首页 > 最新文献

Spatial Statistics最新文献

英文 中文
A spatiotemporal inference model for hazard chains based on weighted dynamic Bayesian networks for ground subsidence in mining areas 基于加权动态贝叶斯网络的矿区地面沉降危害链时空推理模型
IF 2.3 2区 数学 Q1 Mathematics Pub Date : 2023-09-29 DOI: 10.1016/j.spasta.2023.100782
Yahong Liu, Jin Zhang

Ground subsidence concerns the long-term development of mining areas, and if not addressed effectively, it could gradually evolve into a major issue limiting the future economic development and survival of mining firms and local populations. However, there is unpredictability and uncertainty in the analysis of ground subsidence in mining areas, which is a quantitative and qualitative problem coupled with multiple indicators. By creating a chain relationship between ground subsidence in mining areas, this research provides a spatiotemporal inference model that integrates remote sensing (RS), geographic information system (GIS), and probabilistic map theory. The model uses a dynamic Bayesian framework to integrate the ground subsidence hazard chain in mining areas, standardizes multi-source data using GIS, computes node probabilities, and applies the entropy weight approach to improve model parameters. The Pingshuo mining area in China served as the study area for the model, and the mean values of area under the curve (AUC) and Brier score (BS) of the inferred results were 0.85 and 0.18, respectively, demonstrating that the model had some accuracy and dependability. Further analysis was performed on the impact of weights on the outcomes and the sensitivity of the model to the input nodes. The findings indicated that the spatiotemporal distribution of the results inferred from the model essentially matched the actual circumstance and could offer data assistance for mine safety management. The matching of the subsidence areas was effectively improved by optimizing the model with weights. The accuracy would also grow as the number of input nodes increased. The model proposed in this study is not limited by data, and the structure can be adjusted with the change of disaster chains, which is applicable to the study of multiple uncertainty problems.

