By developing and implementing a local temperature control system, such as a root zone, with a high energy efficiency heat source, we can ensure both yield and energy efficiency against extreme temperatures. This system, designed with practicality in mind, has a remarkably positive impact on paprika plants' growth and yield in greenhouse cultivation. In the summer season, paprika plants were grown with no cooling (NC), nutrient solution cooling (NSC), and the combination of NSC and substrate surround cooling (NSC+SSC). In the case of SSC, cooled water circulated through the pipe surrounding the substrate to lower the substrate temperature. The cooling system maintains the nutrient solution temperature at 18oC and the circulating water temperature at the system in the winter season; the paprika plants were grown with no heating (NH), nutrient solution heating (NSH), and the combination of NSH and substrate surround heating (NSH+SSH). The heating system maintains the nutrient solution temperature at 25oC and the circulating water temperature at 30oC. In the summer, the root fresh and dry weights, stem fresh and dry weights, stem length, and node number were increased in the NSC+SSC. In the winter season, the stem fresh and dry weights, leaf area, and leaf fresh and dry weights were increased in the NSH+SSH. In both seasons, root-zone temperature control increased the fruit quality and yield. The result indicates that this easy-to-install root-zone temperature control system can be applied to the commercial greenhouse to secure paprika growth and yield in year-round cultivation.
{"title":"Development of a Root-Zone Temperature Control System Using Air Source Heat Pump and Its Impact on the Growth and Yield of Paprika","authors":"Jeesang Myung, Meiyan Cui, Byungkwan Lee, Hyein Lee, Jaewook Shin, Changhoo Chun","doi":"10.1093/aobpla/plae047","DOIUrl":"https://doi.org/10.1093/aobpla/plae047","url":null,"abstract":"By developing and implementing a local temperature control system, such as a root zone, with a high energy efficiency heat source, we can ensure both yield and energy efficiency against extreme temperatures. This system, designed with practicality in mind, has a remarkably positive impact on paprika plants' growth and yield in greenhouse cultivation. In the summer season, paprika plants were grown with no cooling (NC), nutrient solution cooling (NSC), and the combination of NSC and substrate surround cooling (NSC+SSC). In the case of SSC, cooled water circulated through the pipe surrounding the substrate to lower the substrate temperature. The cooling system maintains the nutrient solution temperature at 18oC and the circulating water temperature at the system in the winter season; the paprika plants were grown with no heating (NH), nutrient solution heating (NSH), and the combination of NSH and substrate surround heating (NSH+SSH). The heating system maintains the nutrient solution temperature at 25oC and the circulating water temperature at 30oC. In the summer, the root fresh and dry weights, stem fresh and dry weights, stem length, and node number were increased in the NSC+SSC. In the winter season, the stem fresh and dry weights, leaf area, and leaf fresh and dry weights were increased in the NSH+SSH. In both seasons, root-zone temperature control increased the fruit quality and yield. The result indicates that this easy-to-install root-zone temperature control system can be applied to the commercial greenhouse to secure paprika growth and yield in year-round cultivation.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"64 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evan A Perkowski, Joseph Terrones, Hannah L German, Nicholas G Smith
Many plant species form symbiotic associations with nitrogen-fixing bacteria. Through this symbiosis, plants allocate photosynthate belowground to the bacteria in exchange for nitrogen fixed from the atmosphere. This symbiosis forms an important link between carbon and nitrogen cycles in many ecosystems. However, the economics of this relationship under soil nitrogen availability gradients is not well understood, as plant investment toward symbiotic nitrogen fixation tends to decrease with increasing soil nitrogen availability. Here, we used a manipulation experiment to examine how costs of nitrogen acquisition vary under a factorial combination of soil nitrogen availability and inoculation with Bradyrhizobium japonicum in Glycine max L. (Merr.). We found that inoculation decreased belowground biomass carbon costs to acquire nitrogen and increased total leaf area and total biomass, but these patterns were only observed under low fertilization and were the result of increased plant nitrogen uptake and no change in belowground carbon allocation. These results suggest that symbioses with nitrogen-fixing bacteria reduce carbon costs of nitrogen acquisition by increasing plant nitrogen uptake, but only when soil nitrogen is low, allowing individuals to increase nitrogen allocation to structures that support aboveground growth. This pattern may help explain the prevalence of plants capable of forming these associations in less fertile soils and provides useful insight into understanding the role of nutrient acquisition strategy on plant nitrogen uptake across nitrogen availability gradients.
