首页 > 最新文献

Nano-Micro Letters最新文献

英文 中文
Anti-Parkinsonian Therapy: Strategies for Crossing the Blood–Brain Barrier and Nano-Biological Effects of Nanomaterials 抗帕金森病治疗:跨越血脑屏障的策略和纳米材料的纳米生物学效应
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-04-15 DOI: 10.1007/s40820-022-00847-z
Guowang Cheng, Yujing Liu, Rui Ma, Guopan Cheng, Yucheng Guan, Xiaojia Chen, Zhenfeng Wu, Tongkai Chen

Highlights

  • Strategies for crossing the blood–brain barrier and the nano-biological effects of nanomaterials used for anti-Parkinsonian therapy are summarized.

  • Patents related to nanotechnology-based anti-Parkinsonian therapy are reviewed, and the status of progress in this field are discussed.

  • Current challenges in nanotechnology-based Parkinson’s disease treatment are discussed, with insights into the future trends in this field.

综述了用于抗帕金森病治疗的纳米材料跨越血脑屏障的策略和纳米生物学效应。综述了纳米技术抗帕金森病治疗的相关专利,并讨论了该领域的进展状况。本文讨论了目前基于纳米技术的帕金森病治疗的挑战,并对该领域的未来趋势进行了展望。
{"title":"Anti-Parkinsonian Therapy: Strategies for Crossing the Blood–Brain Barrier and Nano-Biological Effects of Nanomaterials","authors":"Guowang Cheng,&nbsp;Yujing Liu,&nbsp;Rui Ma,&nbsp;Guopan Cheng,&nbsp;Yucheng Guan,&nbsp;Xiaojia Chen,&nbsp;Zhenfeng Wu,&nbsp;Tongkai Chen","doi":"10.1007/s40820-022-00847-z","DOIUrl":"10.1007/s40820-022-00847-z","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Strategies for crossing the blood–brain barrier and the nano-biological effects of nanomaterials used for anti-Parkinsonian therapy are summarized.</p>\u0000 </li>\u0000 <li>\u0000 <p>Patents related to nanotechnology-based anti-Parkinsonian therapy are reviewed, and the status of progress in this field are discussed.</p>\u0000 </li>\u0000 <li>\u0000 <p>Current challenges in nanotechnology-based Parkinson’s disease treatment are discussed, with insights into the future trends in this field.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00847-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4595959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Enabling Multi-Chemisorption Sites on Carbon Nanofibers Cathodes by an In-situ Exfoliation Strategy for High-Performance Zn–Ion Hybrid Capacitors 高性能锌离子混合电容器原位剥落策略在碳纳米纤维阴极上实现多化学吸附位点
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-04-15 DOI: 10.1007/s40820-022-00839-z
Hongcheng He, Jichun Lian, Changmiao Chen, Qiaotian Xiong, Cheng Chao Li, Ming Zhang

Highlights

  • The high pyridine/pyrrole nitrogen-doped and carbonyl-functionalized nanosheets on flexible electrospun porous carbon nanofibers film cathode integrates the advantages of large specific surface area, strong hydrophilicity and high Zn2+ adsorption activity.

  • The Zinc-ion hybrid capacitors exhibits a high capacitance retention of 99.2% over 200,000 cycles at 40 A g−1.

  • A synergistic Zn2+ storage mechanism between carbonyl and pyridine/pyrrole nitrogen atoms is proposed.