地面沉降关系到矿区的长期发展,如果不加以有效解决,它可能会逐渐演变成一个限制矿业公司和当地人口未来经济发展和生存的重大问题。然而,对矿区地面沉降的分析存在不可预测性和不确定性,这是一个定量和定性的问题,与多个指标相结合。通过建立矿区地面沉降之间的链式关系,本研究提供了一个融合遥感(RS)、地理信息系统(GIS)和概率地图理论的时空推理模型。该模型使用动态贝叶斯框架来整合矿区地面沉降危险链,使用GIS对多源数据进行标准化,计算节点概率,并应用熵权方法来改进模型参数。该模型以中国平朔矿区为研究区域,推断结果的曲线下面积(AUC)和Brier评分(BS)平均值分别为0.85和0.18,表明该模型具有一定的准确性和可靠性。进一步分析了权重对结果的影响以及模型对输入节点的敏感性。研究结果表明,模型推断的结果的时空分布与实际情况基本匹配,可以为矿山安全管理提供数据支持。通过加权优化模型,有效地提高了沉降区的匹配性。精度也会随着输入节点数量的增加而增加。本研究提出的模型不受数据限制,结构可以随着灾害链的变化而调整,适用于多个不确定性问题的研究。
{"title":"A spatiotemporal inference model for hazard chains based on weighted dynamic Bayesian networks for ground subsidence in mining areas","authors":"Yahong Liu,&nbsp;Jin Zhang","doi":"10.1016/j.spasta.2023.100782","DOIUrl":"https://doi.org/10.1016/j.spasta.2023.100782","url":null,"abstract":"<div><p><span>Ground subsidence concerns the long-term development of mining areas, and if not addressed effectively, it could gradually evolve into a major issue limiting the future economic development and survival of mining firms and local populations. However, there is unpredictability and uncertainty in the analysis of ground subsidence in mining areas, which is a quantitative and qualitative problem coupled with multiple indicators. By creating a chain relationship between ground subsidence in mining areas, this research provides a spatiotemporal inference model that integrates </span>remote sensing<span> (RS), geographic information system (GIS), and probabilistic map theory. The model uses a dynamic Bayesian framework to integrate the ground subsidence hazard chain in mining areas, standardizes multi-source data using GIS, computes node probabilities, and applies the entropy weight approach to improve model parameters. The Pingshuo mining area in China served as the study area for the model, and the mean values of area under the curve (AUC) and Brier score (BS) of the inferred results were 0.85 and 0.18, respectively, demonstrating that the model had some accuracy and dependability. Further analysis was performed on the impact of weights on the outcomes and the sensitivity of the model to the input nodes. The findings indicated that the spatiotemporal distribution of the results inferred from the model essentially matched the actual circumstance and could offer data assistance for mine safety management. The matching of the subsidence areas was effectively improved by optimizing the model with weights. The accuracy would also grow as the number of input nodes increased. The model proposed in this study is not limited by data, and the structure can be adjusted with the change of disaster chains, which is applicable to the study of multiple uncertainty problems.</span></p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PENGARUH PENINGKATAN LAHAN TERBANGUN TERHADAP PENURUNAN PERMUKAAN TANAH DI KOTA JAKARTA UTARA TAHUN 2012-2022 2011年至2022年,雅加达北部的土地面积不断增加,这一影响加剧
2区 数学 Q1 Mathematics Pub Date : 2023-09-12 DOI: 10.21009/spatial.232.07
Andri Noor Ardiansyah Andri
Penelitian ini bertujuan untuk mengetahui pengaruh peningkatan lahan terbangun terhadap penurunan permukaan tanah di Kota Jakarta Utara tahun 2014-2022. Penelitian ini menggunakan pendekatan kuantitatif dan jenis penelitian deskriptif. Penelitian ini menggunakan teknik pengolahan penginderaan jauh dan sistem informasi geografi (SIG) dengan menggunakan data Citra Landsat 8 dan Sentinel 1 tahun 2014 dan tahun 2022, pengolahan dilakukan melalui platform Google Earth Engine. Pada variabel peningkatan lahan terbangun dilakukan analisis menggunakan metode kalsifikasi terbimbing (supervised classification) menjadi 2 klasifikasi yaitu lahan terbangun dan lahan non terbangun. Dan untuk mendapatkan nilai penurunan permukaan tanah dilakukan analisis DInSAR (Different Interferometric Synthetic Aperture Radar). Kemudian untuk mengetahui nilai pengaruh antara variabel peningkatan lahan terbangun dengan variabel penurunan permukaan tanah ( dilakukan analisis regresi linear sederhana dengan persamaan Y = 6,413 + 13,178X menghasilkan nilai signifikansi sebesar 0,000<0,05. Nilai R Square sebesar 0,466 yang artinya terdapat pengaruh peningkatan lahan terbangun terhadap penuruan permukaan tanah sebesar 46,6%. Sedangkan nilai thitung diperoleh hasil sebesar 9,239 dan nilai ttabel sebesar 0,1966 dan memiliki arti thitung>ttabel. Sehingga dapat disimpulkan Ha ditolak dan Ha diterima, yang artinya terdapat pengaruh yang signifikan antara peningkatan lahan terbangun terhadap penurunan permukaan tanah di Kota Jakarta Utara tahun 2014-2022.
本研究旨在探讨1914 -2022年雅加达北部海平面下降所带来的日益增长的影响。该研究采用定量方法和描述性研究的类型。该研究采用先进的成像技术和地理信息系统(SIG),利用2014年和2022年谷歌地球引擎平台的图像陆地卫星8号和哨兵号数据进行处理。在变量觉醒过程中,用最大的分类方法进行了分析,这两种分类是唤醒土地和非唤醒土地。为了获得降水值,进行了DInSAR分析(另一种合成孔径)。然后要知道增加土地面积的变量与土壤表面积下降之间的影响值(进行简单的线性回归分析,方程为Y = 6,413 + 13,178X,具有10000 < 0.05的意义值。R平方为0.466,这意味着觉醒的土地面积增加为46.6%。而thitung值为9.239,ttable值为0.1966,具有thitung > ttable的含义。因此,我们可以推断哈被拒绝和哈被接受,这意味着2018 -2022年在雅加达北部海平面上升的影响显著。
{"title":"PENGARUH PENINGKATAN LAHAN TERBANGUN TERHADAP PENURUNAN PERMUKAAN TANAH DI KOTA JAKARTA UTARA TAHUN 2012-2022","authors":"Andri Noor Ardiansyah Andri","doi":"10.21009/spatial.232.07","DOIUrl":"https://doi.org/10.21009/spatial.232.07","url":null,"abstract":"Penelitian ini bertujuan untuk mengetahui pengaruh peningkatan lahan terbangun terhadap penurunan permukaan tanah di Kota Jakarta Utara tahun 2014-2022. Penelitian ini menggunakan pendekatan kuantitatif dan jenis penelitian deskriptif. Penelitian ini menggunakan teknik pengolahan penginderaan jauh dan sistem informasi geografi (SIG) dengan menggunakan data Citra Landsat 8 dan Sentinel 1 tahun 2014 dan tahun 2022, pengolahan dilakukan melalui platform Google Earth Engine. Pada variabel peningkatan lahan terbangun dilakukan analisis menggunakan metode kalsifikasi terbimbing (supervised classification) menjadi 2 klasifikasi yaitu lahan terbangun dan lahan non terbangun. Dan untuk mendapatkan nilai penurunan permukaan tanah dilakukan analisis DInSAR (Different Interferometric Synthetic Aperture Radar). Kemudian untuk mengetahui nilai pengaruh antara variabel peningkatan lahan terbangun dengan variabel penurunan permukaan tanah ( dilakukan analisis regresi linear sederhana dengan persamaan Y = 6,413 + 13,178X menghasilkan nilai signifikansi sebesar 0,000<0,05. Nilai R Square sebesar 0,466 yang artinya terdapat pengaruh peningkatan lahan terbangun terhadap penuruan permukaan tanah sebesar 46,6%. Sedangkan nilai thitung diperoleh hasil sebesar 9,239 dan nilai ttabel sebesar 0,1966 dan memiliki arti thitung>ttabel. Sehingga dapat disimpulkan Ha ditolak dan Ha diterima, yang artinya terdapat pengaruh yang signifikan antara peningkatan lahan terbangun terhadap penurunan permukaan tanah di Kota Jakarta Utara tahun 2014-2022.","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135885449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A parametric specification test for linear spatial autoregressive models 线性空间自回归模型的参数规范检验
IF 2.3 2区 数学 Q1 Mathematics Pub Date : 2023-09-01 DOI: 10.1016/j.spasta.2023.100767
Yangbing Tang, Jiang Du, Zhongzhan Zhang
{"title":"A parametric specification test for linear spatial autoregressive models","authors":"Yangbing Tang, Jiang Du, Zhongzhan Zhang","doi":"10.1016/j.spasta.2023.100767","DOIUrl":"https://doi.org/10.1016/j.spasta.2023.100767","url":null,"abstract":"","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"55196302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geo-additive mixed model with variable selection using the adaptive elastic net to handle nonresponse in official rice productivity survey 用自适应弹性网处理官方水稻生产力调查中的无响应变量选择的地理加性混合模型
IF 2.3 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.1016/j.spasta.2023.100761
Muhlis Ardiansyah , Hari Wijayanto , Anang Kurnia , Anik Djuraidah