许多植物物种与固氮细菌形成共生关系。通过这种共生关系,植物将地下的光合作用分配给细菌,以换取从大气中固定的氮。这种共生关系是许多生态系统中碳和氮循环之间的重要纽带。然而,由于植物对共生固氮的投入往往会随着土壤氮素供应量的增加而减少,因此人们对土壤氮素供应梯度下这种关系的经济性还不甚了解。在这里,我们使用了一个操作实验来研究在土壤氮可用性和接种日本农杆菌(Bradyrhizobium japonicum)的因子组合下,最大甘蓝(Glycine max L. (Merr.))获得氮的成本是如何变化的。我们发现,接种降低了地下生物量获取氮的碳成本,增加了总叶面积和总生物量,但这些模式仅在低施肥量下观察到,是植物氮吸收增加的结果,地下碳分配没有变化。这些结果表明,与固氮菌共生可通过增加植物对氮的吸收来降低获取氮的碳成本,但只有在土壤氮含量较低时才会出现这种情况,从而使个体能够增加对支持地上部生长的结构的氮分配。这种模式可能有助于解释为什么在肥力较低的土壤中普遍存在能够形成这种共生关系的植物,并为理解养分获取策略在氮供应梯度上对植物氮吸收的作用提供了有益的启示。
{"title":"Symbiotic nitrogen fixation reduces belowground biomass carbon costs of nitrogen acquisition under low, but not high, nitrogen availability","authors":"Evan A Perkowski, Joseph Terrones, Hannah L German, Nicholas G Smith","doi":"10.1093/aobpla/plae051","DOIUrl":"https://doi.org/10.1093/aobpla/plae051","url":null,"abstract":"Many plant species form symbiotic associations with nitrogen-fixing bacteria. Through this symbiosis, plants allocate photosynthate belowground to the bacteria in exchange for nitrogen fixed from the atmosphere. This symbiosis forms an important link between carbon and nitrogen cycles in many ecosystems. However, the economics of this relationship under soil nitrogen availability gradients is not well understood, as plant investment toward symbiotic nitrogen fixation tends to decrease with increasing soil nitrogen availability. Here, we used a manipulation experiment to examine how costs of nitrogen acquisition vary under a factorial combination of soil nitrogen availability and inoculation with Bradyrhizobium japonicum in Glycine max L. (Merr.). We found that inoculation decreased belowground biomass carbon costs to acquire nitrogen and increased total leaf area and total biomass, but these patterns were only observed under low fertilization and were the result of increased plant nitrogen uptake and no change in belowground carbon allocation. These results suggest that symbioses with nitrogen-fixing bacteria reduce carbon costs of nitrogen acquisition by increasing plant nitrogen uptake, but only when soil nitrogen is low, allowing individuals to increase nitrogen allocation to structures that support aboveground growth. This pattern may help explain the prevalence of plants capable of forming these associations in less fertile soils and provides useful insight into understanding the role of nutrient acquisition strategy on plant nitrogen uptake across nitrogen availability gradients.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"14 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongli Cui, Gui Xiong, Lyuhan Ye, Richard Gornall, Ziwei Wang, Pat Heslop-Harrison, Qing Liu
Flavonoids in Musaceae are involved in pigmentation and stress responses, including cold resistance, and are a component of the healthy human diet. Identification and analysis of the sequence and copy number of flavonoid biosynthetic genes are valuable for understanding the nature and diversity of flavonoid evolution in Musaceae species. In this study, we identified 71 to 80 flavonoid biosynthetic genes in chromosome-scale genome sequence assemblies of Musaceae, including those of Ensete glaucum, Musella lasiocarpa, Musa beccarii, M. acuminata, M. balbisiana, and M. schizocarpa, checking annotations with BLAST and determining the presence of conserved domains. The number of genes increased through segmental duplication and tandem duplication. Orthologues of both structural and regulatory genes in the flavonoid biosynthetic pathway are highly conserved across Musaceae. The flavonoid 3’,5’-hydroxylase gene F3’5’H was amplified in Musaceae and ginger compared with grasses (rice, Brachypodium, Avena longiglumis, and sorghum). One group of genes from this gene family amplified near the centromere of chromosome 2 in the x = 11 Musaceae species. Flavonoid biosynthetic genes displayed few consistent responses in the yellow and red bracts of Musella lasiocarpa when subjected to low temperatures. The expression levels of MlDFR2/3 (dihydroflavonol reductase) increased while MlLAR (leucoanthocyanidin reductase) was reduced by half. Overall, the results establish the range of diversity in both sequence and copy number of flavonoid biosynthetic genes during evolution of Musaceae. The combination of allelic variants of genes, changes in their copy numbers, and variation in transcription factors with the modulation of expression under cold treatments and between genotypes with contrasting bract-colours suggests the variation may be exploited in plant breeding programmes, particularly for improvement of stress-resistance in the banana crop.