高吡啶/吡咯氮掺杂和羰基功能化纳米片在柔性电纺多孔碳纳米纤维薄膜阴极上具有比表面积大、亲水性强和高Zn2+吸附活性的优点。锌离子杂化电容器在40 a g−1下,在20万次循环中具有99.2%的高电容保持率。提出了羰基和吡啶/吡咯氮原子之间的协同Zn2+储存机制。
{"title":"Enabling Multi-Chemisorption Sites on Carbon Nanofibers Cathodes by an In-situ Exfoliation Strategy for High-Performance Zn–Ion Hybrid Capacitors","authors":"Hongcheng He,&nbsp;Jichun Lian,&nbsp;Changmiao Chen,&nbsp;Qiaotian Xiong,&nbsp;Cheng Chao Li,&nbsp;Ming Zhang","doi":"10.1007/s40820-022-00839-z","DOIUrl":"10.1007/s40820-022-00839-z","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>The high pyridine/pyrrole nitrogen-doped and carbonyl-functionalized nanosheets on flexible electrospun porous carbon nanofibers film cathode integrates the advantages of large specific surface area, strong hydrophilicity and high Zn<sup>2+</sup> adsorption activity.</p>\u0000 </li>\u0000 <li>\u0000 <p>The Zinc-ion hybrid capacitors exhibits a high capacitance retention of 99.2% over 200,000 cycles at 40 A g<sup>−1</sup>.</p>\u0000 </li>\u0000 <li>\u0000 <p>A synergistic Zn<sup>2+</sup> storage mechanism between carbonyl and pyridine/pyrrole nitrogen atoms is proposed.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00839-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4597268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 46
High-Density Nanowells Formation in Ultrafast Laser-Irradiated Thin Film Metallic Glass 超快激光辐照金属玻璃薄膜中高密度纳米孔的形成
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-04-13 DOI: 10.1007/s40820-022-00850-4
Mathilde Prudent, Djafar Iabbaden, Florent Bourquard, Stéphanie Reynaud, Yaya Lefkir, Alejandro Borroto, Jean-François Pierson, Florence Garrelie, Jean-Philippe Colombier

Highlights

  • Ultrafast laser-induced nano-topography modifications: generation of highly concentrated 20 nm diameter nanowells on the surface with expected applications for storage of chemical and biological active species and for blocking crack propagation.

  • Ultrafast laser-induced structural modifications: turning of a metallic glass to a composite material of monoclinic zirconia crystallites embedded inside amorphous metallic glass.

  • A flexible one-step laser irradiation process without direct mechanical contact for thin film metallic glasses surface functionalization.

超快激光诱导纳米形貌修饰:在表面产生高度集中的直径为20nm的纳米孔,有望应用于化学和生物活性物质的储存以及阻止裂纹扩展。超快激光诱导结构修饰:将金属玻璃转变为嵌套在非晶金属玻璃内的单斜氧化锆晶体复合材料。薄膜金属玻璃表面功能化的无直接机械接触柔性一步激光辐照工艺。
{"title":"High-Density Nanowells Formation in Ultrafast Laser-Irradiated Thin Film Metallic Glass","authors":"Mathilde Prudent,&nbsp;Djafar Iabbaden,&nbsp;Florent Bourquard,&nbsp;Stéphanie Reynaud,&nbsp;Yaya Lefkir,&nbsp;Alejandro Borroto,&nbsp;Jean-François Pierson,&nbsp;Florence Garrelie,&nbsp;Jean-Philippe Colombier","doi":"10.1007/s40820-022-00850-4","DOIUrl":"10.1007/s40820-022-00850-4","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Ultrafast laser-induced nano-topography modifications: generation of highly concentrated 20 nm diameter nanowells on the surface with expected applications for storage of chemical and biological active species and for blocking crack propagation.</p>\u0000 </li>\u0000 <li>\u0000 <p>Ultrafast laser-induced structural modifications: turning of a metallic glass to a composite material of monoclinic zirconia crystallites embedded inside amorphous metallic glass.</p>\u0000 </li>\u0000 <li>\u0000 <p>A flexible one-step laser irradiation process without direct mechanical contact for thin film metallic glasses surface functionalization.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00850-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4523113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Cellulose Nanopaper: Fabrication, Functionalization, and Applications 纳米纤维素纸:制造、功能化和应用
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-04-13 DOI: 10.1007/s40820-022-00849-x
Wei Liu, Kun Liu, Haishun Du, Ting Zheng, Ning Zhang, Ting Xu, Bo Pang, Xinyu Zhang, Chuanling Si, Kai Zhang
AbstractSection Highlights
  • Preparation strategies of cellulose nanopaper were elaborated.

  • Functionalization of cellulose nanopaper and its advanced applications were summarized.

  • Prospects and challenges of cellulose nanopaper were discussed.