This study is motivated by the nonresponse problem in the official rice productivity survey conducted by Statistics Indonesia. Handling nonresponse is essential to support the vision as a quality statistical data provider for advanced Indonesia. This study aimed to improve the quality of official rice productivity data by imputing nonresponse data using the geo-additive mixed model with variable selection. Then we simulated three nonresponse data scenarios to determine whether the imputation technique is better than the listwise deletion. The results showed that the proposed imputation model was the best-imputed model for estimating rice productivity compared to the linear regression, SVM, and geo-additive mixed models without variable selection. The proposed model outperforms other models when the data conditions experience spatial autocorrelation and multicollinearity. The proposed model had two advantages. First, variable selection using the adaptive elastic net could overcome multicollinearity problems. Second, adding the mixed geo-additive function caused the model’s residuals to have no spatial autocorrelation. We showed by simulation using empirical data that the proposed imputation method reduces bias when the nonresponse data is not random. Our methodology presents a valuable alternative for improving the quality of official statistics.

本研究的动机是由印度尼西亚统计局进行的官方水稻生产力调查中的无响应问题。处理无响应对于支持作为先进的印度尼西亚的高质量统计数据提供者的愿景至关重要。为了提高官方水稻产量数据的质量,本研究采用具有变量选择的地理加性混合模型对非响应数据进行输入。然后,我们模拟了三种无响应数据场景,以确定插入技术是否优于列表删除技术。结果表明,与线性回归模型、支持向量机模型和无变量选择的地理加性混合模型相比,该模型是估算水稻产量的最佳模型。当数据条件经历空间自相关和多重共线性时,该模型优于其他模型。提出的模型有两个优点。首先,利用自适应弹性网络进行变量选择可以克服多重共线性问题。其次,混合地相加函数的加入使模型残差不具有空间自相关性。通过经验数据的仿真表明,该方法在非响应数据非随机时减小了偏差。我们的方法为提高官方统计的质量提供了一个有价值的选择。
{"title":"Geo-additive mixed model with variable selection using the adaptive elastic net to handle nonresponse in official rice productivity survey","authors":"Muhlis Ardiansyah ,&nbsp;Hari Wijayanto ,&nbsp;Anang Kurnia ,&nbsp;Anik Djuraidah","doi":"10.1016/j.spasta.2023.100761","DOIUrl":"10.1016/j.spasta.2023.100761","url":null,"abstract":"<div><p>This study is motivated by the nonresponse problem in the official rice productivity survey conducted by Statistics<span><span> Indonesia. Handling nonresponse is essential to support the vision as a quality statistical data provider for advanced Indonesia. This study aimed to improve the quality of official rice productivity data by imputing nonresponse data using the geo-additive mixed model with variable selection. Then we simulated three nonresponse data scenarios to determine whether the imputation technique is better than the listwise deletion. The results showed that the proposed imputation model was the best-imputed model for estimating rice productivity compared to the linear regression, SVM<span><span>, and geo-additive mixed models without variable selection. The proposed model outperforms other models when the data conditions experience spatial autocorrelation and </span>multicollinearity. The proposed model had two advantages. First, variable selection using the adaptive </span></span>elastic net<span><span><span> could overcome multicollinearity problems. Second, adding the mixed geo-additive function caused the model’s residuals to have no spatial autocorrelation. We showed by simulation using empirical data that the proposed </span>imputation method reduces bias when the nonresponse data is not random. Our methodology presents a valuable alternative for improving the quality of </span>official statistics.</span></span></p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46784581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatially penalized registration of multivariate functional data 多变量函数数据的空间惩罚注册
IF 2.3 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.1016/j.spasta.2023.100760
Xiaohan Guo , Sebastian Kurtek , Karthik Bharath

