pattern appears in the geopotential height two days before the occurrence of compound daytime-nighttime heatwaves in the BKS during autumn, characterized by a negative anomaly centered over Greenland and a positive anomaly centered over the BKS. A robust southerly anomaly in the middle of this dipole pattern facilitates the continuous inflow of warm, moist air from the Atlantic Ocean to the BKS. Both the strong intrusion of moisture and the transport of heat (positive temperature advection) driven by the large-scale atmospheric circulation increase downward latent heat flux, sensible heat flux and net longwave radiation. These factors collectively increase the near-surface temperature over the BKS, ultimately leading to the occurrence of compound daytime-nighttime heatwaves in this region of the Arctic. The extinction of compound daytime-nighttime heatwaves in the BKS is a result of the weakening of the transport of heat and intrusion of water vapor caused by changes in the large-scale circulation. The intrusion of water vapor and the transport of heat significantly reduce the sea ice concentration in most of the BKS. This reduction in sea ice persists for an additional day after the termination of compound daytime-nighttime heatwaves in the BKS. A process of positive atmospheric temperature feedback on a sub-monthly scale may potentially influence the maintenance of compound daytime-nighttime heatwaves in the BKS during the boreal autumn.
{"title":"Mechanism for compound daytime-nighttime heatwaves in the Barents–Kara Sea during the boreal autumn and their relationship with sea ice variability","authors":"Yue Xin , Wenting Hu , Anmin Duan , Bin Tang , Yuheng Tang","doi":"10.1016/j.wace.2024.100712","DOIUrl":"10.1016/j.wace.2024.100712","url":null,"abstract":"<div><p>The frequency of heatwaves in the Arctic is on the rise under global warming. These occurrences not only profoundly impact the local ecological environment but also exert remote effects on East Asia and even the global climate. Yet, there exists a noticeable dearth of research focus on Arctic compound daytime-nighttime heatwaves, limiting our comprehension of Arctic climate dynamics. We investigated the occurrence and extinction mechanism for compound daytime-nighttime heatwaves in the Barents–Kara Sea (BKS) during the boreal autumn and explored their association with the sea ice variability. Our results show that a significant dipole pattern appears in the geopotential height two days before the occurrence of compound daytime-nighttime heatwaves in the BKS during autumn, characterized by a negative anomaly centered over Greenland and a positive anomaly centered over the BKS. A robust southerly anomaly in the middle of this dipole pattern facilitates the continuous inflow of warm, moist air from the Atlantic Ocean to the BKS. Both the strong intrusion of moisture and the transport of heat (positive temperature advection) driven by the large-scale atmospheric circulation increase downward latent heat flux, sensible heat flux and net longwave radiation. These factors collectively increase the near-surface temperature over the BKS, ultimately leading to the occurrence of compound daytime-nighttime heatwaves in this region of the Arctic. The extinction of compound daytime-nighttime heatwaves in the BKS is a result of the weakening of the transport of heat and intrusion of water vapor caused by changes in the large-scale circulation. The intrusion of water vapor and the transport of heat significantly reduce the sea ice concentration in most of the BKS. This reduction in sea ice persists for an additional day after the termination of compound daytime-nighttime heatwaves in the BKS. A process of positive atmospheric temperature feedback on a sub-monthly scale may potentially influence the maintenance of compound daytime-nighttime heatwaves in the BKS during the boreal autumn.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"45 ","pages":"Article 100712"},"PeriodicalIF":6.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000732/pdfft?md5=d9cb0536718b7d0df402e8a15f36c0e2&pid=1-s2.0-S2212094724000732-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.wace.2024.100711
Matheus José Arruda Lyra , Helber Barros Gomes , Dirceu Luís Herdies , Enver Ramirez , Lucas Carvalho Vieira Cavalcante , Ismael Guidson Farias de Freitas , José Antonio Aravéquia , Silvio Nilo Figueroa , Maria Cristina Lemos da Silva , Fabricio Daniel dos Santos Silva , Heliofábio Barros Gomes , Eder Paulo Vendrasco , Leonardo Calvetti , José Antonio Mantovani Jr. , Jayant Pendharkar , William Coelho , Mário Francisco Leal de Quadro , Débora Regina Roberti , César Augusto Assis Beneti
In the present study two extreme events that occurred in the East Coast of Northeast Brazil (ENEB) during 2022 and 2023 were evaluated. These events are becoming increasingly frequent in all regions of Brazil, associated with significant material and human losses, emphasizing the significance of a deeper comprehension of these events. ERA5 global reanalysis data, GOES-16 satellite imagery and pluviometric stations were used for the analysis. Model simulations were also conducted using the Model for Prediction Across Scales (MPAS) with variable resolution (60–3 km). Both events corresponded to Easterly Wave Disturbances (EWDs) that occurred under opposite large-scale conditions of the ENSO cycle, since extreme events are becoming increasingly frequent in all regions of Brazil and could be responsible for significant material and human losses. Thus, an emphasis was given to characterize the synoptic conditions. Both analyzed cases occurred along the ENEB, specifically over the Alagoas state. The trough axis penetrating the studied area was observed on both examined dates, with a very characteristic relative vorticity of this tropical disturbance. In general, moisture convergence resulted from the high flow of moisture prevailing over the region combined with upward movements caused by the trough present at low levels, which combined with local factors in the region such as topography, contributed to the increase in rainfall over the study area in both analyzed cases. The MPAS showed excellent spatial representation when compared to station data, highlighting intense precipitation over parts of Alagoas.
