首页 > 最新文献

Nano-Micro Letters最新文献

英文 中文
High-Performance Silicon-Rich Microparticle Anodes for Lithium-Ion Batteries Enabled by Internal Stress Mitigation 通过内部应力减轻实现的用于锂离子电池的高性能富硅微粒阳极。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-09 DOI: 10.1007/s40820-023-01190-7
Yao Gao, Lei Fan, Rui Zhou, Xiaoqiong Du, Zengbao Jiao, Biao Zhang

Si is a promising anode material for Li ion batteries because of its high specific capacity, abundant reserve, and low cost. However, its rate performance and cycling stability are poor due to the severe particle pulverization during the lithiation/delithiation process. The high stress induced by the Li concentration gradient and anisotropic deformation is the main reason for the fracture of Si particles. Here we present a new stress mitigation strategy by uniformly distributing small amounts of Sn and Sb in Si micron-sized particles, which reduces the Li concentration gradient and realizes an isotropic lithiation/delithiation process. The Si8.5Sn0.5Sb microparticles (mean particle size: 8.22 μm) show over 6000-fold and tenfold improvements in electronic conductivity and Li diffusivity than Si particles, respectively. The discharge capacities of the Si8.5Sn0.5Sb microparticle anode after 100 cycles at 1.0 and 3.0 A g−1 are 1.62 and 1.19 Ah g−1, respectively, corresponding to a retention rate of 94.2% and 99.6%, respectively, relative to the capacity of the first cycle after activation. Multicomponent microparticle anodes containing Si, Sn, Sb, Ge and Ag prepared using the same method yields an ultra-low capacity decay rate of 0.02% per cycle for 1000 cycles at 1 A g−1, corroborating the proposed mechanism. The stress regulation mechanism enabled by the industry-compatible fabrication methods opens up enormous opportunities for low-cost and high-energy–density Li-ion batteries.

硅具有比容量高、储量丰富、成本低廉等优点,是一种很有前途的锂离子电池负极材料。然而,由于锂化/脱锂过程中严重的颗粒粉碎,其倍率性能和循环稳定性较差。Li浓度梯度和各向异性变形引起的高应力是Si颗粒断裂的主要原因。在这里,我们提出了一种新的应力缓解策略,通过在Si微米大小的颗粒中均匀分布少量的Sn和Sb,降低了Li浓度梯度,实现了各向同性的锂化/脱锂过程。Si8.5Sn0.5Sb微粒(平均粒径:8.22μm)在电子电导率和Li扩散率方面分别比Si颗粒提高了6000倍和10倍以上。Si8.5Sn0.5Sb微粒阳极在1.0和3.0A g-1的100次循环后的放电容量分别为1.62和1.19Ah g-1,对应于相对于活化后第一次循环的容量分别为94.2%和99.6%的保留率。使用相同方法制备的含有Si、Sn、Sb、Ge和Ag的多组分微粒阳极在1A g-1下1000次循环产生0.02%的超低容量衰减率,证实了所提出的机制。由工业兼容的制造方法实现的应力调节机制为低成本和高能量密度的锂离子电池开辟了巨大的机会。
{"title":"High-Performance Silicon-Rich Microparticle Anodes for Lithium-Ion Batteries Enabled by Internal Stress Mitigation","authors":"Yao Gao,&nbsp;Lei Fan,&nbsp;Rui Zhou,&nbsp;Xiaoqiong Du,&nbsp;Zengbao Jiao,&nbsp;Biao Zhang","doi":"10.1007/s40820-023-01190-7","DOIUrl":"10.1007/s40820-023-01190-7","url":null,"abstract":"<div><p>Si is a promising anode material for Li ion batteries because of its high specific capacity, abundant reserve, and low cost. However, its rate performance and cycling stability are poor due to the severe particle pulverization during the lithiation/delithiation process. The high stress induced by the Li concentration gradient and anisotropic deformation is the main reason for the fracture of Si particles. Here we present a new stress mitigation strategy by uniformly distributing small amounts of Sn and Sb in Si micron-sized particles, which reduces the Li concentration gradient and realizes an isotropic lithiation/delithiation process. The Si<sub>8.5</sub>Sn<sub>0.5</sub>Sb microparticles (mean particle size: 8.22 μm) show over 6000-fold and tenfold improvements in electronic conductivity and Li diffusivity than Si particles, respectively. The discharge capacities of the Si<sub>8.5</sub>Sn<sub>0.5</sub>Sb microparticle anode after 100 cycles at 1.0 and 3.0 A g<sup>−1</sup> are 1.62 and 1.19 Ah g<sup>−1</sup>, respectively, corresponding to a retention rate of 94.2% and 99.6%, respectively, relative to the capacity of the first cycle after activation. Multicomponent microparticle anodes containing Si, Sn, Sb, Ge and Ag prepared using the same method yields an ultra-low capacity decay rate of 0.02% per cycle for 1000 cycles at 1 A g<sup>−1</sup>, corroborating the proposed mechanism. The stress regulation mechanism enabled by the industry-compatible fabrication methods opens up enormous opportunities for low-cost and high-energy–density Li-ion batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41093521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Vertical-Cavity Surface-Emitting Lasers Based on InGaN Quantum Dots and Short Cavity 基于InGaN量子点和短腔的绿色垂直腔面发射激光器。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-09 DOI: 10.1007/s40820-023-01189-0
Tao Yang, Yan-Hui Chen, Ya-Chao Wang, Wei Ou, Lei-Ying Ying, Yang Mei, Ai-Qin Tian, Jian-Ping Liu, Hao-Chung Guo, Bao-Ping Zhang