Registration of multivariate functional data involves handling of both cross-component and cross-observation phase variations. Allowing for the two phase variations to be modelled as general diffeomorphic time warpings, in this work we focus on the hitherto unconsidered setting where phase variation of the component functions are spatially correlated. We propose an algorithm to optimize a metric-based objective function for registration with a novel penalty term that incorporates the spatial correlation between the component phase variations through a kriging prediction of an appropriate phase random field. The penalty term encourages the overall phase at a particular location to be similar to the spatially weighted average phase in its neighbourhood, and thus engenders a regularization that prevents over-alignment. Utility of the registration method, and its superior performance compared to methods that fail to account for the spatial correlation, is demonstrated through performance on simulated examples and two multivariate functional datasets pertaining to electroencephalogram signals and ozone concentration functions. The generality of the framework opens up the possibility for extension to settings involving different forms of correlation between the component functions and their phases.

多元函数数据的配准涉及交叉分量和交叉观测相位变化的处理。考虑到两个相位变化被建模为一般的微分同胚时间扭曲,在这项工作中,我们专注于迄今为止未考虑的设置,其中分量函数的相位变化在空间上是相关的。我们提出了一种算法来优化基于度量的目标函数,用于使用新的惩罚项进行配准,该惩罚项通过适当相位随机场的克里格预测结合了分量相位变化之间的空间相关性。惩罚项鼓励特定位置的整体相位与其邻域中的空间加权平均相位相似,从而产生防止过度对准的正则化。通过模拟示例和两个与脑电图信号和臭氧浓度函数有关的多变量函数数据集的性能,证明了配准方法的实用性,以及与未能考虑空间相关性的方法相比的优越性能。该框架的通用性为扩展到涉及组件功能及其阶段之间不同形式相关性的设置开辟了可能性。
{"title":"Spatially penalized registration of multivariate functional data","authors":"Xiaohan Guo ,&nbsp;Sebastian Kurtek ,&nbsp;Karthik Bharath","doi":"10.1016/j.spasta.2023.100760","DOIUrl":"https://doi.org/10.1016/j.spasta.2023.100760","url":null,"abstract":"<div><p>Registration of multivariate functional data involves handling of both cross-component and cross-observation phase variations. Allowing for the two phase variations to be modelled as general diffeomorphic time warpings, in this work we focus on the hitherto unconsidered setting where phase variation of the component functions are spatially correlated. We propose an algorithm to optimize a metric-based objective function for registration with a novel penalty term that incorporates the spatial correlation between the component phase variations through a kriging prediction of an appropriate phase random field. The penalty term encourages the overall phase at a particular location to be similar to the spatially weighted average phase in its neighbourhood, and thus engenders a regularization that prevents over-alignment. Utility of the registration method, and its superior performance compared to methods that fail to account for the spatial correlation, is demonstrated through performance on simulated examples and two multivariate functional datasets pertaining to electroencephalogram signals and ozone concentration functions. The generality of the framework opens up the possibility for extension to settings involving different forms of correlation between the component functions and their phases.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic space–time panel data models: An eigendecomposition-based bias-corrected least squares procedure 动态时空面板数据模型:基于特征分解的偏差校正最小二乘法
IF 2.3 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.1016/j.spasta.2023.100758
Georges Bresson , Anoop Chaturvedi