{"title":"Extreme precipitation events over the east coast of northeast Brazil: Synoptic study and MPAS simulation","authors":"Matheus José Arruda Lyra , Helber Barros Gomes , Dirceu Luís Herdies , Enver Ramirez , Lucas Carvalho Vieira Cavalcante , Ismael Guidson Farias de Freitas , José Antonio Aravéquia , Silvio Nilo Figueroa , Maria Cristina Lemos da Silva , Fabricio Daniel dos Santos Silva , Heliofábio Barros Gomes , Eder Paulo Vendrasco , Leonardo Calvetti , José Antonio Mantovani Jr. , Jayant Pendharkar , William Coelho , Mário Francisco Leal de Quadro , Débora Regina Roberti , César Augusto Assis Beneti","doi":"10.1016/j.wace.2024.100711","DOIUrl":"10.1016/j.wace.2024.100711","url":null,"abstract":"<div><p>In the present study two extreme events that occurred in the East Coast of Northeast Brazil (ENEB) during 2022 and 2023 were evaluated. These events are becoming increasingly frequent in all regions of Brazil, associated with significant material and human losses, emphasizing the significance of a deeper comprehension of these events. ERA5 global reanalysis data, GOES-16 satellite imagery and pluviometric stations were used for the analysis. Model simulations were also conducted using the Model for Prediction Across Scales (MPAS) with variable resolution (60–3 km). Both events corresponded to Easterly Wave Disturbances (EWDs) that occurred under opposite large-scale conditions of the ENSO cycle, since extreme events are becoming increasingly frequent in all regions of Brazil and could be responsible for significant material and human losses. Thus, an emphasis was given to characterize the synoptic conditions. Both analyzed cases occurred along the ENEB, specifically over the Alagoas state. The trough axis penetrating the studied area was observed on both examined dates, with a very characteristic relative vorticity of this tropical disturbance. In general, moisture convergence resulted from the high flow of moisture prevailing over the region combined with upward movements caused by the trough present at low levels, which combined with local factors in the region such as topography, contributed to the increase in rainfall over the study area in both analyzed cases. The MPAS showed excellent spatial representation when compared to station data, highlighting intense precipitation over parts of Alagoas.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"45 ","pages":"Article 100711"},"PeriodicalIF":6.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000720/pdfft?md5=cbb21f7241737fdec11c74901415c698&pid=1-s2.0-S2212094724000720-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1016/j.wace.2024.100710
Ricardo A. Gutierrez-Villarreal , Jhan-Carlo Espinoza , Waldo Lavado-Casimiro , Clémentine Junquas , Jorge Molina-Carpio , Thomas Condom , José A. Marengo
The 2022-23 hydrological year in the Lake Titicaca, Desaguadero River, and Lake Poopó hydrological system (TDPS) over the South American Altiplano constituted a historically dry period. This drought was particularly severe during the pre-wet season (October–December), when the TDPS and the adjacent Andean-Amazon region experienced as much as 60% reductions in rainfall. Consequently, Titicaca Lake water levels decreased by 0.05 m from December to January, which is part of the rising lake level period of normal conditions. Such conditions have not been seen since the El Niño-related drought of 1982-83. Using a set of hydroclimatic, Sea Surface Temperature (SST) and atmospheric reanalysis datasets, we find that this new historical drought was associated with enhanced southerly moisture flux anomalies, reducing the inflow of moisture-laden winds from the Amazon basin to the TDPS. Such anomalies in moisture transport were not seen since at least the 1950s. The atmospheric dynamics associated with this drought are related to La Niña SST anomalies via subtropical teleconnections associated with Rossby wave trains towards South America, further extended by subtropical Atlantic Ocean SST anomalies. This feature reduced the atmospheric moisture inflow from the Amazon and weakened the development of the Bolivian High in the upper troposphere. These results document a new atmospheric mechanism related to extreme droughts in the TDPS associated with La Niña SST anomalies during the pre-wet season. This goes beyond the traditional understanding of El Niño events, especially the strongest ones, being associated with dry conditions in the TDPS during the wet season (December–March).