Room temperature low threshold lasing of green GaN-based vertical cavity surface emitting laser (VCSEL) was demonstrated under continuous wave (CW) operation. By using self-formed InGaN quantum dots (QDs) as the active region, the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm−2, the lowest ever reported. The QD epitaxial wafer featured with a high IQE of 69.94% and the δ-function-like density of states plays an important role in achieving low threshold current. Besides, a short cavity of the device (~ 4.0 λ) is vital to enhance the spontaneous emission coupling factor to 0.094, increase the gain coefficient factor, and decrease the optical loss. To improve heat dissipation, AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding. The results provide important guidance to achieving high performance GaN-based VCSELs.

在连续波(CW)工作条件下,演示了绿色GaN基垂直腔面发射激光器(VCSEL)的室温低阈值激光发射。通过使用自形成的InGaN量子点(QDs)作为有源区,在524.0nm发射的VCSEL具有51.97A cm-2的阈值电流密度,这是有史以来最低的。QD外延片具有69.94%的高IQE和类似δ函数的态密度,在实现低阈值电流方面起着重要作用。此外,设备的一个短空腔(~ 4.0λ)对于将自发发射耦合因子提高到0.094、增加增益系数因子和降低光学损耗至关重要。为了提高散热性能,采用AlN层作为电流限制层,用电镀铜板代替金属键合。研究结果为实现高性能GaN基VCSEL提供了重要指导。
{"title":"Green Vertical-Cavity Surface-Emitting Lasers Based on InGaN Quantum Dots and Short Cavity","authors":"Tao Yang,&nbsp;Yan-Hui Chen,&nbsp;Ya-Chao Wang,&nbsp;Wei Ou,&nbsp;Lei-Ying Ying,&nbsp;Yang Mei,&nbsp;Ai-Qin Tian,&nbsp;Jian-Ping Liu,&nbsp;Hao-Chung Guo,&nbsp;Bao-Ping Zhang","doi":"10.1007/s40820-023-01189-0","DOIUrl":"10.1007/s40820-023-01189-0","url":null,"abstract":"<div><p>Room temperature low threshold lasing of green GaN-based vertical cavity surface emitting laser (VCSEL) was demonstrated under continuous wave (CW) operation. By using self-formed InGaN quantum dots (QDs) as the active region, the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm<sup>−2</sup>, the lowest ever reported. The QD epitaxial wafer featured with a high IQE of 69.94% and the δ-function-like density of states plays an important role in achieving low threshold current. Besides, a short cavity of the device (~ 4.0 λ) is vital to enhance the spontaneous emission coupling factor to 0.094, increase the gain coefficient factor, and decrease the optical loss. To improve heat dissipation, AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding. The results provide important guidance to achieving high performance GaN-based VCSELs.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41105121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectively Modulating Oxygen Vacancies in Flower-Like δ-MnO2 Nanostructures for Large Capacity and High-Rate Zinc-Ion Storage 有效调节花状δ-MnO2纳米结构中的氧空位,用于大容量和高速率锌离子存储。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-07 DOI: 10.1007/s40820-023-01194-3
Yiwei Wang, Yuxiao Zhang, Ge Gao, Yawen Fan, Ruoxin Wang, Jie Feng, Lina Yang, Alan Meng, Jian Zhao, Zhenjiang Li

