Pub Date : 2023-07-20DOI: 10.24425/acs.2022.140862
J. Cvejn
Analytical design of the PID-type controllers for linear plants based on the magnitude optimum criterion usually results in very good control quality and can be applied directly for high-order linear models with dead time, without need of any model reduction. This paper brings an analysis of properties of this tuning method in the case of the PI controller, which shows that it guarantees closed-loop stability and a large stability margin for stable linear plants without zeros, although there are limitations in the case of oscillating plants. In spite of the fact that the magnitude optimum criterion prescribes the closed-loop response only for low frequencies and the stability margin requirements are not explicitly included in the design objective, it reveals that proper open-loop behavior in the middle and high frequency ranges, decisive for the closed-loop stability and robustness, is ensured automatically for the considered class of linear systems if all damping ratios corresponding to poles of the plant transfer function without the dead-time term are sufficiently high.
{"title":"The magnitude optimum design of the PI controller for plants with complex roots and dead time","authors":"J. Cvejn","doi":"10.24425/acs.2022.140862","DOIUrl":"https://doi.org/10.24425/acs.2022.140862","url":null,"abstract":"Analytical design of the PID-type controllers for linear plants based on the magnitude optimum criterion usually results in very good control quality and can be applied directly for high-order linear models with dead time, without need of any model reduction. This paper brings an analysis of properties of this tuning method in the case of the PI controller, which shows that it guarantees closed-loop stability and a large stability margin for stable linear plants without zeros, although there are limitations in the case of oscillating plants. In spite of the fact that the magnitude optimum criterion prescribes the closed-loop response only for low frequencies and the stability margin requirements are not explicitly included in the design objective, it reveals that proper open-loop behavior in the middle and high frequency ranges, decisive for the closed-loop stability and robustness, is ensured automatically for the considered class of linear systems if all damping ratios corresponding to poles of the plant transfer function without the dead-time term are sufficiently high.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"124 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73553389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/acs.2022.140867
L. Moysis, Meenakshi Tripathi, M. Gupta, M. Marwan, C. Volos
This work addresses the problem of adaptive observer design for nonlinear systems satisfying incremental quadratic constraints. The output of the system includes nonlinear terms, which puts an additional strain on the design and feasibility of the observer, which is guaranteed under the satisfaction of an LMI, and a set of algebraic constraints. A particular case where the output nonlinearity matches the unknown parameter coefficient is also discussed. The result is illustrated through a numerical example for the chaos synchronization of the Rössler system.
{"title":"Adaptive observer design for systems with incremental quadratic constraints and nonlinear outputs – application to chaos synchronization","authors":"L. Moysis, Meenakshi Tripathi, M. Gupta, M. Marwan, C. Volos","doi":"10.24425/acs.2022.140867","DOIUrl":"https://doi.org/10.24425/acs.2022.140867","url":null,"abstract":"This work addresses the problem of adaptive observer design for nonlinear systems satisfying incremental quadratic constraints. The output of the system includes nonlinear terms, which puts an additional strain on the design and feasibility of the observer, which is guaranteed under the satisfaction of an LMI, and a set of algebraic constraints. A particular case where the output nonlinearity matches the unknown parameter coefficient is also discussed. The result is illustrated through a numerical example for the chaos synchronization of the Rössler system.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"169 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87878395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/acs.2021.139733
Tirumalasetty Chiranjeevi, R. Biswas, R. Devarapalli, N. Babu, F. Márquez
In this work, we present optimal control formulation and numerical algorithm for fractional order discrete time singular system (DTSS) for fixed terminal state and fixed terminal time endpoint condition. The performance index (PI) is in quadratic form, and the system dynamics is in the sense of Riemann-Liouville fractional derivative (RLFD). A coordinate transformation is used to convert the fractional-order DTSS into its equivalent non-singular form, and then the optimal control problem (OCP) is formulated. The Hamiltonian technique is used to derive the necessary conditions. A solution algorithm is presented for solving the OCP. To validate the formulation and the solution algorithm, an example for fixed terminal state and fixed terminal time case is presented.