{"title":"Genome-wide analysis of flavonoid biosynthetic genes in Musaceae (Ensete, Musella, and Musa species) reveals amplification of flavonoid 3’,5’-hydroxylase","authors":"Dongli Cui, Gui Xiong, Lyuhan Ye, Richard Gornall, Ziwei Wang, Pat Heslop-Harrison, Qing Liu","doi":"10.1093/aobpla/plae049","DOIUrl":"https://doi.org/10.1093/aobpla/plae049","url":null,"abstract":"Flavonoids in Musaceae are involved in pigmentation and stress responses, including cold resistance, and are a component of the healthy human diet. Identification and analysis of the sequence and copy number of flavonoid biosynthetic genes are valuable for understanding the nature and diversity of flavonoid evolution in Musaceae species. In this study, we identified 71 to 80 flavonoid biosynthetic genes in chromosome-scale genome sequence assemblies of Musaceae, including those of Ensete glaucum, Musella lasiocarpa, Musa beccarii, M. acuminata, M. balbisiana, and M. schizocarpa, checking annotations with BLAST and determining the presence of conserved domains. The number of genes increased through segmental duplication and tandem duplication. Orthologues of both structural and regulatory genes in the flavonoid biosynthetic pathway are highly conserved across Musaceae. The flavonoid 3’,5’-hydroxylase gene F3’5’H was amplified in Musaceae and ginger compared with grasses (rice, Brachypodium, Avena longiglumis, and sorghum). One group of genes from this gene family amplified near the centromere of chromosome 2 in the x = 11 Musaceae species. Flavonoid biosynthetic genes displayed few consistent responses in the yellow and red bracts of Musella lasiocarpa when subjected to low temperatures. The expression levels of MlDFR2/3 (dihydroflavonol reductase) increased while MlLAR (leucoanthocyanidin reductase) was reduced by half. Overall, the results establish the range of diversity in both sequence and copy number of flavonoid biosynthetic genes during evolution of Musaceae. The combination of allelic variants of genes, changes in their copy numbers, and variation in transcription factors with the modulation of expression under cold treatments and between genotypes with contrasting bract-colours suggests the variation may be exploited in plant breeding programmes, particularly for improvement of stress-resistance in the banana crop.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"29 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carolina da Silva Carvalho, Lucas Erickson Nascimento da Costa, Bárbara Simões Santos Leal, Kleber Resende Silva, Adriano Valentin-Silva, Ana Carolina Galindo Costa, Lourival Tyski, Fernando Marino Gomes dos Santos, Mauricio Takashi Coutinho Watanabe
Background and Aims Clonality is characterized by the formation of independent individuals of the same genotype that are capable of reproducing and propagating vegetatively. Although clonality is an important mechanism that facilitates the persistence of a population, its extensive use can lead to negative impacts on sexual reproduction due to trade-offs in the investment of resources. Therefore, studies on the sexual reproduction of species that exhibit clonality can provide information about resilience to environmental changes, information about fecundity, the risk of the absence of pollinators, and the ability to persist in unfavorable conditions and to successfully occupy new areas. Here, we investigated the role of clonal propagation and sexual reproduction in Daphnopsis filipedunculata (Thymelaeaceae), a dioecious species distributed only in Serra dos Carajás. Methods We evaluated the extent of clonality in this species using molecular tools and anatomical analyses of the underground system responsible for developing new ramets. Furthermore, we analyzed the sexual system and its contribution to reproductive success through morphometric analyses of floral types and pollination experiments in the field. Key Results Overall, we found that clonal propagation plays an important role in maintaining the population of D. filipedunculata. Specifically, we demonstrated that this species presents functional male and female plants, indicating that D. filipedunculata is an obligate xenogamous species but has low reproductive success. We also showed that clonal vegetative propagation is the main form of asexual reproduction in this species, with roots responsible for clonal growth. Finally, our results indicated that this species presents an intermediate phalanx-guerrilla clonal architecture. Conclusions Our study provides the first insights into sexual reproduction and clonal propagation in D. filipedunculata and can inform management practices, conservation, and the restoration of endemic species.