In recent years, manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries (ZIBs) have attracted a great deal of attentions from numerous researchers. However, their slow reaction kinetics, limited active sites and poor electrical conductivity inevitably give rise to the severe performance degradation. To solve these problems, herein, we introduce abundant oxygen vacancies into the flower-like δ-MnO2 nanostructure and effectively modulate the vacancy defects to reach the optimal level (δ-MnO2−x−2.0). The smart design intrinsically tunes the electronic structure, guarantees ion chemisorption–desorption equilibrium and increases the electroactive sites, which not only effectively accelerates charge transfer rate during reaction processes, but also endows more redox reactions, as verified by first-principle calculations. These merits can help the fabricated δ-MnO2−x−2.0 cathode to present a large specific capacity of 551.8 mAh g−1 at 0.5 A g−1, high-rate capability of 262.2 mAh g−1 at 10 A g−1 and an excellent cycle lifespan (83% of capacity retention after 1500 cycles), which is far superior to those of the other metal compound cathodes. In addition, the charge/discharge mechanism of the δ-MnO2−x−2.0 cathode has also been elaborated through ex situ techniques. This work opens up a new pathway for constructing the next-generation high-performance ZIBs cathode materials.

近年来,锰基氧化物作为一种先进的锌离子电池正极材料受到了众多研究人员的关注。然而,它们缓慢的反应动力学、有限的活性位点和较差的导电性不可避免地导致了严重的性能退化。为了解决这些问题,我们在花状的δ-MnO2纳米结构中引入了丰富的氧空位,并有效地调节空位缺陷达到最佳水平(δ-MnO2-x-2.0)。智能设计本质上调节了电子结构,保证了离子化学吸附-解吸平衡,增加了电活性位点,正如第一性原理计算所验证的那样,它不仅有效地加速了反应过程中的电荷转移速率,而且赋予了更多的氧化还原反应。这些优点有助于所制备的δ-MnO2-x-2.0阴极在0.5A g-1下表现出551.8mAh g-1的大比容量、在10A g-1下262.2mAh g-1的高速率容量和优异的循环寿命(1500次循环后容量保持率为83%),远优于其他金属化合物阴极。此外,还通过非原位技术详细阐述了δ-MnO2-x-2.0阴极的充放电机理。这项工作为构建下一代高性能ZIBs阴极材料开辟了一条新途径。
{"title":"Effectively Modulating Oxygen Vacancies in Flower-Like δ-MnO2 Nanostructures for Large Capacity and High-Rate Zinc-Ion Storage","authors":"Yiwei Wang,&nbsp;Yuxiao Zhang,&nbsp;Ge Gao,&nbsp;Yawen Fan,&nbsp;Ruoxin Wang,&nbsp;Jie Feng,&nbsp;Lina Yang,&nbsp;Alan Meng,&nbsp;Jian Zhao,&nbsp;Zhenjiang Li","doi":"10.1007/s40820-023-01194-3","DOIUrl":"10.1007/s40820-023-01194-3","url":null,"abstract":"<p>In recent years, manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries (ZIBs) have attracted a great deal of attentions from numerous researchers. However, their slow reaction kinetics, limited active sites and poor electrical conductivity inevitably give rise to the severe performance degradation. To solve these problems, herein, we introduce abundant oxygen vacancies into the flower-like <i>δ</i>-MnO<sub>2</sub> nanostructure and effectively modulate the vacancy defects to reach the optimal level (<i>δ</i>-MnO<sub>2−<i>x</i></sub>−2.0). The smart design intrinsically tunes the electronic structure, guarantees ion chemisorption–desorption equilibrium and increases the electroactive sites, which not only effectively accelerates charge transfer rate during reaction processes, but also endows more redox reactions, as verified by first-principle calculations. These merits can help the fabricated <i>δ</i>-MnO<sub>2−<i>x</i></sub>−2.0 cathode to present a large specific capacity of 551.8 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, high-rate capability of 262.2 mAh g<sup>−1</sup> at 10 A g<sup>−1</sup> and an excellent cycle lifespan (83% of capacity retention after 1500 cycles), which is far superior to those of the other metal compound cathodes. In addition, the charge/discharge mechanism of the <i>δ</i>-MnO<sub>2−<i>x</i></sub>−2.0 cathode has also been elaborated through ex situ techniques. This work opens up a new pathway for constructing the next-generation high-performance ZIBs cathode materials. </p>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41100206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MXene Lubricated Tribovoltaic Nanogenerator with High Current Output and Long Lifetime MXene润滑的具有高电流输出和长寿命的摩擦学纳米发电机。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-07 DOI: 10.1007/s40820-023-01198-z
Wenyan Qiao, Linglin Zhou, Zhihao Zhao, Peiyuan Yang, Di Liu, Xiaoru Liu, Jiaqi Liu, Dongyang Liu, Zhong Lin Wang, Jie Wang

Highlights

  • Successfully solves the key issue of tribovoltaic nanogenerators (TVNGs) lifetime (90,000 cycles) and improves its output current density (754 mA m−2) simultaneously.