Jin et al. (2020) proposed an efficient, distribution-free least squares estimation method that utilizes the eigendecomposition of a weight matrix in a dynamic space–time pooled panel data model. Their three-step approach is very powerful compared to the well-known instrumental variable techniques. Unfortunately, for short panels, their method can lead to biased estimates of the autoregressive time dependence parameter and the spatio-temporal diffusion parameter, even when using their bias-corrected estimator. We propose a bias correction method inspired from Bun and Carree (2005, 2006) of the Jin et al. (2020) procedure. We also extend their eigendecomposition-based least squares procedure to the random effects model, the fixed effects model, the Mundlak-type and Chamberlain-type correlated random effects models, the Hausman–Taylor model and the common correlated effects model. Extensive Monte Carlo experiments show the good finite sample properties of the proposed estimators. An application on the link between pollution and economic activities, using a dynamic space–time STIRPAT model with common correlated effects on a panel of 81 countries over 1991–2015, shows the relevance of this approach. It underlines the importance of human activities in the pollution growth while reforestation is one of the most important levers to reduce the CO2 emissions per capita.

Jin等人(2020)提出了一种有效的、无分布的最小二乘估计方法,该方法利用动态时空池面板数据模型中权重矩阵的特征分解。与众所周知的工具变量技术相比,他们的三步方法非常强大。不幸的是,对于短面板,他们的方法可能导致自回归时间依赖参数和时空扩散参数的有偏差估计,即使使用他们的偏差校正估计器。我们提出了一种偏差校正方法,灵感来自Jin等人(2020)程序中的Bun和Carree(2005, 2006)。我们还将基于特征分解的最小二乘方法推广到随机效应模型、固定效应模型、mundlaktype和Chamberlain-type相关随机效应模型、Hausman-Taylor模型和常见相关效应模型。大量的蒙特卡罗实验表明,所提出的估计器具有良好的有限样本特性。在1991年至2015年的81个国家的面板上,使用具有共同相关效应的动态时空STIRPAT模型,对污染与经济活动之间的联系进行了应用,显示了这种方法的相关性。它强调了人类活动在污染增长中的重要性,而重新造林是减少人均二氧化碳排放量的最重要杠杆之一。
{"title":"Dynamic space–time panel data models: An eigendecomposition-based bias-corrected least squares procedure","authors":"Georges Bresson ,&nbsp;Anoop Chaturvedi","doi":"10.1016/j.spasta.2023.100758","DOIUrl":"10.1016/j.spasta.2023.100758","url":null,"abstract":"<div><p><span><span>Jin et al. (2020) proposed an efficient, distribution-free least squares estimation<span><span> method that utilizes the eigendecomposition of a weight matrix in a dynamic space–time pooled </span>panel data model<span>. Their three-step approach is very powerful compared to the well-known instrumental variable techniques. Unfortunately, for short panels, their method can lead to biased estimates of the autoregressive time dependence parameter and the spatio-temporal diffusion parameter, even when using their bias-corrected estimator. We propose a bias correction method inspired from Bun and Carree (2005, 2006) of the Jin et al. (2020) procedure. We also extend their eigendecomposition-based least squares procedure to the random effects model, the </span></span></span>fixed effects model<span>, the Mundlak-type and Chamberlain-type correlated random effects models, the Hausman–Taylor model and the common correlated effects model. Extensive Monte Carlo experiments show the good finite sample properties of the proposed estimators. An application on the link between pollution and economic activities, using a dynamic space–time STIRPAT model with common correlated effects on a panel of 81 countries over 1991–2015, shows the relevance of this approach. It underlines the importance of human activities in the pollution growth while reforestation is one of the most important levers to reduce the CO</span></span><span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions per capita.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45609434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended Laplace approximation for self-exciting spatio-temporal models of count data 计数数据自激时空模型的扩展拉普拉斯近似
IF 2.3 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.1016/j.spasta.2023.100762
Nicholas J. Clark , Philip M. Dixon

Self-exciting models are statistical models of count data where the probability of an event occurring is influenced by the history of the process. In particular, self-exciting spatio-temporal models allow for spatial dependence as well as temporal self-excitation. For large spatial or temporal regions, however, the model leads to an intractable likelihood. An increasingly common method for dealing with large spatio-temporal models is by using Laplace approximations (LA). This method is convenient as it can easily be applied and is quickly implemented. However, as we will demonstrate in this manuscript, when applied to self-exciting Poisson spatial–temporal models, Laplace Approximations result in a significant bias in estimating some parameters. Due to this bias, we propose using up to sixth-order corrections to the LA for fitting these models. We will demonstrate how to do this in a Bayesian setting for self-exciting spatio-temporal models. We will further show there is a limited parameter space where the extended LA method still has bias. In these uncommon instances we will demonstrate how a more computationally intensive fully Bayesian approach using the Stan software program is possible in those rare instances. The performance of the extended LA method is illustrated with both simulation and real-world data.