{"title":"The 2022-23 drought in the South American Altiplano: ENSO effects on moisture flux in the western Amazon during the pre-wet season","authors":"Ricardo A. Gutierrez-Villarreal , Jhan-Carlo Espinoza , Waldo Lavado-Casimiro , Clémentine Junquas , Jorge Molina-Carpio , Thomas Condom , José A. Marengo","doi":"10.1016/j.wace.2024.100710","DOIUrl":"10.1016/j.wace.2024.100710","url":null,"abstract":"<div><p>The 2022-23 hydrological year in the Lake Titicaca, Desaguadero River, and Lake Poopó hydrological system (TDPS) over the South American Altiplano constituted a historically dry period. This drought was particularly severe during the pre-wet season (October–December), when the TDPS and the adjacent Andean-Amazon region experienced as much as 60% reductions in rainfall. Consequently, Titicaca Lake water levels decreased by 0.05 m from December to January, which is part of the rising lake level period of normal conditions. Such conditions have not been seen since the El Niño-related drought of 1982-83. Using a set of hydroclimatic, Sea Surface Temperature (SST) and atmospheric reanalysis datasets, we find that this new historical drought was associated with enhanced southerly moisture flux anomalies, reducing the inflow of moisture-laden winds from the Amazon basin to the TDPS. Such anomalies in moisture transport were not seen since at least the 1950s. The atmospheric dynamics associated with this drought are related to La Niña SST anomalies via subtropical teleconnections associated with Rossby wave trains towards South America, further extended by subtropical Atlantic Ocean SST anomalies. This feature reduced the atmospheric moisture inflow from the Amazon and weakened the development of the Bolivian High in the upper troposphere. These results document a new atmospheric mechanism related to extreme droughts in the TDPS associated with La Niña SST anomalies during the pre-wet season. This goes beyond the traditional understanding of El Niño events, especially the strongest ones, being associated with dry conditions in the TDPS during the wet season (December–March).</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"45 ","pages":"Article 100710"},"PeriodicalIF":6.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000719/pdfft?md5=9bb21ecccc17aaa4d3bbb3458fb7b82b&pid=1-s2.0-S2212094724000719-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.wace.2024.100708
Bin Wang , Linchao Li , Puyu Feng , Chao Chen , Jing-Jia Luo , Andréa S. Taschetto , Matthew Tom Harrison , Ke Liu , De Li Liu , Qiang Yu , Xiaowei Guo
Drought is projected to intensify under warming climate and will continuously threaten global food security. Assessing the risk of yield loss due to drought is key to developing effective agronomic options for farmers and policymakers. However, little has been known about determining the likelihood of reduced crop yield under different drought conditions and defining thresholds that trigger yield loss at the regional scale in Australia. Here, we estimated the dependence of yield variation on drought conditions and identified drought thresholds for 12 Australia's key wheat producing regions with historical yield data by developing bivariate models based on copula functions. These identified drought thresholds were used to investigate drought statistics under climate change with an ensemble of 36 climate models from Coupled Model Intercomparison Project Phase 6 (CMIP6). We found that drought-induced yield loss was region-specific. The drought thresholds leading to the same magnitude of wheat yield reduction were smaller in regions of southern Queensland and larger in Western Australia mainly due to different climate and soil conditions. Drought will be more frequent and affect larger areas under future warming climates. Based on our results, we advocate for more effective crop management options, particularly in regions where wheat yield is vulnerable to drought in Australia. This will mitigate potential drought impacts on crop production and safeguard global food security.