  • Conductive polar liquid with MXene as additive is proposed as the dominant factor in enhancing the electrical output performance and durability of TVNG simultaneously.

  • The mechanism of lubricated TVNG with enhanced output performance is explained from the perspective of solution polarity at the first time.

  • Mxene solution exhibits universality in different types of semiconductor systems (Cu and P-type Si, and Cu and N-GaAs as material pairs).

三电压纳米发电机具有高电流密度、低匹配阻抗和连续输出的特点,有望解决小型电子设备的电源问题。然而,摩擦界面的磨损会严重降低TVNG的性能和寿命。在这里,我们使用MXene溶液作为润滑剂,以同时提高TVNG的输出电流密度和寿命,其中实现了754 mA m-2的高值,并实现了90000次循环的创纪录耐久性。通过比较不同极性的多种液体润滑剂,我们发现以MXene为添加剂的导电极性液体对提高TVNG的电输出性能和耐久性起着至关重要的作用。此外,MXene溶液的通用性在以Cu和P型Si以及Cu和N-GaAs为材料对的各种TVNG中得到了很好的证明。这项工作可以指导和加速TVNG在未来的实际应用。
{"title":"MXene Lubricated Tribovoltaic Nanogenerator with High Current Output and Long Lifetime","authors":"Wenyan Qiao,&nbsp;Linglin Zhou,&nbsp;Zhihao Zhao,&nbsp;Peiyuan Yang,&nbsp;Di Liu,&nbsp;Xiaoru Liu,&nbsp;Jiaqi Liu,&nbsp;Dongyang Liu,&nbsp;Zhong Lin Wang,&nbsp;Jie Wang","doi":"10.1007/s40820-023-01198-z","DOIUrl":"10.1007/s40820-023-01198-z","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Successfully solves the key issue of tribovoltaic nanogenerators (TVNGs) lifetime (90,000 cycles) and improves its output current density (754 mA m<sup>−2</sup>) simultaneously.</p>\u0000 </li>\u0000 <li>\u0000 <p>Conductive polar liquid with MXene as additive is proposed as the dominant factor in enhancing the electrical output performance and durability of TVNG simultaneously.</p>\u0000 </li>\u0000 <li>\u0000 <p>The mechanism of lubricated TVNG with enhanced output performance is explained from the perspective of solution polarity at the first time.</p>\u0000 </li>\u0000 <li>\u0000 <p>Mxene solution exhibits universality in different types of semiconductor systems (Cu and <i>P</i>-type Si, and Cu and <i>N</i>-GaAs as material pairs).</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41097453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution 石墨烯量子点介导的原子层半导体析氢电催化剂。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-09-28 DOI: 10.1007/s40820-023-01182-7
Bingjie Hu, Kai Huang, Bijun Tang, Zhendong Lei, Zeming Wang, Huazhang Guo, Cheng Lian, Zheng Liu, Liang Wang

Highlights

  • The functional groups on graphene quantum dots (GQDs) for boosting the formation of MoS2 nanosheets via theoretical calculations were predicted.

  • Near atom-layer-QD@SO3 with about 2 nm were synthesized using a functionalized GQD-induced in-situ bottom-up approach.

  • Mechanistic insight on the role of functionalized GQDs was elaborated, namely, electron-withdrawing group functionalized GQDs facilitate the formation of nanosheet architectures of MoS2 compared to electron-donating group.

