Pub Date : 2024-05-24DOI: 10.1107/S1600576724002899
Zhongzheng Zhou, Chun Li, Longlong Fan, Zheng Dong, Wenhui Wang, Chen Liu, Bingbing Zhang, Xiaoyan Liu, Kai Zhang, Ling Wang, Yi Zhang, Yuhui Dong
Next-generation light source facilities offer extreme spatial and temporal resolving power, enabling multiscale, ultra-fast and dynamic characterizations. However, a trade-off between acquisition efficiency and data quality needs to be made to fully unleash the resolving potential, for which purpose powerful denoising algorithms to improve the signal-to-noise ratio of the acquired X-ray images are desirable. Yet, existing models based on machine learning mostly require massive and diverse labeled training data. Here we introduce a self-supervised pre-training algorithm with blind denoising capability by exploring the intrinsic physical symmetry of X-ray patterns without requiring high signal-to-noise ratio reference data. The algorithm is more efficient and effective than algorithms without symmetry involved, including an supervised algorithm. It allows us to recover physical information from spatially and temporally resolved data acquired in X-ray diffraction/scattering and pair distribution function experiments, where pattern symmetry is often well preserved. This study facilitates photon-hungry experiments as well as in situ experiments with dynamic loading.
下一代光源设备具有极强的空间和时间分辨能力,可进行多尺度、超快速和动态表征。然而,要充分发挥分辨潜力,需要在采集效率和数据质量之间做出权衡,为此,我们需要功能强大的去噪算法来提高所采集 X 射线图像的信噪比。然而,现有的基于机器学习的模型大多需要大量、多样的标注训练数据。在这里,我们通过探索 X 射线模式的内在物理对称性,引入了一种具有盲去噪能力的自监督预训练算法,而无需高信噪比的参考数据。与不涉及对称性的算法(包括监督算法)相比,该算法更加高效和有效。它使我们能够从 X 射线衍射/散射和成对分布函数实验中获取的空间和时间分辨数据中恢复物理信息,在这些实验中,图案的对称性通常保存得很好。这项研究为高光子消耗实验以及动态加载的原位实验提供了便利。
{"title":"Denoising an X-ray image by exploring the power of its physical symmetry","authors":"Zhongzheng Zhou, Chun Li, Longlong Fan, Zheng Dong, Wenhui Wang, Chen Liu, Bingbing Zhang, Xiaoyan Liu, Kai Zhang, Ling Wang, Yi Zhang, Yuhui Dong","doi":"10.1107/S1600576724002899","DOIUrl":"10.1107/S1600576724002899","url":null,"abstract":"<p>Next-generation light source facilities offer extreme spatial and temporal resolving power, enabling multiscale, ultra-fast and dynamic characterizations. However, a trade-off between acquisition efficiency and data quality needs to be made to fully unleash the resolving potential, for which purpose powerful denoising algorithms to improve the signal-to-noise ratio of the acquired X-ray images are desirable. Yet, existing models based on machine learning mostly require massive and diverse labeled training data. Here we introduce a self-supervised pre-training algorithm with blind denoising capability by exploring the intrinsic physical symmetry of X-ray patterns without requiring high signal-to-noise ratio reference data. The algorithm is more efficient and effective than algorithms without symmetry involved, including an supervised algorithm. It allows us to recover physical information from spatially and temporally resolved data acquired in X-ray diffraction/scattering and pair distribution function experiments, where pattern symmetry is often well preserved. This study facilitates photon-hungry experiments as well as <i>in situ</i> experiments with dynamic loading.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"57 3","pages":"741-754"},"PeriodicalIF":6.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141098604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1107/S1600576724003674
Sebastian A. Suarez
From the historical roots of metalworking to the forefront of modern nanotechnology, functional materials have played a pivotal role in transforming societies, and their influence is poised to persist into the future. Encompassing a wide array of solid-state materials, spanning semiconductors to polymers, molecular crystals to nanoparticles, functional materials find application in critical sectors such as electronics, computers, information, communication, biotechnology, aerospace, defense, environment, energy, medicine and consumer products. This feature article delves into diverse instances of functional materials, exploring their structures, their properties and the underlying mechanisms that contribute to their outstanding performance across fields like batteries, photovoltaics, magnetics and heterogeneous catalysts. The field of structural sciences serves as the cornerstone for unraveling the intricate relationship between structure, dynamics and function. Acting as a bridge, it connects the fundamental understanding of materials to their practical applications.