摘要:重点介绍了纤维素纳米纸的制备策略。综述了纤维素纳米纸的功能化及其应用进展。讨论了纤维素纳米纸的发展前景和面临的挑战。
{"title":"Cellulose Nanopaper: Fabrication, Functionalization, and Applications","authors":"Wei Liu,&nbsp;Kun Liu,&nbsp;Haishun Du,&nbsp;Ting Zheng,&nbsp;Ning Zhang,&nbsp;Ting Xu,&nbsp;Bo Pang,&nbsp;Xinyu Zhang,&nbsp;Chuanling Si,&nbsp;Kai Zhang","doi":"10.1007/s40820-022-00849-x","DOIUrl":"10.1007/s40820-022-00849-x","url":null,"abstract":"<div><div>\u0000 <span>AbstractSection</span>\u0000 Highlights\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Preparation strategies of cellulose nanopaper were elaborated.</p>\u0000 </li>\u0000 <li>\u0000 <p>Functionalization of cellulose nanopaper and its advanced applications were summarized.</p>\u0000 </li>\u0000 <li>\u0000 <p>Prospects and challenges of cellulose nanopaper were discussed.</p>\u0000 </li>\u0000 </ul>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 \u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00849-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4518787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
A Sub-Nanostructural Transformable Nanozyme for Tumor Photocatalytic Therapy 用于肿瘤光催化治疗的亚纳米结构可转化纳米酶
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-04-12 DOI: 10.1007/s40820-022-00848-y
Xi Hu, Nan Wang, Xia Guo, Zeyu Liang, Heng Sun, Hongwei Liao, Fan Xia, Yunan Guan, Jiyoung Lee, Daishun Ling, Fangyuan Li

Highlights

  • An internal sub-nanostructural transformation of sub-nanostructural transformable gold@ceria (STGC-PEG) is initiated by the conversion between CeO2 and electron-rich state of CeO2−x, and active oxygen vacancies generation via the hot-electron injection from gold to ceria.

  • The sub-nanostructural transformation of STGC-PEG enhances the peroxidase-like activity and activates the plasmon-promoted oxidase-like activity, resulting in an augmented reactive oxygen species output.

  • STGC-PEG successfully achieves excellent low power (50 mW cm−2) near-infrared light-activated photocatalytic ablation of tumors in vivo.

亚纳米结构可转换材料gold@ceria (STGC-PEG)的内部亚纳米结构转变是由CeO2向富电子态CeO2−x的转化以及金向铈的热电子注入生成活性氧空位引发的。STGC-PEG的亚纳米结构转化增强了过氧化物酶样活性,并激活了等离子体促进的氧化酶样活性,从而增加了活性氧的输出。STGC-PEG在体内成功实现了低功率(50 mW cm−2)近红外光激活的肿瘤光催化消融。
{"title":"A Sub-Nanostructural Transformable Nanozyme for Tumor Photocatalytic Therapy","authors":"Xi Hu,&nbsp;Nan Wang,&nbsp;Xia Guo,&nbsp;Zeyu Liang,&nbsp;Heng Sun,&nbsp;Hongwei Liao,&nbsp;Fan Xia,&nbsp;Yunan Guan,&nbsp;Jiyoung Lee,&nbsp;Daishun Ling,&nbsp;Fangyuan Li","doi":"10.1007/s40820-022-00848-y","DOIUrl":"10.1007/s40820-022-00848-y","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>An internal sub-nanostructural transformation of sub-nanostructural transformable gold@ceria (STGC-PEG) is initiated by the conversion between CeO<sub>2</sub> and electron-rich state of CeO<sub>2−x</sub>, and active oxygen vacancies generation via the hot-electron injection from gold to ceria.</p>\u0000 </li>\u0000 <li>\u0000 <p>The sub-nanostructural transformation of STGC-PEG enhances the peroxidase-like activity and activates the plasmon-promoted oxidase-like activity, resulting in an augmented reactive oxygen species output.</p>\u0000 </li>\u0000 <li>\u0000 <p>STGC-PEG successfully achieves excellent low power (50 mW cm<sup>−2</sup>) near-infrared light-activated photocatalytic ablation of tumors in vivo.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00848-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4481555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Size-Dependent Oxidation-Induced Phase Engineering for MOFs Derivatives Via Spatial Confinement Strategy Toward Enhanced Microwave Absorption 基于空间约束策略的mof衍生物的尺寸依赖氧化诱导相工程增强微波吸收
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-04-12 DOI: 10.1007/s40820-022-00841-5
Hanxiao Xu, Guozheng Zhang, Yi Wang, Mingqiang Ning, Bo Ouyang, Yang Zhao, Ying Huang, Panbo Liu

Highlights

  • The size of metal organic frameworks (MOFs) derivatives was manipulated by a spatial confined growth strategy.