自激模型是计数数据的统计模型,其中事件发生的概率受过程历史的影响。特别是,自激时空模型允许空间依赖和时间自激。然而,对于大的空间或时间区域,该模型导致难以处理的可能性。一种日益普遍的处理大型时空模型的方法是使用拉普拉斯近似(LA)。该方法易于应用,实现速度快。然而,正如我们将在本文中证明的那样,当应用于自激泊松时空模型时,拉普拉斯近似在估计某些参数时会导致显着偏差。由于这种偏差,我们建议对LA使用高达六阶的修正来拟合这些模型。我们将演示如何在自激时空模型的贝叶斯设置中做到这一点。我们将进一步证明,在有限的参数空间中,扩展的LA方法仍然存在偏差。在这些不常见的情况下,我们将演示如何在这些罕见的情况下使用Stan软件程序实现更密集的计算全贝叶斯方法。用仿真和实际数据说明了扩展的LA方法的性能。
{"title":"Extended Laplace approximation for self-exciting spatio-temporal models of count data","authors":"Nicholas J. Clark ,&nbsp;Philip M. Dixon","doi":"10.1016/j.spasta.2023.100762","DOIUrl":"10.1016/j.spasta.2023.100762","url":null,"abstract":"<div><p>Self-exciting models are statistical models of count data where the probability of an event<span><span><span> occurring is influenced by the history of the process. In particular, self-exciting spatio-temporal models allow for spatial dependence as well as temporal self-excitation. For large spatial or temporal regions, however, the model leads to an intractable likelihood. An increasingly common method for dealing with large spatio-temporal models is by using </span>Laplace approximations (LA). This method is convenient as it can easily be applied and is quickly implemented. However, as we will demonstrate in this manuscript, when applied to self-exciting Poisson spatial–temporal models, Laplace Approximations result in a significant bias in estimating some parameters. Due to this bias, we propose using up to sixth-order corrections to the LA for fitting these models. We will demonstrate how to do this in a </span>Bayesian setting<span> for self-exciting spatio-temporal models. We will further show there is a limited parameter space where the extended LA method still has bias. In these uncommon instances we will demonstrate how a more computationally intensive fully Bayesian approach using the Stan software program is possible in those rare instances. The performance of the extended LA method is illustrated with both simulation and real-world data.</span></span></p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49475686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dynamic ICAR Spatiotemporal Factor Models 动态ICAR时空因子模型
IF 2.3 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.1016/j.spasta.2023.100763
Hwasoo Shin, Marco A.R. Ferreira

We propose a novel class of dynamic factor models for spatiotemporal areal data. This novel class of models assumes that the spatiotemporal process may be represented by some few latent factors that evolve through time according to dynamic linear models. As the dimension of the vector of latent factors is typically much smaller than the number of subregions, our proposed class of models may achieve substantial dimension reduction. At each time point, the vector of observations is linearly related to the vector of latent factors through a matrix of factor loadings. Each column of this matrix may be seen as a vectorized map of factor loadings relating one latent factor to the vector of observations. Thus, to account for spatial dependence, we assume that each column of the matrix of factor loadings follows an intrinsic conditional autoregressive (ICAR) process. Hence, we call our class of models the Dynamic ICAR Spatiotemporal Factor Models (DIFM). We develop a Gibbs sampler for exploration of the posterior distribution. In addition, we develop model selection through a Laplace-Metropolis estimator of the predictive density. We present two case studies. The first case study, which is for simulated data, demonstrates that our DIFMs are identifiable and that our proposed inferential procedure works well at recovering the underlying data generating process. Finally, the second case study demonstrates the utility and flexibility of our DIFM framework with an application to the drug overdose epidemic in the United States from 2015 to 2021.