背景与目的 克隆的特征是形成具有相同基因型的独立个体,这些个体能够进行无性繁殖和繁殖。虽然克隆是促进种群持续存在的重要机制,但由于资源投资的权衡,克隆的广泛使用可能会对有性生殖产生负面影响。因此,对表现出克隆性的物种的有性生殖进行研究,可以提供有关其对环境变化的适应能力、繁殖力、传粉媒介缺失的风险以及在不利条件下持续生存和成功占据新区域的能力等方面的信息。在这里,我们研究了Daphnopsis filipedunculata(百日草科)克隆繁殖和有性繁殖的作用,这是一种雌雄异株的物种,只分布在Serra dos Carajás。方法 我们利用分子工具和对负责发育新柱头的地下系统的解剖分析,评估了该物种的克隆程度。此外,我们还通过花型形态分析和实地授粉实验分析了有性系统及其对繁殖成功率的贡献。主要结果 总体而言,我们发现克隆繁殖在维持 D. filipedunculata 的种群数量方面发挥了重要作用。具体来说,我们证明了该物种具有功能性雌雄植株,这表明 D. filipedunculata 是一种强制性异花授粉物种,但繁殖成功率较低。我们还发现,克隆无性繁殖是该物种的主要无性繁殖形式,根系负责克隆生长。最后,我们的研究结果表明,该物种的克隆结构介于法氏囊和豚草之间。结论 我们的研究首次揭示了 D. filipedunculata 的有性生殖和克隆繁殖,可为管理实践、保护和恢复特有物种提供参考。
{"title":"Mating system, morphological, and genetic evidence endorse clonality as an essential reproductive mode in Daphnopsis filipedunculata (Thymelaeaceae), a dioecious and endemic species from the Amazon","authors":"Carolina da Silva Carvalho, Lucas Erickson Nascimento da Costa, Bárbara Simões Santos Leal, Kleber Resende Silva, Adriano Valentin-Silva, Ana Carolina Galindo Costa, Lourival Tyski, Fernando Marino Gomes dos Santos, Mauricio Takashi Coutinho Watanabe","doi":"10.1093/aobpla/plae048","DOIUrl":"https://doi.org/10.1093/aobpla/plae048","url":null,"abstract":"Background and Aims Clonality is characterized by the formation of independent individuals of the same genotype that are capable of reproducing and propagating vegetatively. Although clonality is an important mechanism that facilitates the persistence of a population, its extensive use can lead to negative impacts on sexual reproduction due to trade-offs in the investment of resources. Therefore, studies on the sexual reproduction of species that exhibit clonality can provide information about resilience to environmental changes, information about fecundity, the risk of the absence of pollinators, and the ability to persist in unfavorable conditions and to successfully occupy new areas. Here, we investigated the role of clonal propagation and sexual reproduction in Daphnopsis filipedunculata (Thymelaeaceae), a dioecious species distributed only in Serra dos Carajás. Methods We evaluated the extent of clonality in this species using molecular tools and anatomical analyses of the underground system responsible for developing new ramets. Furthermore, we analyzed the sexual system and its contribution to reproductive success through morphometric analyses of floral types and pollination experiments in the field. Key Results Overall, we found that clonal propagation plays an important role in maintaining the population of D. filipedunculata. Specifically, we demonstrated that this species presents functional male and female plants, indicating that D. filipedunculata is an obligate xenogamous species but has low reproductive success. We also showed that clonal vegetative propagation is the main form of asexual reproduction in this species, with roots responsible for clonal growth. Finally, our results indicated that this species presents an intermediate phalanx-guerrilla clonal architecture. Conclusions Our study provides the first insights into sexual reproduction and clonal propagation in D. filipedunculata and can inform management practices, conservation, and the restoration of endemic species.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"98 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Yu, Huixing Kang, Han Wang, Yuheng Wang, Yanhong Tang
Background and Aims Leaf-scale photosynthetic optimization models can quantitatively predict photosynthetic acclimation and have become important means of improving vegetation and land surface models. Previous models have generally been based on the optimality assumption of maximizing the net photosynthetic assimilation per unit leaf area (i.e., the area-based optimality), while overlooking other optimality assumption such as maximizing the net photosynthetic assimilation per unit leaf dry mass (i.e., the mass-based optimality). Methods This paper compares the predicted results of photosynthetic acclimation to different environmental conditions between the area-based optimality and the mass-based optimality models. The predictions are then verified using the observational data from the literatures. Key Results The mass-based optimality model better predicted photosynthetic acclimation to growth light intensity, air temperature and CO2 concentration, and captured more variability in photosynthetic traits than the area-based optimality models. Conclusions The findings suggest that the mass-based optimality approach may be a promising strategy for improving the predictive power and accuracy of optimization models, which have been widely used in various studies related to plant carbon issues.