半导体2H相二硫化钼(2H-MoS2)的析氢反应性能是实现其全部潜在应用的重要障碍。在这里,我们利用理论计算来预测可能的功能化石墨烯量子点(GQDs),它可以增强大块MoS2的HER活性。随后,我们设计了一种功能化GQD诱导的原位自下而上的策略,通过调节吸电子/给电子官能团的浓度来制备由GQDs介导的近原子层2H-MoS2纳米片(ALQD)。实验结果表明,在ALQD的合成过程中引入一系列功能化GQD起着至关重要的作用。值得注意的是,GQD上吸电子官能团的浓度和强度越高,所得到的ALQD就越薄和越活性。值得注意的是,合成的近原子层ALQD-SO3表现出显著改善的HER性能。我们的GQD诱导策略为扩大MoS2的催化应用提供了一种简单有效的方法。此外,它在开发其他过渡金属二硫族化合物材料中的纳米片方面具有巨大的潜力。
{"title":"Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution","authors":"Bingjie Hu,&nbsp;Kai Huang,&nbsp;Bijun Tang,&nbsp;Zhendong Lei,&nbsp;Zeming Wang,&nbsp;Huazhang Guo,&nbsp;Cheng Lian,&nbsp;Zheng Liu,&nbsp;Liang Wang","doi":"10.1007/s40820-023-01182-7","DOIUrl":"10.1007/s40820-023-01182-7","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>The functional groups on graphene quantum dots (GQDs) for boosting the formation of MoS<sub>2</sub> nanosheets via theoretical calculations were predicted.</p>\u0000 </li>\u0000 <li>\u0000 <p>Near atom-layer-QD@SO<sub>3</sub> with about 2 nm were synthesized using a functionalized GQD-induced in-situ bottom-up approach.</p>\u0000 </li>\u0000 <li>\u0000 <p>Mechanistic insight on the role of functionalized GQDs was elaborated, namely, electron-withdrawing group functionalized GQDs facilitate the formation of nanosheet architectures of MoS<sub>2</sub> compared to electron-donating group.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41099412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Macrophage with Hierarchical Nanostructure for Biomimetic Reconstruction of Antitumor Immunity 具有分级纳米结构的人工巨噬细胞用于抗肿瘤免疫的仿生重建。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-09-22 DOI: 10.1007/s40820-023-01193-4
Henan Zhao, Renyu Liu, Liqiang Wang, Feiying Tang, Wansong Chen, You-Nian Liu

Artificial cells are constructed from synthetic materials to imitate the biological functions of natural cells. By virtue of nanoengineering techniques, artificial cells with designed biomimetic functions provide alternatives to natural cells, showing vast potential for biomedical applications. Especially in cancer treatment, the deficiency of immunoactive macrophages results in tumor progression and immune resistance. To overcome the limitation, a BaSO4@ZIF-8/transferrin (TRF) nanomacrophage (NMΦ) is herein constructed as an alternative to immunoactive macrophages. Alike to natural immunoactive macrophages, NMΦ is stably retained in tumors through the specific affinity of TRF to tumor cells. Zn2+ as an “artificial cytokine” is then released from the ZIF-8 layer of NMΦ under tumor microenvironment. Similar as proinflammatory cytokines, Zn2+ can trigger cell anoikis to expose tumor antigens, which are selectively captured by the BaSO4 cavities. Therefore, the hierarchical nanostructure of NMΦs allows them to mediate immunogenic death of tumor cells and subsequent antigen capture for T cell activation to fabricate long-term antitumor immunity. As a proof-of-concept, the NMΦ mimics the biological functions of macrophage, including tumor residence, cytokine release, antigen capture and immune activation, which is hopeful to provide a paradigm for the design and biomedical applications of artificial cells.