  • Dielectric polarization is the dominant dissipation mechanism due to the phase hybridization based on size dependent oxidation motion.

  • The specific reflection loss of synthesized Co/Co3O4 hollow carbon nanocages surpasses most reported MOFs derived counterparts for practical microwave absorption applications.

金属有机框架(mof)衍生物的大小是由空间受限的增长策略操纵的。由于基于尺寸依赖氧化运动的相杂化,介质极化是主要的耗散机制。在实际的微波吸收应用中,合成的Co/Co3O4中空碳纳米笼的比反射损失超过了大多数报道的mof衍生的对应物。
{"title":"Size-Dependent Oxidation-Induced Phase Engineering for MOFs Derivatives Via Spatial Confinement Strategy Toward Enhanced Microwave Absorption","authors":"Hanxiao Xu,&nbsp;Guozheng Zhang,&nbsp;Yi Wang,&nbsp;Mingqiang Ning,&nbsp;Bo Ouyang,&nbsp;Yang Zhao,&nbsp;Ying Huang,&nbsp;Panbo Liu","doi":"10.1007/s40820-022-00841-5","DOIUrl":"10.1007/s40820-022-00841-5","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>The size of metal organic frameworks (MOFs) derivatives was manipulated by a spatial confined growth strategy.</p>\u0000 </li>\u0000 <li>\u0000 <p>Dielectric polarization is the dominant dissipation mechanism due to the phase hybridization based on size dependent oxidation motion.</p>\u0000 </li>\u0000 <li>\u0000 <p>The specific reflection loss of synthesized Co/Co<sub>3</sub>O<sub>4</sub> hollow carbon nanocages surpasses most reported MOFs derived counterparts for practical microwave absorption applications.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00841-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4480817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 137
Next-Generation Intelligent MXene-Based Electrochemical Aptasensors for Point-of-Care Cancer Diagnostics 下一代基于mxene的智能电化学感应传感器,用于即时癌症诊断
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-04-11 DOI: 10.1007/s40820-022-00845-1
Arpana Parihar, Ayushi Singhal, Neeraj Kumar, Raju Khan, Mohd. Akram Khan, Avanish K. Srivastava

Highlights

  • Shed light on MXene-based electrochemical aptasensors for the detection of cancer biomarkers.

  • Strategies for the design and synthesis of biomarker-specific aptamer are presented.

  • The properties such as electrical conductivity, chemical stability, mechanical properties, and the hydrophilic–hydrophobic nature of MXenes are discussed.

  • Brief insight on futuristic sensing applications along with challenges are highlighted.

重点介绍了基于mxene的电化学感应传感器用于检测癌症生物标志物。介绍了生物标志物特异性适配体的设计和合成策略。讨论了MXenes的电导率、化学稳定性、力学性能、亲疏水性等性能。简要介绍了未来传感应用以及面临的挑战。
{"title":"Next-Generation Intelligent MXene-Based Electrochemical Aptasensors for Point-of-Care Cancer Diagnostics","authors":"Arpana Parihar,&nbsp;Ayushi Singhal,&nbsp;Neeraj Kumar,&nbsp;Raju Khan,&nbsp;Mohd. Akram Khan,&nbsp;Avanish K. Srivastava","doi":"10.1007/s40820-022-00845-1","DOIUrl":"10.1007/s40820-022-00845-1","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Shed light on MXene-based electrochemical aptasensors for the detection of cancer biomarkers.</p>\u0000 </li>\u0000 <li>\u0000 <p>Strategies for the design and synthesis of biomarker-specific aptamer are presented.</p>\u0000 </li>\u0000 <li>\u0000 <p>The properties such as electrical conductivity, chemical stability, mechanical properties, and the hydrophilic–hydrophobic nature of MXenes are discussed.</p>\u0000 </li>\u0000 <li>\u0000 <p>Brief insight on futuristic sensing applications along with challenges are highlighted.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00845-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4444803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 35
Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells 高性能无铅钙钛矿太阳能电池用增强电场非均相FASnI3吸收剂
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-04-08 DOI: 10.1007/s40820-022-00842-4
Tianhao Wu, Xiao Liu, Xinhui Luo, Hiroshi Segawa, Guoqing Tong, Yiqiang Zhang, Luis K. Ono, Yabing Qi, Liyuan Han

Highlights

  • A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described.