{"title":"Probabilistic analysis of drought impact on wheat yield and climate change implications","authors":"Bin Wang , Linchao Li , Puyu Feng , Chao Chen , Jing-Jia Luo , Andréa S. Taschetto , Matthew Tom Harrison , Ke Liu , De Li Liu , Qiang Yu , Xiaowei Guo","doi":"10.1016/j.wace.2024.100708","DOIUrl":"10.1016/j.wace.2024.100708","url":null,"abstract":"<div><p>Drought is projected to intensify under warming climate and will continuously threaten global food security. Assessing the risk of yield loss due to drought is key to developing effective agronomic options for farmers and policymakers. However, little has been known about determining the likelihood of reduced crop yield under different drought conditions and defining thresholds that trigger yield loss at the regional scale in Australia. Here, we estimated the dependence of yield variation on drought conditions and identified drought thresholds for 12 Australia's key wheat producing regions with historical yield data by developing bivariate models based on copula functions. These identified drought thresholds were used to investigate drought statistics under climate change with an ensemble of 36 climate models from Coupled Model Intercomparison Project Phase 6 (CMIP6). We found that drought-induced yield loss was region-specific. The drought thresholds leading to the same magnitude of wheat yield reduction were smaller in regions of southern Queensland and larger in Western Australia mainly due to different climate and soil conditions. Drought will be more frequent and affect larger areas under future warming climates. Based on our results, we advocate for more effective crop management options, particularly in regions where wheat yield is vulnerable to drought in Australia. This will mitigate potential drought impacts on crop production and safeguard global food security.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"45 ","pages":"Article 100708"},"PeriodicalIF":6.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000690/pdfft?md5=980b7d50b000d59c02fc5cfb84f637c2&pid=1-s2.0-S2212094724000690-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141698991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-06DOI: 10.1016/j.wace.2024.100707
Wenjun Liang , Chenhao Li , Yifan Wu , Meng Zou , Xian Zhu , Wenjie Dong , John C. Moore , Fei Liu , Shaobo Qiao , Tianyun Dong , Kaixi Wang , Dong Chen , Qi Ran
The Yangtze River basin experienced record-breaking high temperatures in July–August 2022, leading the China Meteorological Administration to issue its first ever “red heat warning”. We use simulations from the Detection and Attribution Model Intercomparison Project (DAMIP) of the Coupled Model Intercomparison Project 6 (CMIP6) to investigate the role of anthropogenic drivers in this extreme event. We have demonstrated that the strong Western Pacific Subtropical High (WPSH), attributed to internal variability, serves as the clear proximate driver for such extreme event, whether in the factual world or in the counterfactual world. When considering similar circulation patterns in 2022, the results show that anthropogenic forcing has contributed to the 2022-like heatwave by a factor about 7 compared to natural forcing under the present climate of the past 30 years. Specifically, the anthropogenic greenhouse gases made the event about 10 times more likely, while anthropogenic aerosols had negative effect. The results were similar but differed in exact contribution values when specific circulation regimes of 2022 were not considered. In general, global warming caused by anthropogenic activities has made extreme summer heatwaves far more frequent, especially in recent decades.