我们提出了一类新的时空面数据动态因子模型。这类新模型假设时空过程可以由一些随时间演变的潜在因素来表示,这些潜在因素是根据动态线性模型来表示的。由于潜在因素向量的维数通常比子区域的数量小得多,因此我们提出的这类模型可以实现大幅度的降维。在每个时间点,观测向量通过因子负荷矩阵与潜在因子向量线性相关。该矩阵的每一列可以看作是一个潜在因素与观测向量相关的因素负荷的矢量化图。因此,为了考虑空间依赖性,我们假设因子负荷矩阵的每一列都遵循一个内在条件自回归(ICAR)过程。因此,我们将这类模型称为动态ICAR时空因子模型(DIFM)。我们开发了吉布斯采样器来探索后验分布。此外,我们通过预测密度的Laplace-Metropolis估计器开发了模型选择。我们提出两个案例研究。第一个案例研究是针对模拟数据的,它证明了我们的difm是可识别的,并且我们提出的推理过程在恢复底层数据生成过程方面工作得很好。最后,第二个案例研究展示了我们的DIFM框架的实用性和灵活性,并将其应用于美国2015年至2021年的药物过量流行。
{"title":"Dynamic ICAR Spatiotemporal Factor Models","authors":"Hwasoo Shin,&nbsp;Marco A.R. Ferreira","doi":"10.1016/j.spasta.2023.100763","DOIUrl":"10.1016/j.spasta.2023.100763","url":null,"abstract":"<div><p>We propose a novel class of dynamic factor<span><span> models for spatiotemporal areal data. This novel class of models assumes that the spatiotemporal process may be represented by some few latent factors that evolve through time according to dynamic linear models. As the dimension of the vector of latent factors is typically much smaller than the number of subregions, our proposed class of models may achieve substantial dimension reduction. At each </span>time point<span>, the vector of observations is linearly related to the vector of latent factors through a matrix of factor loadings. Each column of this matrix may be seen as a vectorized map of factor loadings relating one latent factor to the vector of observations. Thus, to account for spatial dependence<span>, we assume that each column of the matrix of factor loadings follows an intrinsic conditional autoregressive (ICAR) process. Hence, we call our class of models the Dynamic ICAR Spatiotemporal Factor Models (DIFM). We develop a Gibbs sampler<span> for exploration of the posterior distribution. In addition, we develop model selection through a Laplace-Metropolis estimator of the predictive density. We present two case studies. The first case study, which is for simulated data, demonstrates that our DIFMs are identifiable and that our proposed inferential procedure works well at recovering the underlying data generating process. Finally, the second case study demonstrates the utility and flexibility of our DIFM framework with an application to the drug overdose epidemic in the United States from 2015 to 2021.</span></span></span></span></p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43229790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility of Monte-Carlo maximum likelihood for fitting spatial log-Gaussian Cox processes 蒙特卡罗极大似然拟合空间对数-高斯Cox过程的可行性
IF 2.3 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.1016/j.spasta.2023.100759
Bethany J. Macdonald, Tilman M. Davies, Martin L. Hazelton

Log-Gaussian Cox processes (LGCPs) are a popular and flexible tool for modelling point pattern data. While maximum likelihood estimation of the parameters of such a model is attractive in principle, the likelihood function is not available in closed form. Various Monte Carlo approximations have been proposed, but these have seen very limited use in the literature and are often dismissed as impractical. This article provides a comprehensive study of the computational properties of Monte Carlo maximum likelihood estimation (MCMLE) for LGCPs. We compare various importance sampling algorithms for MCMLE, and also consider their performance against other methods of inference (such as minimum contrast) in numerical studies. We find that the best MCMLE algorithm is a practical proposition for parameter estimation given modern computing power, but the performance of this methodology is rather sensitive to the choice of reference parameters defining the importance sampling distribution.

对数-高斯Cox过程(LGCPs)是一种流行且灵活的点模式数据建模工具。虽然这种模型参数的最大似然估计在原则上是有吸引力的,但似然函数不能以封闭形式提供。已经提出了各种蒙特卡罗近似,但这些在文献中使用非常有限,并且经常被视为不切实际而不予考虑。本文全面研究了lgcp的蒙特卡罗极大似然估计(MCMLE)的计算性质。我们比较了MCMLE的各种重要性采样算法,并在数值研究中考虑了它们与其他推理方法(如最小对比度)的性能。我们发现,在现代计算能力的条件下,最佳的MCMLE算法是一个实用的参数估计命题,但该方法的性能对定义重要抽样分布的参考参数的选择相当敏感。
{"title":"Feasibility of Monte-Carlo maximum likelihood for fitting spatial log-Gaussian Cox processes","authors":"Bethany J. Macdonald,&nbsp;Tilman M. Davies,&nbsp;Martin L. Hazelton","doi":"10.1016/j.spasta.2023.100759","DOIUrl":"10.1016/j.spasta.2023.100759","url":null,"abstract":"<div><p><span>Log-Gaussian Cox processes (LGCPs) are a popular and flexible tool for modelling point pattern data. While maximum likelihood estimation<span> of the parameters of such a model is attractive in principle, the likelihood function is not available in closed form. Various Monte Carlo approximations have been proposed, but these have seen very limited use in the literature and are often dismissed as impractical. This article provides a comprehensive study of the computational properties of Monte Carlo maximum likelihood estimation (MCMLE) for LGCPs. We compare various importance sampling algorithms for MCMLE, and also consider their performance against other methods of inference (such as minimum contrast) in numerical studies. We find that the best MCMLE algorithm is a practical </span></span>proposition for parameter estimation given modern computing power, but the performance of this methodology is rather sensitive to the choice of reference parameters defining the importance sampling distribution.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44358788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hypothesis test for detecting distance-specific clustering and dispersion in areal data 用于检测区域数据中特定距离的聚类和离散的假设检验
IF 2.3 2区 数学 Q1 Mathematics Pub Date : 2023-06-01 DOI: 10.1016/j.spasta.2023.100757
Stella Self , Anna Overby , Anja Zgodic , David White , Alexander McLain , Caitlin Dyckman