{"title":"On optimal control problem subject to fractional order discrete time singular systems","authors":"Tirumalasetty Chiranjeevi, R. Biswas, R. Devarapalli, N. Babu, F. Márquez","doi":"10.24425/acs.2021.139733","DOIUrl":"https://doi.org/10.24425/acs.2021.139733","url":null,"abstract":"In this work, we present optimal control formulation and numerical algorithm for fractional order discrete time singular system (DTSS) for fixed terminal state and fixed terminal time endpoint condition. The performance index (PI) is in quadratic form, and the system dynamics is in the sense of Riemann-Liouville fractional derivative (RLFD). A coordinate transformation is used to convert the fractional-order DTSS into its equivalent non-singular form, and then the optimal control problem (OCP) is formulated. The Hamiltonian technique is used to derive the necessary conditions. A solution algorithm is presented for solving the OCP. To validate the formulation and the solution algorithm, an example for fixed terminal state and fixed terminal time case is presented.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"3 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87201431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/acs.2021.137418
Ilker Tanyer, E. Tatlicioglu, E. Zergeroglu
In this paper, model reference output feedback tracking control of an aircraft subject to additive, uncertain, nonlinear disturbances is considered. In order to present the design steps in a clearfashion:first,theaircraftdynamicsistemporarilyassumedasknownwithallthestatesofthe systemavailable.Thenafeedbacklinearizingcontrollerminimizingaperformanceindexwhile onlyrequiringtheoutputmeasurementsofthesystemisproposed.Astheaircraftdynamics isuncertainandonlytheoutputisavailable,theproposedcontrollermakesuseofanovel uncertaintyestimator.Thestabilityoftheclosedloopsystemandglobalasymptotictrackingof theproposedmethodareensuredviaLyapunovbasedarguments,asymptoticconvergenceof thecontrollertoanoptimalcontrollerisalsoestablished.Numericalsimulationsarepresented inordertodemonstratethefeasibilityandperformanceoftheproposedcontrolstrategy.
{"title":"Output tracking control of an aircraft subject to additive state dependent disturbance: an optimal control approach","authors":"Ilker Tanyer, E. Tatlicioglu, E. Zergeroglu","doi":"10.24425/acs.2021.137418","DOIUrl":"https://doi.org/10.24425/acs.2021.137418","url":null,"abstract":"In this paper, model reference output feedback tracking control of an aircraft subject to additive, uncertain, nonlinear disturbances is considered. In order to present the design steps in a clearfashion:first,theaircraftdynamicsistemporarilyassumedasknownwithallthestatesofthe systemavailable.Thenafeedbacklinearizingcontrollerminimizingaperformanceindexwhile onlyrequiringtheoutputmeasurementsofthesystemisproposed.Astheaircraftdynamics isuncertainandonlytheoutputisavailable,theproposedcontrollermakesuseofanovel uncertaintyestimator.Thestabilityoftheclosedloopsystemandglobalasymptotictrackingof theproposedmethodareensuredviaLyapunovbasedarguments,asymptoticconvergenceof thecontrollertoanoptimalcontrollerisalsoestablished.Numericalsimulationsarepresented inordertodemonstratethefeasibilityandperformanceoftheproposedcontrolstrategy.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"167 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80539493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In advanced control, a control target tracks the set points and tends to achieve optimal operation of a process. Model predictive control (MPC) is used to track the set points. When the set points correspond to an optimum economic trajectory that is sent from an economic layer, the process will be gradually reaching the optimal operation. This study proposes the integration of an economic layer and MPC layer to solve the problem of different time scale and unreachable set points. Both layers require dynamic models that are subject to objective functions. The prediction output of a model is not always asymptotically equal to the measured output of a process. Therefore, Kalman filter is proposed as a state feedback to the two-layer integration. The proposed controller only considers the linear empirical model and the inherent model is identified by system identification, which is assumed to be an ample representation of the process. A depropanizer process case study has been used for demonstration of the proposed technique. The result shows that the proposed controller tends to improve the profit of the process smoothly and continuously, until the process reaches an asymptotically maximum profit point.