{"title":"Anthropogenic forcing and subtropical anticyclonic drivers of the August 2022 heatwave in China","authors":"Wenjun Liang , Chenhao Li , Yifan Wu , Meng Zou , Xian Zhu , Wenjie Dong , John C. Moore , Fei Liu , Shaobo Qiao , Tianyun Dong , Kaixi Wang , Dong Chen , Qi Ran","doi":"10.1016/j.wace.2024.100707","DOIUrl":"https://doi.org/10.1016/j.wace.2024.100707","url":null,"abstract":"<div><p>The Yangtze River basin experienced record-breaking high temperatures in July–August 2022, leading the China Meteorological Administration to issue its first ever “red heat warning”. We use simulations from the Detection and Attribution Model Intercomparison Project (DAMIP) of the Coupled Model Intercomparison Project 6 (CMIP6) to investigate the role of anthropogenic drivers in this extreme event. We have demonstrated that the strong Western Pacific Subtropical High (WPSH), attributed to internal variability, serves as the clear proximate driver for such extreme event, whether in the factual world or in the counterfactual world. When considering similar circulation patterns in 2022, the results show that anthropogenic forcing has contributed to the 2022-like heatwave by a factor about 7 compared to natural forcing under the present climate of the past 30 years. Specifically, the anthropogenic greenhouse gases made the event about 10 times more likely, while anthropogenic aerosols had negative effect. The results were similar but differed in exact contribution values when specific circulation regimes of 2022 were not considered. In general, global warming caused by anthropogenic activities has made extreme summer heatwaves far more frequent, especially in recent decades.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"45 ","pages":"Article 100707"},"PeriodicalIF":6.1,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000689/pdfft?md5=41131b7c2e341e398869824bfb03d265&pid=1-s2.0-S2212094724000689-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1016/j.wace.2024.100706
Kaixi Wang , Zhiyuan Zheng , Xian Zhu , Wenjie Dong , Simon F.B. Tett , Buwen Dong , Wenxia Zhang , Fraser C. Lott , Lulei Bu , Yumiao Wang , Huixin Li , Nergui Nanding , Nicolas Freychet , Dongqian Wang , Shaobo Qiao
During summer 2020, Southern China experienced an extremely dry and hot summer, which was identified as one of the top ten domestic weather and climate extreme events in 2020 by China Meteorological Administration. Summer mean precipitation, surface air temperature (TAS), and number of hot days (NHD) were about 25% dryer, 1.5 °C warmer, and 11 days larger than the 1981–2010 climatologies. These are the 4th largest precipitation deficit, the highest TAS, and the 2nd highest NHD in the 1961–2020 record. The large-scale circulation anomalies over the West Pacific increased the likelihood of the extreme hot and dry summer. Anthropogenic influences on this extreme summerwere investigated using 525-member ensembles of the atmosphere-only HadGEM3-GA6 model and the multi-model ensembles from the Coupled Model Intercomparison Project Phase 6 (CMIP6). Anthropogenic forcings doubled (increased by 27%) the probability of precipitation deficits, and increased occurrence more than times for both TAS anomaly (50 times probability higher) and NHD anomaly (6 times probability higher) in HadGEM-GA6 (CMIP6). That means that the 2020-like TAS and NHD anomalies would not occur without anthropogenic forcings, and there is weak evidence that human influences decrease rainfall over Southern China. However, the precipitation deficit increased the likelihood of exceeding the observed thresholds for both TAS and NHD by about 17 (4) and 9 (1) times in HadGEM3-GA6 (CMIP6), respectively. Under SSP2-4.5 and SSP5-8.5 scenarios in the future, 2020-like hot but wet extreme summer increases in magnitude and frequency, while the frequency of dry summer declines.
{"title":"Anthropogenic influences on the extremely dry and hot summer of 2020 in Southern China and projected changes in the likelihood of the event","authors":"Kaixi Wang , Zhiyuan Zheng , Xian Zhu , Wenjie Dong , Simon F.B. Tett , Buwen Dong , Wenxia Zhang , Fraser C. Lott , Lulei Bu , Yumiao Wang , Huixin Li , Nergui Nanding , Nicolas Freychet , Dongqian Wang , Shaobo Qiao","doi":"10.1016/j.wace.2024.100706","DOIUrl":"https://doi.org/10.1016/j.wace.2024.100706","url":null,"abstract":"<div><p>During summer 2020, Southern China experienced an extremely dry and hot summer, which was identified as one of the top ten domestic weather and climate extreme events in 2020 by China Meteorological Administration. Summer mean precipitation, surface air temperature (TAS), and number of hot days (NHD) were about 25% dryer, 1.5 °C warmer, and 11 days larger than the 1981–2010 climatologies. These are the 4th largest precipitation deficit, the highest TAS, and the 2nd highest NHD in the 1961–2020 record. The large-scale circulation anomalies over the West Pacific increased the likelihood of the extreme hot and dry summer. Anthropogenic influences on this extreme summerwere investigated using 525-member ensembles of the atmosphere-only HadGEM3-GA6 model and the multi-model ensembles from the