  • A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI3) perovskite solar cells with a vertical Sn2+ gradient and an enhanced electric field.

  • The solar cell with a heterogeneous FASnI3 absorber is ultrastable, maintaining over 13% efficiency after operation under 1-sun illumination for 1,000 h in air.

本文描述了一种新的策略,通过仔细控制吸收器内的内置电场来进一步提高无铅锡钙钛矿太阳能电池的效率。基于垂直Sn2+梯度和增强电场的formamidium tin ioide (FASnI3)钙钛矿太阳能电池的效率达到了13.82%。具有非均质FASnI3吸收剂的太阳能电池具有超高稳定性,在空气中1个太阳照射1000小时后保持超过13%的效率。
{"title":"Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells","authors":"Tianhao Wu,&nbsp;Xiao Liu,&nbsp;Xinhui Luo,&nbsp;Hiroshi Segawa,&nbsp;Guoqing Tong,&nbsp;Yiqiang Zhang,&nbsp;Luis K. Ono,&nbsp;Yabing Qi,&nbsp;Liyuan Han","doi":"10.1007/s40820-022-00842-4","DOIUrl":"10.1007/s40820-022-00842-4","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>A novel strategy to further improve the efficiency of lead-free tin perovskite solar cells by carefully controlling the built-in electric field in the absorber is described.</p>\u0000 </li>\u0000 <li>\u0000 <p>A promising efficiency of 13.82% was obtained based on the formamidinium tin iodide (FASnI<sub>3</sub>) perovskite solar cells with a vertical Sn<sup>2+</sup> gradient and an enhanced electric field.</p>\u0000 </li>\u0000 <li>\u0000 <p>The solar cell with a heterogeneous FASnI<sub>3</sub> absorber is ultrastable, maintaining over 13% efficiency after operation under 1-sun illumination for 1,000 h in air.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00842-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4645202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Building Ultra-Stable and Low-Polarization Composite Zn Anode Interface via Hydrated Polyzwitterionic Electrolyte Construction 水合多两性离子电解质构建超稳定低极化复合锌阳极界面
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-04-06 DOI: 10.1007/s40820-022-00835-3
Qiong He, Guozhao Fang, Zhi Chang, Yifang Zhang, Shuang Zhou, Miao Zhou, Simin Chai, Yue Zhong, Guozhong Cao, Shuquan Liang, Anqiang Pan

Aqueous zinc metal batteries are noted for their cost-effectiveness, safety and environmental friendliness. However, the water-induced notorious issues such as continuous electrolyte decomposition and uneven Zn electrochemical deposition remarkably restrict the development of the long-life zinc metal batteries. In this study, zwitterionic sulfobetaine is introduced to copolymerize with acrylamide in zinc perchlorate (Zn(ClO4)2) solution. The designed gel framework with hydrophilic and charged groups can firmly anchor water molecules and construct ion migration channels to accelerate ion transport. The in situ generated hybrid interface, which is composed of the organic functionalized outer layer and inorganic Cl containing inner layer, can synergically lower the mass transfer overpotential, reduce water-related side reactions and lead to uniform Zn deposition. Such a novel electrolyte configuration enables Zn//Zn cells with an ultra-long cycling life of over 3000 h and a low polarization potential (~ 0.03 V) and Zn//Cu cells with high Coulombic efficiency of 99.18% for 1000 cycles. Full cells matched with MnO2 cathodes delivered laudable cycling stability and impressive shelving ability. Besides, the flexible quasi-solid-state batteries which are equipped with the anti-vandalism ability (such as cutting, hammering and soaking) can successfully power the LED simultaneously. Such a safe, processable and durable hydrogel promises significant application potential for long-life flexible electronic devices.