人工细胞是由合成材料构建的,以模仿天然细胞的生物功能。凭借纳米工程技术,具有设计仿生功能的人工细胞提供了天然细胞的替代品,显示出巨大的生物医学应用潜力。特别是在癌症治疗中,免疫活性巨噬细胞的缺乏导致肿瘤进展和免疫抵抗。为了克服限制BaSO4@ZIF-8/本文构建了转铁蛋白(TRF)纳米巨噬细胞(NMΦ)作为免疫活性巨噬细胞的替代品。与天然免疫活性巨噬细胞类似,NMΦ通过TRF对肿瘤细胞的特异性亲和力稳定地保留在肿瘤中。在肿瘤微环境下,Zn2+作为“人工细胞因子”从NMΦ的ZIF-8层释放。与促炎细胞因子类似,Zn2+可以触发细胞失巢暴露肿瘤抗原,这些抗原被BaSO4空腔选择性捕获。因此,NMΦs的分级纳米结构使其能够介导肿瘤细胞的免疫原性死亡和随后的抗原捕获以激活T细胞,从而制造长期的抗肿瘤免疫。作为概念证明,NMΦ模拟巨噬细胞的生物学功能,包括肿瘤驻留、细胞因子释放、抗原捕获和免疫激活,有望为人工细胞的设计和生物医学应用提供一种范式。
{"title":"Artificial Macrophage with Hierarchical Nanostructure for Biomimetic Reconstruction of Antitumor Immunity","authors":"Henan Zhao,&nbsp;Renyu Liu,&nbsp;Liqiang Wang,&nbsp;Feiying Tang,&nbsp;Wansong Chen,&nbsp;You-Nian Liu","doi":"10.1007/s40820-023-01193-4","DOIUrl":"10.1007/s40820-023-01193-4","url":null,"abstract":"<div><p>Artificial cells are constructed from synthetic materials to imitate the biological functions of natural cells. By virtue of nanoengineering techniques, artificial cells with designed biomimetic functions provide alternatives to natural cells, showing vast potential for biomedical applications. Especially in cancer treatment, the deficiency of immunoactive macrophages results in tumor progression and immune resistance. To overcome the limitation, a BaSO<sub>4</sub>@ZIF-8/transferrin (TRF) nanomacrophage (NMΦ) is herein constructed as an alternative to immunoactive macrophages. Alike to natural immunoactive macrophages, NMΦ is stably retained in tumors through the specific affinity of TRF to tumor cells. Zn<sup>2+</sup> as an “artificial cytokine” is then released from the ZIF-8 layer of NMΦ under tumor microenvironment. Similar as proinflammatory cytokines, Zn<sup>2+</sup> can trigger cell anoikis to expose tumor antigens, which are selectively captured by the BaSO<sub>4</sub> cavities. Therefore, the hierarchical nanostructure of NMΦs allows them to mediate immunogenic death of tumor cells and subsequent antigen capture for T cell activation to fabricate long-term antitumor immunity. As a proof-of-concept, the NMΦ mimics the biological functions of macrophage, including tumor residence, cytokine release, antigen capture and immune activation, which is hopeful to provide a paradigm for the design and biomedical applications of artificial cells.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41096013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries 快速充电锂离子电池石墨阳极的动力学极限。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-09-22 DOI: 10.1007/s40820-023-01183-6
Suting Weng, Gaojing Yang, Simeng Zhang, Xiaozhi Liu, Xiao Zhang, Zepeng Liu, Mengyan Cao, Mehmet Nurullah Ateş, Yejing Li, Liquan Chen, Zhaoxiang Wang, Xuefeng Wang

Highlights

  • The microstructure of graphite upon rapid Li+ intercalation is a mixture of differently staging structures in the macroscopic and microscopic scales due to the incomplete and inhomogeneous intercalation reactions hindered by the sluggish reaction kinetics.

  • The Li+ interface diffusion dominates the reaction kinetics at high rates in thin graphite electrode, while Li+ diffusion through the electrode cannot to be neglected for thick graphite electrode.

快速充电的锂离子电池是非常需要的,特别是在减少广泛使用的电动汽车的里程焦虑方面。最大的瓶颈之一在于Li+嵌入石墨阳极的缓慢动力学;缓慢的嵌入将导致锂金属镀层、严重的副反应和安全问题。解决这些问题的前提是充分了解石墨在快速嵌入Li+过程中的反应途径和速率决定步骤。在此,我们比较了Li+通过石墨颗粒、界面和电极的扩散,揭示了高电流密度下锂化石墨的结构,并将其与反应动力学和电化学性能联系起来。研究发现,速率决定步骤高度依赖于颗粒尺寸、界面性质和电极配置。Li+扩散不足导致高极化、不完全嵌入和几种分级结构共存。当粒径小于10μm时,界面Li+扩散和电极传输是主要的速率决定步骤。前者高度依赖于电解质化学,并且可以通过构建氟化界面来增强。我们的发现丰富了对快速嵌入Li+过程中石墨结构演变的理解,破解了反应动力学缓慢的瓶颈,并为提高石墨阳极的快速充电性能提供了战略指导。
{"title":"Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries","authors":"Suting Weng,&nbsp;Gaojing Yang,&nbsp;Simeng Zhang,&nbsp;Xiaozhi Liu,&nbsp;Xiao Zhang,&nbsp;Zepeng Liu,&nbsp;Mengyan Cao,&nbsp;Mehmet Nurullah Ateş,&nbsp;Yejing Li,&nbsp;Liquan Chen,&nbsp;Zhaoxiang Wang,&nbsp;Xuefeng Wang","doi":"10.1007/s40820-023-01183-6","DOIUrl":"10.1007/s40820-023-01183-6","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>The microstructure of graphite upon rapid Li<sup>+</sup> intercalation is a mixture of differently staging structures in the macroscopic and microscopic scales due to the incomplete and inhomogeneous intercalation reactions hindered by the sluggish reaction kinetics.</p>\u0000 </li>\u0000 <li>\u0000 <p>The Li<sup>+</sup> interface diffusion dominates the reaction kinetics at high rates in thin graphite electrode, while Li<sup>+</sup> diffusion through the electrode cannot to be neglected for thick graphite electrode.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41097267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro–Nano Water Film Enabled High-Performance Interfacial Solar Evaporation 微纳米水膜实现高性能界面太阳能蒸发。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-09-22 DOI: 10.1007/s40820-023-01191-6
Zhen Yu, Yuqing Su, Ruonan Gu, Wei Wu, Yangxi Li, Shaoan Cheng

Highlights

  • Micro–nano water film enhanced interfacial solar evaporator enables a high evaporation rate of 2.18 kg m−2 h−1 under 1 sun.