Coupled Model Intercomparison Project Phase 6 (CMIP6). Anthropogenic forcings doubled (increased by 27%) the probability of precipitation deficits, and increased occurrence more than <span><math><mrow><msup><mn>10</mn><mn>6</mn></msup></mrow></math></span> times for both TAS anomaly (50 times probability higher) and NHD anomaly (6 times probability higher) in HadGEM-GA6 (CMIP6). That means that the 2020-like TAS and NHD anomalies would not occur without anthropogenic forcings, and there is weak evidence that human influences decrease rainfall over Southern China. However, the precipitation deficit increased the likelihood of exceeding the observed thresholds for both TAS and NHD by about 17 (4) and 9 (1) times in HadGEM3-GA6 (CMIP6), respectively. Under SSP2-4.5 and SSP5-8.5 scenarios in the future, 2020-like hot but wet extreme summer increases in magnitude and frequency, while the frequency of dry summer declines.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"45 ","pages":"Article 100706"},"PeriodicalIF":6.1,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000677/pdfft?md5=32b824cc2905fb1b03fb95f23693f15f&pid=1-s2.0-S2212094724000677-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141479816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nigeria's growing population faces an increasing heat burden with potential health risks. The Universal Thermal Comfort Index (UTCI) links outdoor conditions and human well-being but lacks comprehensive insitu data in developing regions like Nigeria. ERA5-HEAT reanalysis offers a solution with gridded UTCI and MRT data, but validation is crucial. Thus, this study evaluates the ERA5-HEAT UTCI against data from nine Nigerian weather stations and analysed the spatio-temporal patterns of heat stress trends. Results showed that ERA5-HEAT demonstrated reasonable statistical performance and captured the temporal characteristics and patterns of UTCI across Nigeria's climatic zones. Seasonal variations show heat stress levels from "slightly cold" to "moderate" at 0600 LST and "moderate" to "very strong" at 1500 LST. Geographical consistency exists within each season over the decades, with a critical "very strong" heat stress period during March-May. Additionally, there has been an increasing spatial expansion of areas experiencing higher heat stress levels across the country. Latitudinally, stable patterns exist across decades at 0600 LST for each season. Seasons show distinct UTCI values, and at 1500 LST, more variability and category transitions occur along latitudes. Furthermore, the results indicate significant positive trends and occasional non-significant negative trends over the 40-year period. Notably, during 0600 LST, the Guinea and Sahel regions exhibit relatively higher positive trends than the Sudan region in all seasons, whereas at 1500 LST, high positive trends are prominent in DJF and MAM seasons, indicating increased heat stress during peak seasons. These positive deviations in UTCI are associated with adverse effects on human health, including increased mortality rates.
{"title":"Spatio-temporal characteristics of Heat stress over Nigeria using evaluated ERA5-HEAT reanalysis data","authors":"Tobi Eniolu Morakinyo , Kazeem Abiodun Ishola , Emmanuel Olaoluwa Eresanya , Mojolaoluwa Toluwalase Daramola , Ifeoluwa Adebowale Balogun","doi":"10.1016/j.wace.2024.100704","DOIUrl":"10.1016/j.wace.2024.100704","url":null,"abstract":"<div><p>Nigeria's growing population faces an increasing heat burden with potential health risks. The Universal Thermal Comfort Index (UTCI) links outdoor conditions and human well-being but lacks comprehensive <em>insitu</em> data in developing regions like Nigeria. ERA5-HEAT reanalysis offers a solution with gridded UTCI and MRT data, but validation is crucial. Thus, this study evaluates the ERA5-HEAT UTCI against data from nine Nigerian weather stations and analysed the spatio-temporal patterns of heat stress trends. Results showed that ERA5-HEAT demonstrated reasonable statistical performance and captured the temporal characteristics and patterns of UTCI across Nigeria's climatic zones. Seasonal variations show heat stress levels from \"slightly cold\" to \"moderate\" at 0600 LST and \"moderate\" to \"very strong\" at 1500 LST. Geographical consistency exists within each season over the decades, with a critical \"very strong\" heat stress period during March-May. Additionally, there has been an increasing spatial expansion of areas experiencing higher heat stress levels across the country. Latitudinally, stable patterns exist across decades at 0600 LST for each season. Seasons show distinct UTCI values, and at 1500 LST, more variability and category transitions occur along latitudes. Furthermore, the results indicate significant positive trends and occasional non-significant negative trends over the 40-year period. Notably, during 0600 LST, the Guinea and Sahel regions exhibit relatively higher positive trends than the Sudan region in all seasons, whereas at 1500 LST, high positive trends are prominent in DJF and MAM seasons, indicating increased heat stress during peak seasons. These positive deviations in UTCI are associated with adverse effects on human health, including increased mortality rates.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"45 ","pages":"Article 100704"},"PeriodicalIF":6.1,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000653/pdfft?md5=7e75131a79310b53d503291260ee35f2&pid=1-s2.0-S2212094724000653-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141401597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1016/j.wace.2024.100705