水性锌金属电池以其成本效益、安全性和环保性而著称。然而,水诱发的电解液持续分解和锌电化学沉积不均匀等问题严重制约了长寿命锌金属电池的发展。在高氯酸锌(Zn(ClO4)2)溶液中引入两性离子磺胺甜菜碱与丙烯酰胺共聚。所设计的具有亲水性和带电基团的凝胶框架可以牢固地锚定水分子,并构建离子迁移通道,加速离子运输。由有机官能化外层和含无机Cl−的内层组成的原位生成杂化界面可以协同降低传质过电位,减少与水有关的副反应,从而实现均匀的Zn沉积。这种新型的电解液结构使锌/锌电池具有超过3000 h的超长循环寿命和低极化电位(~ 0.03 V),并使锌/铜电池在1000次循环中具有99.18%的高库仑效率。与二氧化锰阴极匹配的完整电池提供了值得称赞的循环稳定性和令人印象深刻的搁置能力。此外,柔性准固态电池具有抗破坏能力(如切割,锤击和浸泡),可以成功地同时为LED供电。这种安全、可加工和耐用的水凝胶在长寿命柔性电子设备中具有重要的应用潜力。
{"title":"Building Ultra-Stable and Low-Polarization Composite Zn Anode Interface via Hydrated Polyzwitterionic Electrolyte Construction","authors":"Qiong He,&nbsp;Guozhao Fang,&nbsp;Zhi Chang,&nbsp;Yifang Zhang,&nbsp;Shuang Zhou,&nbsp;Miao Zhou,&nbsp;Simin Chai,&nbsp;Yue Zhong,&nbsp;Guozhong Cao,&nbsp;Shuquan Liang,&nbsp;Anqiang Pan","doi":"10.1007/s40820-022-00835-3","DOIUrl":"10.1007/s40820-022-00835-3","url":null,"abstract":"<div><p>Aqueous zinc metal batteries are noted for their cost-effectiveness, safety and environmental friendliness. However, the water-induced notorious issues such as continuous electrolyte decomposition and uneven Zn electrochemical deposition remarkably restrict the development of the long-life zinc metal batteries. In this study, zwitterionic sulfobetaine is introduced to copolymerize with acrylamide in zinc perchlorate (Zn(ClO<sub>4</sub>)<sub>2</sub>) solution. The designed gel framework with hydrophilic and charged groups can firmly anchor water molecules and construct ion migration channels to accelerate ion transport. The in situ generated hybrid interface, which is composed of the organic functionalized outer layer and inorganic Cl<sup>−</sup> containing inner layer, can synergically lower the mass transfer overpotential, reduce water-related side reactions and lead to uniform Zn deposition. Such a novel electrolyte configuration enables Zn//Zn cells with an ultra-long cycling life of over 3000 h and a low polarization potential (~ 0.03 V) and Zn//Cu cells with high Coulombic efficiency of 99.18% for 1000 cycles. Full cells matched with MnO<sub>2</sub> cathodes delivered laudable cycling stability and impressive shelving ability. Besides, the flexible quasi-solid-state batteries which are equipped with the anti-vandalism ability (such as cutting, hammering and soaking) can successfully power the LED simultaneously. Such a safe, processable and durable hydrogel promises significant application potential for long-life flexible electronic devices. </p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00835-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4234318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation 高能电池:超越锂离子及其漫长的商业化之路
IF 26.6 1区 材料科学 Q1 Engineering Pub Date : 2022-04-06 DOI: 10.1007/s40820-022-00844-2
Yulin Gao, Zhenghui Pan, Jianguo Sun, Zhaolin Liu, John Wang

Highlights

  • Fundamental rationalisation for high-energy batteries.

  • Newly emerging and the state-of-the-art high-energy batteries vs. incumbent lithium-ion batteries: performance, cost and safety.

  • Closing the gap between academic research and commercialisation of emerging high-energy batteries, and examination of the remaining challenges.

强调高能电池的基本合理化。新兴和最先进的高能电池与现有锂离子电池:性能,成本和安全性。缩小新兴高能电池的学术研究与商业化之间的差距,并研究剩余的挑战。
{"title":"High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation","authors":"Yulin Gao,&nbsp;Zhenghui Pan,&nbsp;Jianguo Sun,&nbsp;Zhaolin Liu,&nbsp;John Wang","doi":"10.1007/s40820-022-00844-2","DOIUrl":"10.1007/s40820-022-00844-2","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Fundamental rationalisation for high-energy batteries.</p>\u0000 </li>\u0000 <li>\u0000 <p>Newly emerging and the state-of-the-art high-energy batteries vs. incumbent lithium-ion batteries: performance, cost and safety.</p>\u0000 </li>\u0000 <li>\u0000 <p>Closing the gap between academic research and commercialisation of emerging high-energy batteries, and examination of the remaining challenges.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00844-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4237051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 54
期刊
Nano-Micro Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1