{"title":"Optimal operation of a process by integrating dynamic economic optimization and model predictive control formulated with empirical model","authors":"Truong Thanh Tuan, L. Tufa, M. Mutalib, N. Ramli","doi":"10.24425/119076","DOIUrl":"https://doi.org/10.24425/119076","url":null,"abstract":"In advanced control, a control target tracks the set points and tends to achieve optimal operation of a process. Model predictive control (MPC) is used to track the set points. When the set points correspond to an optimum economic trajectory that is sent from an economic layer, the process will be gradually reaching the optimal operation. This study proposes the integration of an economic layer and MPC layer to solve the problem of different time scale and unreachable set points. Both layers require dynamic models that are subject to objective functions. The prediction output of a model is not always asymptotically equal to the measured output of a process. Therefore, Kalman filter is proposed as a state feedback to the two-layer integration. The proposed controller only considers the linear empirical model and the inherent model is identified by system identification, which is assumed to be an ample representation of the process. A depropanizer process case study has been used for demonstration of the proposed technique. The result shows that the proposed controller tends to improve the profit of the process smoothly and continuously, until the process reaches an asymptotically maximum profit point.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"12 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84216401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/acs.2020.134673
C. Jana
In this paper, a new set of intuitionistic fuzzy aggregation operators have been introduced under the environment of intuitionistic fuzzy sets (IFSs). For this, firstly focused on some existing aggregation operators and then new operational rules known as Dombi operation have been proposed which make the advancement of flexibility behavior with the parameter. Based on Dombi operation laws, some new averaging and geometric aggregation operators namely, intuitionistic fuzzy Dombi weighted averaging, ordered weighted averaging and hybrid weighted averaging operator, classified as IFDWA, IFDOWA and IFDHWA operators respectively and intuitionistic fuzzy Dombi geometric, ordered weighted geometric and hybrid weighted geometric operators, labeled as IFDWG, IFDOWG and IFDHWG operators respectively have been proposed. Further, some properties such as idempotency, boundedness, monotonicity and commutative are investigated. Finally, a multi-attribute decision-making model has been developed for the proposed operators to select the best mutual fund for investment. The execution of the comparative study has been examined with the existing operators in this environment.
{"title":"Multiple Attribute Decision Making method based on intuitionistic Dombi operators and its application in mutual fund evaluation","authors":"C. Jana","doi":"10.24425/acs.2020.134673","DOIUrl":"https://doi.org/10.24425/acs.2020.134673","url":null,"abstract":"In this paper, a new set of intuitionistic fuzzy aggregation operators have been introduced under the environment of intuitionistic fuzzy sets (IFSs). For this, firstly focused on some existing aggregation operators and then new operational rules known as Dombi operation have been proposed which make the advancement of flexibility behavior with the parameter. Based on Dombi operation laws, some new averaging and geometric aggregation operators namely, intuitionistic fuzzy Dombi weighted averaging, ordered weighted averaging and hybrid weighted averaging operator, classified as IFDWA, IFDOWA and IFDHWA operators respectively and intuitionistic fuzzy Dombi geometric, ordered weighted geometric and hybrid weighted geometric operators, labeled as IFDWG, IFDOWG and IFDHWG operators respectively have been proposed. Further, some properties such as idempotency, boundedness, monotonicity and commutative are investigated. Finally, a multi-attribute decision-making model has been developed for the proposed operators to select the best mutual fund for investment. The execution of the comparative study has been examined with the existing operators in this environment.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"24 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84366097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/acs.2021.136887
A. Sarkar
Multi-criteria decision making (MCDM) technique and approach have been a trending topic in decision making and systems engineering to choosing the probable optimal options. The primary purpose of this article is to develop prioritized operators to multi-criteria decision making (MCDM) based on Archimedean t-conorm and t-norms (At-CN&t-Ns) under interval-valued dual hesitant fuzzy (IVDHF) environment. A new score function is defined for finding the rank of alternatives in MCDM problems with IVDHF information based on priority levels of criteria imposed by the decision maker. This paper introduces two aggregation operators: At-CN&t-N-based IVDHF prioritized weighted averaging (AIVDHFPWA), and weighted geometric (AIVDHFPWG) aggregation operators. Some of their desirable properties are also investigated in details. A methodology for prioritization-based MCDM is derived under IVDHF information. An illustrative example concerning MCDM problem about a Chinese university for appointing outstanding oversea teachers to strengthen academic education is considered. The method is also applicable for solving other real-life MCDM problems having IVDHF information.
{"title":"Interval-valued dual hesitant fuzzy prioritized aggregation operators based on Archimedean t-conorm and t-norm and their applications to multi-criteria decision making","authors":"A. Sarkar","doi":"10.24425/acs.2021.136887","DOIUrl":"https://doi.org/10.24425/acs.2021.136887","url":null,"abstract":"Multi-criteria decision making (MCDM) technique and approach have been a trending topic in decision making and systems engineering to choosing the probable optimal options. The primary purpose of this article is to develop prioritized operators to multi-criteria decision making (MCDM) based on Archimedean t-conorm and t-norms (At-CN&t-Ns) under interval-valued dual hesitant fuzzy (IVDHF) environment. A new score function is defined for finding the rank of alternatives in MCDM problems with IVDHF information based on priority levels of criteria imposed by the decision maker. This paper introduces two aggregation operators: At-CN&t-N-based IVDHF prioritized weighted averaging (AIVDHFPWA), and weighted geometric (AIVDHFPWG) aggregation operators. Some of their desirable properties are also investigated in details. A methodology for prioritization-based MCDM is derived under IVDHF information. An illustrative example concerning MCDM problem about a Chinese university for appointing outstanding oversea teachers to strengthen academic education is considered. The method is also applicable for solving other real-life MCDM problems having IVDHF information.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"440 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84412411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/acs.2021.137423
A. Gałuszka, Eryka Probierz
Classical planning in Artificial Intelligence is a computationally expensive problem of finding a sequence of actions that transforms a given initial state of the problem to a desired goal situation. Lack of information about the initial state leads to conditional and conformant planning that is more difficult than classical one. A parallel plan is the plan in which some actions can be executed in parallel, usually leading to decrease of the plan execution time but increase of the difficulty of finding the plan. This paper is focused on three planning problems which are computationally difficult: conditional, conformant and parallel conformant. To avoid these difficulties a set of transformations to Linear Programming Problem (LPP), illustrated by examples, is proposed. The results show that solving LPP corresponding to the planning problem can be computationally easier than solving the planning problem by exploring the problem state space. The cost is that not always the LPP solution can be interpreted directly as a plan.