Tamar S. Richards-Thomas , Stephen J. Déry , Ronald E. Stewart , Julie M. Thériault
The Canadian province of British Columbia (BC) is subjected to large-scale, destructive floods. The most dramatic was a mid-November 2021 event when atmospheric rivers (ARs) linked to high-intensity storms caused heavy rainfall in southwestern BC, triggering catastrophic flooding. This study examines 37 floods from 2000 to 2021 using information from over 250 climatological stations and compares events with the mid-November 2021 flood. The dates of the floods showed a bi-modal pattern: a primary season (spring to early summer, 16 floods) and a secondary season (fall to early winter, 21 floods). Five mechanisms controlled these floods: heavy rainfall, rapid snowmelt, severe ice jam, rain-on-snow, and a mixture of snowmelt and ice jam; the mid-November 2021 flood was mainly driven by heavy rainfall. Of the 37 floods, those affected by either heavy rainfall (18 floods) or rain-on-snow (10 floods) were used to derive a relationship between the average daily precipitation amount over the duration of an event and the associated integrated water vapour transport . Flood events showed a strong linear relationship between these variables with R2, p < 0.05, and values of these parameters were significantly higher for the mid-November 2021 flood than for > 90% of the others, although they were not the highest. The mid-November 2021 flood was also one of the four rainfall-related floods that occurred in the secondary season with > 400 kg m−1 s−1. The frequency of flood events over the last five years of the study period has slightly decreased when considering flood events with unknown insured cost. In contrast, insured costs of these events have increased, suggesting that present-day floods are becoming more impactful and may require changes to flood management strategies to reduce costs.
{"title":"Climatological context of the mid-November 2021 floods in the province of British Columbia, Canada","authors":"Tamar S. Richards-Thomas , Stephen J. Déry , Ronald E. Stewart , Julie M. Thériault","doi":"10.1016/j.wace.2024.100705","DOIUrl":"10.1016/j.wace.2024.100705","url":null,"abstract":"<div><p>The Canadian province of British Columbia (BC) is subjected to large-scale, destructive floods. The most dramatic was a mid-November 2021 event when atmospheric rivers (ARs) linked to high-intensity storms caused heavy rainfall in southwestern BC, triggering catastrophic flooding. This study examines 37 floods from 2000 to 2021 using information from over 250 climatological stations and compares events with the mid-November 2021 flood. The dates of the floods showed a bi-modal pattern: a primary season (spring to early summer, 16 floods) and a secondary season (fall to early winter, 21 floods). Five mechanisms controlled these floods: heavy rainfall, rapid snowmelt, severe ice jam, rain-on-snow, and a mixture of snowmelt and ice jam; the mid-November 2021 flood was mainly driven by heavy rainfall. Of the 37 floods, those affected by either heavy rainfall (18 floods) or rain-on-snow (10 floods) were used to derive a relationship between the average daily precipitation amount over the duration of an event and the associated integrated water vapour transport <span><math><mfenced><mover><mrow><mi>I</mi><mi>V</mi><mi>T</mi></mrow><mo>¯</mo></mover></mfenced></math></span>. Flood events showed a strong linear relationship between these variables with <em>R</em><sup>2</sup> <span><math><mrow><mo>≥</mo><mn>0.85</mn></mrow></math></span><em>, p</em> < 0.05, and values of these parameters were significantly higher for the mid-November 2021 flood than for > 90% of the others, although they were not the highest. The mid-November 2021 flood was also one of the four rainfall-related floods that occurred in the secondary season with <span><math><mrow><mover><mrow><mi>I</mi><mi>V</mi><mi>T</mi></mrow><mo>‾</mo></mover></mrow></math></span> > 400 kg m<sup>−1</sup> s<sup>−1</sup>. The frequency of flood events over the last five years of the study period has slightly decreased when considering flood events with unknown insured cost. In contrast, insured costs of these events have increased, suggesting that present-day floods are becoming more impactful and may require changes to flood management strategies to reduce costs.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"45 ","pages":"Article 100705"},"PeriodicalIF":6.1,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000665/pdfft?md5=3ad7981a0eaa8481862910c4866c229e&pid=1-s2.0-S2212094724000665-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141404185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}