  • An outdoor device with an enhanced condensation design demonstrates a high water production rate of 15.9–19.4 kg kW−1 h−1 m−2.

  • A multi-objective predictive model is established to assess outdoor water production performance.

界面太阳能蒸发对解决淡水短缺问题有很大的前景。然而,大多数界面太阳能蒸发器在整个蒸发过程中总是充满水,从而带来不可避免的热损失。在此,我们提出了一种基于微纳米水膜的新型界面蒸发结构,该结构的蒸发性能显著提高,并通过聚吡咯和聚多巴胺涂层的聚二甲基硅氧烷海绵进行了实验验证。基于所制备的海绵的2D蒸发器通过微调界面微纳水膜,在1个太阳下实现了2.18kg m-2 h-1的增强蒸发速率。然后,设计了一种具有增强冷凝功能的自制设备,用于户外清洁水生产。在40天的连续测试中,该装置表现出15.9-19.4kg kW-1 h-1m-2的高产水率(WPR)。基于室外结果,我们进一步建立了一个多目标模型来评估全球WPR。据预测,1平方米的设备每天最多可生产7.8公斤清洁水,可满足3人的日常饮用水需求。最后,这项技术可以通过进一步的大规模应用,极大地缓解当前的水和能源危机。
{"title":"Micro–Nano Water Film Enabled High-Performance Interfacial Solar Evaporation","authors":"Zhen Yu,&nbsp;Yuqing Su,&nbsp;Ruonan Gu,&nbsp;Wei Wu,&nbsp;Yangxi Li,&nbsp;Shaoan Cheng","doi":"10.1007/s40820-023-01191-6","DOIUrl":"10.1007/s40820-023-01191-6","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000<ul>\u0000 <li>\u0000 <p>Micro–nano water film enhanced interfacial solar evaporator enables a high evaporation rate of 2.18 kg m<sup>−2</sup> h<sup>−1</sup> under 1 sun.</p>\u0000 </li>\u0000 <li>\u0000 <p>An outdoor device with an enhanced condensation design demonstrates a high water production rate of 15.9–19.4 kg kW<sup>−1</sup> h<sup>−1</sup> m<sup>−2</sup>.</p>\u0000 </li>\u0000 <li>\u0000 <p>A multi-objective predictive model is established to assess outdoor water production performance.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41106114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future 多功能网状结构纳米颗粒的最新进展:材料科学通往结构化未来之路的范式转变。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-09-22 DOI: 10.1007/s40820-023-01180-9
Maryam Chafiq, Abdelkarim Chaouiki, Young Gun Ko

Highlights

  • This review summarizes the quarter-century of reticular chemistry.

  • Preparation strategies and characterization of reticular framework nanoparticles (RF-NPs) are systematically reviewed.

  • Biomedicine, gas valorization, energy storage and other newer applications of RF-NPs are involved

  • Future potential and challenges of RF-NPs are prospected.

多孔有机框架(POFs)已成为一个备受追捧的研究领域,为开发尖端纳米结构材料提供了一条有前途的途径,无论是在其原始状态下还是在进行各种化学和结构修饰时。金属有机框架、共价有机框架和氢键有机框架是这些新兴材料的例子,它们因其独特的性质而受到极大关注,如高结晶度、固有孔隙率、独特的结构规则性、多样的功能性、设计灵活性和突出的稳定性。这篇综述概述了碱稳定POFs的最新研究,强调了与其他类型的纳米团簇材料相比,网状框架纳米颗粒的不同优点和缺点。此后,该综述强调了生产多功能定制纳米颗粒以满足特定应用要求的独特机会。建议将这种制造定制纳米颗粒的潜力作为未来合成工作的驱动力,以充分挖掘这一多方面材料类别的潜力。
{"title":"Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future","authors":"Maryam Chafiq,&nbsp;Abdelkarim Chaouiki,&nbsp;Young Gun Ko","doi":"10.1007/s40820-023-01180-9","DOIUrl":"10.1007/s40820-023-01180-9","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>This review summarizes the quarter-century of reticular chemistry.</p>\u0000 </li>\u0000 <li>\u0000 <p>Preparation strategies and characterization of reticular framework nanoparticles (RF-NPs) are systematically reviewed.</p>\u0000 </li>\u0000 <li>\u0000 <p>Biomedicine, gas valorization, energy storage and other newer applications of RF-NPs are involved</p>\u0000 </li>\u0000 <li>\u0000 <p>Future potential and challenges of RF-NPs are prospected.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41100597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption Site Regulations of [W–O]-Doped CoP Boosting the Hydrazine Oxidation-Coupled Hydrogen Evolution at Elevated Current Density 高电流密度下[W-O]掺杂CoP促进肼氧化耦合析氢的吸附位点调控
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-09-14 DOI: 10.1007/s40820-023-01185-4
Ge Meng, Ziwei Chang, Libo Zhu, Chang Chen, Yafeng Chen, Han Tian, Wenshu Luo, Wenping Sun, Xiangzhi Cui, Jianlin Shi