{"title":"On transformation of conditional, conformant and parallel planning to linear programming","authors":"A. Gałuszka, Eryka Probierz","doi":"10.24425/acs.2021.137423","DOIUrl":"https://doi.org/10.24425/acs.2021.137423","url":null,"abstract":"Classical planning in Artificial Intelligence is a computationally expensive problem of finding a sequence of actions that transforms a given initial state of the problem to a desired goal situation. Lack of information about the initial state leads to conditional and conformant planning that is more difficult than classical one. A parallel plan is the plan in which some actions can be executed in parallel, usually leading to decrease of the plan execution time but increase of the difficulty of finding the plan. This paper is focused on three planning problems which are computationally difficult: conditional, conformant and parallel conformant. To avoid these difficulties a set of transformations to Linear Programming Problem (LPP), illustrated by examples, is proposed. The results show that solving LPP corresponding to the planning problem can be computationally easier than solving the planning problem by exploring the problem state space. The cost is that not always the LPP solution can be interpreted directly as a plan.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"143 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84776022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/acs.2021.137424
T. Fajraoui, B. Ghanmi, Fehmi Mabrouk, F. Omri
a class of homogeneous fractional Systems, then we shall prove that local and global behaviors are the same. The uniform Mittag-Leffler stability of homogeneous fractional time-varying systems is studied. A numerical example is given to illustrate the efficiency of the obtained results.
{"title":"Mittag-Leffler stability analysis of a class of homogeneous fractional systems","authors":"T. Fajraoui, B. Ghanmi, Fehmi Mabrouk, F. Omri","doi":"10.24425/acs.2021.137424","DOIUrl":"https://doi.org/10.24425/acs.2021.137424","url":null,"abstract":"a class of homogeneous fractional Systems, then we shall prove that local and global behaviors are the same. The uniform Mittag-Leffler stability of homogeneous fractional time-varying systems is studied. A numerical example is given to illustrate the efficiency of the obtained results.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"108 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73035568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/acs.2019.129379
N. H. Taieb, Hammami, F. Delmotte
An important application of state estimation is feedback control: an estimate of the state (typically the mean estimate) is used as input to a state-feedback controller. This scheme is known as observer based control, and it is a common way of designing an output-feedback controller (i.e. a controller that does not have access to perfect state measurements). In this paper, under the fact that both the estimator dynamics and the state feedback dynamics are stable we propose a separation principle for Takagi-Sugeno fuzzy control systems with Lipschitz nonlinearities. The considered nonlinearities are Lipschitz or meets an integrability condition which have no influence on the LMI to prove the stability of the associated closed-loop system. Furthermore, we give an example to ullistrate the applicability of the main result.
{"title":"A separation principle for Takagi-Sugeno control fuzzy systems","authors":"N. H. Taieb, Hammami, F. Delmotte","doi":"10.24425/acs.2019.129379","DOIUrl":"https://doi.org/10.24425/acs.2019.129379","url":null,"abstract":"An important application of state estimation is feedback control: an estimate of the state (typically the mean estimate) is used as input to a state-feedback controller. This scheme is known as observer based control, and it is a common way of designing an output-feedback controller (i.e. a controller that does not have access to perfect state measurements). In this paper, under the fact that both the estimator dynamics and the state feedback dynamics are stable we propose a separation principle for Takagi-Sugeno fuzzy control systems with Lipschitz nonlinearities. The considered nonlinearities are Lipschitz or meets an integrability condition which have no influence on the LMI to prove the stability of the associated closed-loop system. Furthermore, we give an example to ullistrate the applicability of the main result.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"43 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77258868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}