Spatial clustering detection has a variety of applications in diverse fields, including identifying infectious disease outbreaks, pinpointing crime hotspots, and identifying clusters of neurons in brain imaging applications. Ripley’s K-function is a popular method for detecting clustering (or dispersion) in point process data at specific distances. Ripley’s K-function measures the expected number of points within a given distance of any observed point. Clustering can be assessed by comparing the observed value of Ripley’s K-function to the expected value under complete spatial randomness. While performing spatial clustering analysis on point process data is common, applications to areal data commonly arise and need to be accurately assessed. Inspired by Ripley’s K-function, we develop the positive area proportion function (PAPF) and use it to develop a hypothesis testing procedure for the detection of spatial clustering and dispersion at specific distances in areal data. We compare the performance of the proposed PAPF hypothesis test to that of the global Moran’s I statistic, the Getis–Ord general G statistic, and the spatial scan statistic with extensive simulation studies. We then evaluate the real-world performance of our method by using it to detect spatial clustering in land parcels containing conservation easements and US counties with high pediatric overweight/obesity rates.

空间聚类检测在不同领域有多种应用,包括识别传染病爆发、精确定位犯罪热点以及在脑成像应用中识别神经元簇。Ripley的K函数是检测特定距离点过程数据中的聚类(或分散)的常用方法。Ripley的K函数测量任何观测点在给定距离内的预期点数。聚类可以通过将Ripley的K函数的观测值与完全空间随机性下的期望值进行比较来评估。虽然对点过程数据执行空间聚类分析是常见的,但对区域数据的应用通常会出现,并且需要准确评估。受Ripley的K函数的启发,我们开发了正面积比例函数(PAPF),并用它来开发一个假设检验程序,用于检测区域数据中特定距离的空间聚类和分散。我们通过大量的模拟研究,将所提出的PAPF假设检验的性能与全局Moran’s I统计量、Getis–Ord广义G统计量和空间扫描统计量的性能进行了比较。然后,我们通过使用我们的方法来检测包含保护地役权的地块和美国儿童超重/肥胖率高的县的空间聚类,来评估我们的方法在现实世界中的性能。
{"title":"A hypothesis test for detecting distance-specific clustering and dispersion in areal data","authors":"Stella Self ,&nbsp;Anna Overby ,&nbsp;Anja Zgodic ,&nbsp;David White ,&nbsp;Alexander McLain ,&nbsp;Caitlin Dyckman","doi":"10.1016/j.spasta.2023.100757","DOIUrl":"10.1016/j.spasta.2023.100757","url":null,"abstract":"<div><p><span>Spatial clustering detection has a variety of applications in diverse fields, including identifying infectious disease outbreaks, pinpointing crime hotspots, and identifying clusters of neurons in brain imaging applications. Ripley’s K-function is a popular method for detecting clustering (or dispersion) in point process data at specific distances. Ripley’s K-function measures the expected number of points within a given distance of any observed point. Clustering can be assessed by comparing the observed value of Ripley’s K-function to the expected value under complete spatial randomness. While performing spatial clustering analysis on point process data is common, applications to areal data commonly arise and need to be accurately assessed. Inspired by Ripley’s K-function, we develop the </span><em>positive area proportion function (PAPF)</em><span><span> and use it to develop a hypothesis testing procedure for the detection of spatial clustering and dispersion at specific distances in areal data. We compare the performance of the proposed PAPF hypothesis test to that of the global Moran’s I </span>statistic, the Getis–Ord general G statistic, and the spatial scan statistic with extensive simulation studies. We then evaluate the real-world performance of our method by using it to detect spatial clustering in land parcels containing conservation easements and US counties with high pediatric overweight/obesity rates.</span></p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9745524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Spatial Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1