Hydrazine oxidation reaction (HzOR) assisted hydrogen evolution reaction (HER) offers a feasible path for low power consumption to hydrogen production. Unfortunately however, the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts, which are still challenging due to the totally different catalytic mechanisms. Herein, the [W–O] group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst, which possesses excellent catalytic performances towards both HER (185.60 mV at 1000 mA cm−2) and HzOR (78.99 mV at 10,00 mA cm−2) with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm−2. The introduction of [W–O] groups, working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation, leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in [W–O] group as well, resultantly boosting the hydrogen production and HzOR. Moreover, a proof-of-concept direct hydrazine fuel cell-powered H2 production system has been assembled, realizing H2 evolution at a rate of 3.53 mmol cm−2 h−1 at room temperature without external electricity supply.

联氨氧化反应(HzOR)辅助析氢反应(HER)为低功耗制氢提供了一条可行的途径。然而,由于催化机理的不同,阳极肼的总电氧化和阴极水的解离动力学严重依赖于反应中间体与催化剂表面的相互作用,这仍然是一个挑战。本文将具有较强吸附能力的[W-O]基团引入到CoP纳米片中制备双功能催化剂,该催化剂对HER (1000 mA cm-2时185.60 mV)和HzOR (10 000 mA cm-2时78.99 mV)均具有优异的催化性能,总电解电位比100 mA cm-2时低1.634 V。[W-O]基团的引入,作为H2O解离和N2H4脱氢的吸附位点,导致CoP纳米片上形成多孔结构,并通过[W-O]基团中连接的O调控Co的电子结构,从而提高产氢率和HzOR。此外,还组装了一个概念验证的直接联氨燃料电池制氢系统,在室温下实现了3.53 mmol cm-2 h-1的氢气生成速率,无需外部电源。
{"title":"Adsorption Site Regulations of [W–O]-Doped CoP Boosting the Hydrazine Oxidation-Coupled Hydrogen Evolution at Elevated Current Density","authors":"Ge Meng,&nbsp;Ziwei Chang,&nbsp;Libo Zhu,&nbsp;Chang Chen,&nbsp;Yafeng Chen,&nbsp;Han Tian,&nbsp;Wenshu Luo,&nbsp;Wenping Sun,&nbsp;Xiangzhi Cui,&nbsp;Jianlin Shi","doi":"10.1007/s40820-023-01185-4","DOIUrl":"10.1007/s40820-023-01185-4","url":null,"abstract":"<div><p>Hydrazine oxidation reaction (HzOR) assisted hydrogen evolution reaction (HER) offers a feasible path for low power consumption to hydrogen production. Unfortunately however, the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts, which are still challenging due to the totally different catalytic mechanisms. Herein, the [W–O] group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst, which possesses excellent catalytic performances towards both HER (185.60 mV at 1000 mA cm<sup>−2</sup>) and HzOR (78.99 mV at 10,00 mA cm<sup>−2</sup>) with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm<sup>−2</sup>. The introduction of [W–O] groups, working as the adsorption sites for H<sub>2</sub>O dissociation and N<sub>2</sub>H<sub>4</sub> dehydrogenation, leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in [W–O] group as well, resultantly boosting the hydrogen production and HzOR. Moreover, a proof-of-concept direct hydrazine fuel cell-powered H<sub>2</sub> production system has been assembled, realizing H<sub>2</sub> evolution at a rate of 3.53 mmol cm<sup>−2</sup> h<sup>−1</sup> at room temperature without external electricity supply.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10252719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nano-Micro Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1