{"title":"The master key: structural science in unlocking functional materials advancements","authors":"Sebastian A. Suarez","doi":"10.1107/S1600576724003674","DOIUrl":"10.1107/S1600576724003674","url":null,"abstract":"<p>From the historical roots of metalworking to the forefront of modern nanotechnology, functional materials have played a pivotal role in transforming societies, and their influence is poised to persist into the future. Encompassing a wide array of solid-state materials, spanning semiconductors to polymers, molecular crystals to nanoparticles, functional materials find application in critical sectors such as electronics, computers, information, communication, biotechnology, aerospace, defense, environment, energy, medicine and consumer products. This feature article delves into diverse instances of functional materials, exploring their structures, their properties and the underlying mechanisms that contribute to their outstanding performance across fields like batteries, photovoltaics, magnetics and heterogeneous catalysts. The field of structural sciences serves as the cornerstone for unraveling the intricate relationship between structure, dynamics and function. Acting as a bridge, it connects the fundamental understanding of materials to their practical applications.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"57 3","pages":"606-622"},"PeriodicalIF":6.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141100798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1107/S1600576724003844
Yanan Wang, Chai-Yee Chin, Naveen Kumar Hawala Shivashekaregowda, Qin Shi
This study aims to investigate the fracture, molecular mobility and crystallization behaviors of amorphous griseofulvin (GSF) in the presence of polyvinylpyrrolidone (PVP). In the presence of 10%(w/w) PVP K90, the fracture resistance of griseofulvin was greatly improved. Compared with the pure GSF system, the average fracture temperature of the griseofulvin–PVP K90 system was decreased to approximately −6.1°C. More importantly, a statistical study revealed that the direct connection between fracture and nucleation of griseofulvin was weakened in the presence of PVP K90. This study also explored the effects of PVP K90 on the molecular dynamics and crystallization behaviors of amorphous GSF. In the presence of PVP K90, the crystal growth kinetics and molecular dynamics were both slowed down. Interestingly, needle-like crystal growth was observed, exhibiting approximately the same rates as the bubble-induced process. These findings are important for understanding the complex mechanisms of physical stability of polymer-based amorphous solid dispersions.
{"title":"Effects of polyvinylpyrrolidone on the crystallization of amorphous griseofulvin: fracture and molecular mobility","authors":"Yanan Wang, Chai-Yee Chin, Naveen Kumar Hawala Shivashekaregowda, Qin Shi","doi":"10.1107/S1600576724003844","DOIUrl":"10.1107/S1600576724003844","url":null,"abstract":"<p>This study aims to investigate the fracture, molecular mobility and crystallization behaviors of amorphous griseofulvin (GSF) in the presence of polyvinylpyrrolidone (PVP). In the presence of 10%(<i>w</i>/<i>w</i>) PVP K90, the fracture resistance of griseofulvin was greatly improved. Compared with the pure GSF system, the average fracture temperature of the griseofulvin–PVP K90 system was decreased to approximately −6.1°C. More importantly, a statistical study revealed that the direct connection between fracture and nucleation of griseofulvin was weakened in the presence of PVP K90. This study also explored the effects of PVP K90 on the molecular dynamics and crystallization behaviors of amorphous GSF. In the presence of PVP K90, the crystal growth kinetics and molecular dynamics were both slowed down. Interestingly, needle-like crystal growth was observed, exhibiting approximately the same rates as the bubble-induced process. These findings are important for understanding the complex mechanisms of physical stability of polymer-based amorphous solid dispersions.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"57 3","pages":"782-792"},"PeriodicalIF":6.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The structural and electronic properties of pure graphene, graphene with a vacancy, graphene with two vacancies and molybdenum-doped graphene were investigated. In addition, the adsorption of Mo atoms on graphene (G), reduced graphene (rG) and reduced graphene oxide (rGO) was examined. The possible energies of different active adsorption sites of nanostructured Mo-decorated G, rG and rGO have been calculated using density functional theory (DFT). Mo atoms are predicted to create bonds with six C atoms in G, three C atoms in rG, and both C and O atoms in rGO sheets after geometry optimizations. The study focused on changing the electronic structure of G, including opening the zero band gap and controlling the band structure, which was done by creating defects and adding impurities. The present study revealed a significant correlation between the adsorption of the Mo atom and the characteristics exhibited by frontier orbitals. The results indicated that the adsorption characteristics of Mo atoms in pure G, rG and rGO are different, despite chemisorption being the common mechanism. Specifically, Mo-decorated rG exhibited higher adsorption energy, while Mo-decorated G demonstrated a lower adsorption energy. According to these findings, it is reasonable to anticipate that Mo-decorated rG could be applied as a novel adsorbent for the removal of pollutants.
