Pub Date : 2024-07-03DOI: 10.1109/JETCAS.2024.3422371
Abhishek Sharma;Yanghyo Rod Kim
Conventional interconnects experience significant mechanical durability, mobility, and signal integrity challenges when dealing with moving parts or implementing extensive interconnect networks. As a result, they often hinder the performance of advanced autonomous and high-performance computing systems. This paper presents a fully rotatable and diagonally flexible ultra-short distance (≈ 1 mm) wireless interconnect. The proposed wireless interconnect comprises a 57-GHz transceiver integrated with a folded dipole antenna through wire bonding, enabling a flexible contactless connection. Here, two folded dipoles communicate in the Fresnel zone (radiative near-field), where we leverage the longitudinal electric fields to alleviate the polarization mismatch over the entire rotation angle. We have implemented a non-coherent on-off keying (OOK) modulation scheme and employed an automatic gain control (AGC) loop and offset canceling feedback loop to compensate for the transmission degradation and signal imbalance. The proposed system consumes 58.2 mW of power under a 1 V supply while transferring data at a rate of 10-Gb/s, achieving 5.82-pJ/bit energy efficiency.
{"title":"Energy-Efficient and Rotationally Adjustable Millimeter-Wave Wireless Interconnects","authors":"Abhishek Sharma;Yanghyo Rod Kim","doi":"10.1109/JETCAS.2024.3422371","DOIUrl":"10.1109/JETCAS.2024.3422371","url":null,"abstract":"Conventional interconnects experience significant mechanical durability, mobility, and signal integrity challenges when dealing with moving parts or implementing extensive interconnect networks. As a result, they often hinder the performance of advanced autonomous and high-performance computing systems. This paper presents a fully rotatable and diagonally flexible ultra-short distance (≈ 1 mm) wireless interconnect. The proposed wireless interconnect comprises a 57-GHz transceiver integrated with a folded dipole antenna through wire bonding, enabling a flexible contactless connection. Here, two folded dipoles communicate in the Fresnel zone (radiative near-field), where we leverage the longitudinal electric fields to alleviate the polarization mismatch over the entire rotation angle. We have implemented a non-coherent on-off keying (OOK) modulation scheme and employed an automatic gain control (AGC) loop and offset canceling feedback loop to compensate for the transmission degradation and signal imbalance. The proposed system consumes 58.2 mW of power under a 1 V supply while transferring data at a rate of 10-Gb/s, achieving 5.82-pJ/bit energy efficiency.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 3","pages":"551-562"},"PeriodicalIF":3.7,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1109/JETCAS.2024.3421553
Jicheon Kim;Chunmyung Park;Eunjae Hyun;Xuan Truong Nguyen;Hyuk-Jae Lee
Multi-chip-module (MCM) technology heralds a new era for scalable DNN inference systems, offering a cost-effective alternative to large-scale monolithic designs by lowering fabrication and design costs. Nevertheless, MCMs often incur resource and performance overheads due to inter-chip communication, which largely reduce a performance gain in a scaling-out system. To address these challenges, this paper introduces a highly-scalable DNN accelerator with a lightweight chip-to-chip adapter (C2CA) and a C2C-communication-aware scheduler. Our design employs a C2CA for inter-chip communication, which accurately illustrates an MCM system with a constrained C2C bandwidth, e.g., about 1/16, 1/8, or 1/4 of an on-chip bandwidth. We empirically reveal that the limited C2C bandwidth largely affects the overall performance gain of an MCM system. For example, compared with the one-core engine, a four-chip MCM system with a constrained C2C bandwidth only achieves $2.60times $