研究了纯石墨烯、有一个空位的石墨烯、有两个空位的石墨烯和掺钼石墨烯的结构和电子特性。此外,还研究了钼原子在石墨烯(G)、还原石墨烯(rG)和还原氧化石墨烯(rGO)上的吸附情况。利用密度泛函理论(DFT)计算了纳米结构钼装饰石墨烯、还原石墨烯和还原氧化石墨烯不同活性吸附位点的可能能量。经过几何优化后,预测钼原子在 G 中能与六个 C 原子成键,在 rG 中能与三个 C 原子成键,在 rGO 片层中能与 C 原子和 O 原子成键。研究的重点是改变 G 的电子结构,包括打开零带隙和控制带状结构,具体做法是制造缺陷和添加杂质。本研究揭示了 Mo 原子的吸附与前沿轨道所表现出的特征之间的显著相关性。结果表明,尽管化学吸附是共同的机制,但纯 G、rG 和 rGO 中 Mo 原子的吸附特性是不同的。具体来说,Mo 装饰的 rG 表现出更高的吸附能,而 Mo 装饰的 G 表现出更低的吸附能。根据这些研究结果,我们有理由相信,Mo 装饰的 rG 可以作为一种新型吸附剂用于去除污染物。
{"title":"Structural and electronic properties of Mo-decorated graphene, reduced graphene and reduced graphene oxide: a DFT calculation","authors":"Nazanin Mohseninia, Hamid Rezagholipour Dizaji, Nafiseh Memarian, Hossein Hajiabadi","doi":"10.1107/S1600576724002061","DOIUrl":"https://doi.org/10.1107/S1600576724002061","url":null,"abstract":"<p>The structural and electronic properties of pure graphene, graphene with a vacancy, graphene with two vacancies and molybdenum-doped graphene were investigated. In addition, the adsorption of Mo atoms on graphene (G), reduced graphene (rG) and reduced graphene oxide (rGO) was examined. The possible energies of different active adsorption sites of nanostructured Mo-decorated G, rG and rGO have been calculated using density functional theory (DFT). Mo atoms are predicted to create bonds with six C atoms in G, three C atoms in rG, and both C and O atoms in rGO sheets after geometry optimizations. The study focused on changing the electronic structure of G, including opening the zero band gap and controlling the band structure, which was done by creating defects and adding impurities. The present study revealed a significant correlation between the adsorption of the Mo atom and the characteristics exhibited by frontier orbitals. The results indicated that the adsorption characteristics of Mo atoms in pure G, rG and rGO are different, despite chemisorption being the common mechanism. Specifically, Mo-decorated rG exhibited higher adsorption energy, while Mo-decorated G demonstrated a lower adsorption energy. According to these findings, it is reasonable to anticipate that Mo-decorated rG could be applied as a novel adsorbent for the removal of pollutants.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"57 3","pages":"770-781"},"PeriodicalIF":6.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1107/S160057672400373X
Takayuki Kumada, Ryuhei Motokawa, Hiroki Iwase
The 500 mm-diameter aluminium alloy neutron window in the SANS diffractometer SANS-J at JRR-3, Tokai, Japan, has been replaced by an ultrahigh-purity aluminium (5N-Al, >99.999%) window. Although the 5N-Al window is three times thicker than the alloy window to compensate for the lower tensile strength, the background intensity in the small-angle neutron scattering (SANS) curve was successfully decreased by a factor of 10 at the maximum. The 5N-Al window is suitable not only for large-diameter neutron windows in SANS diffractometers but also for windows in their environmental apparatus which cannot be made of single-crystal silicon or other ceramics due to their poor availability, fracture strength, processability or affinity with metallic materials.
日本东海 JRR-3 的 SANS 衍射仪 SANS-J 中直径 500 毫米的铝合金中子窗口已被超高纯铝(5N-Al,>99.999%)窗口取代。虽然 5N-Al 窗口比合金窗口厚三倍,以补偿较低的抗拉强度,但小角中子散射(SANS)曲线中的背景强度在最大值时成功降低了 10 倍。5N-Al 窗口不仅适用于 SANS 衍射仪中的大直径中子窗口,也适用于其环境仪器中的窗口,因为单晶硅或其他陶瓷的可用性、断裂强度、可加工性或与金属材料的亲和性都较差。
{"title":"Low-background ultrahigh-purity aluminium window for small-angle neutron scattering using monochromatic cold neutrons","authors":"Takayuki Kumada, Ryuhei Motokawa, Hiroki Iwase","doi":"10.1107/S160057672400373X","DOIUrl":"10.1107/S160057672400373X","url":null,"abstract":"<p>The 500 mm-diameter aluminium alloy neutron window in the SANS diffractometer SANS-J at JRR-3, Tokai, Japan, has been replaced by an ultrahigh-purity aluminium (5N-Al, >99.999%) window. Although the 5N-Al window is three times thicker than the alloy window to compensate for the lower tensile strength, the background intensity in the small-angle neutron scattering (SANS) curve was successfully decreased by a factor of 10 at the maximum. The 5N-Al window is suitable not only for large-diameter neutron windows in SANS diffractometers but also for windows in their environmental apparatus which cannot be made of single-crystal silicon or other ceramics due to their poor availability, fracture strength, processability or affinity with metallic materials.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"57 3","pages":"728-733"},"PeriodicalIF":6.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141126173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}