{"title":"The leaf-scale mass-based photosynthetic optimization model better predicts photosynthetic acclimation than the area-based","authors":"Yuan Yu, Huixing Kang, Han Wang, Yuheng Wang, Yanhong Tang","doi":"10.1093/aobpla/plae044","DOIUrl":"https://doi.org/10.1093/aobpla/plae044","url":null,"abstract":"Background and Aims Leaf-scale photosynthetic optimization models can quantitatively predict photosynthetic acclimation and have become important means of improving vegetation and land surface models. Previous models have generally been based on the optimality assumption of maximizing the net photosynthetic assimilation per unit leaf area (i.e., the area-based optimality), while overlooking other optimality assumption such as maximizing the net photosynthetic assimilation per unit leaf dry mass (i.e., the mass-based optimality). Methods This paper compares the predicted results of photosynthetic acclimation to different environmental conditions between the area-based optimality and the mass-based optimality models. The predictions are then verified using the observational data from the literatures. Key Results The mass-based optimality model better predicted photosynthetic acclimation to growth light intensity, air temperature and CO2 concentration, and captured more variability in photosynthetic traits than the area-based optimality models. Conclusions The findings suggest that the mass-based optimality approach may be a promising strategy for improving the predictive power and accuracy of optimization models, which have been widely used in various studies related to plant carbon issues.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"15 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14eCollection Date: 2024-07-01DOI: 10.1093/aobpla/plae042
[This corrects the article DOI: 10.1093/aobpla/plad022.].
[此处更正了文章 DOI:10.1093/aobpla/plad022]。
{"title":"Correction to: The opportunity of using durum wheat landraces to tolerate drought stress: screening morpho-physiological components.","authors":"","doi":"10.1093/aobpla/plae042","DOIUrl":"https://doi.org/10.1093/aobpla/plae042","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/aobpla/plad022.].</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"16 4","pages":"plae042"},"PeriodicalIF":2.6,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ting Zhao, Sadia Khatoon, Muhammad Matloob Javed, Abdel-Halim Ghazy, Abdullah A Al-Doss, Muhammad Rauf, Taimoor Khalid, Chuanbo Ding, Zahid Hussain Shah
The plant growth regulator 6-benzylaminopurine (BAP) is an important component of plant nutrient medium with tendency to accelerate physiological, biochemical and molecular processes in woody plants such as olive. To date, limited knowledge is available on the role of BAP in mediating physiological, biochemical, and genetic activities in olives under in vitro conditions. To cover this research gap, the current study was conducted with the objective of studying the role of BAP in regulating physiological traits (chlorophyll, CO2 assimilation), antioxidant enzymes (superoxide dismutase, catalase, and peroxidase), metabolic contents (starch, sucrose, and flavonoids) and gene expression (OeRbcl, OePOD10, OeSOD10, OeCAT7, OeSS4, OeSuSY7, OeF3GT, and OeChlH) under varying concentrations (0, 0.5, 1.5 and 2.5 mg L-1) within the provided in vitro conditions. The explants obtained from different olive cultivars (‘Leccino’, ‘Gemlik’, ‘Moraiolo’, ‘Arbosana’) were cultured on olive medium (OM) provided with different BAP concentrations using a two-factorial design, and data were analyzed statistically. All traits increased significantly under in vitro conditions due to increasing concentrations of BAP; however, this increase was more dramatic at 2.5 mg L−1 and the least dramatic at 0.5 mg L−1. Moreover correlation, principal component analysis (PCA) and heatmap cluster analysis confirmed significant changes in the paired association and expression of traits with changing BAP concentration and type of olive cultivars. Likewise, the expression of all genes varied due to changes in BAP concentration in all cultivars, corresponding to variation in physiological and biochemical traits. Moreover, the spectrographs generated via scanning electron microscopy further indicated the variations in the distribution of elements in olive leaf samples due to varying BAP concentrations. Although all cultivars showed a significant response to in vitro varying concentrations of BAP, the response of Arbosana was statistically more significant. In conclusion, the current study proved the dynamic impact of the varying BAP concentrations on regulating the physiological, biochemical, and molecular attributes of olive cultivars.
{"title":"Delineation of the impacts of varying BAP (6-benzylaminopurine) concentrations on physiological, biochemical and genetic traits of different olive cultivars under in vitro conditions","authors":"Ting Zhao, Sadia Khatoon, Muhammad Matloob Javed, Abdel-Halim Ghazy, Abdullah A Al-Doss, Muhammad Rauf, Taimoor Khalid, Chuanbo Ding, Zahid Hussain Shah","doi":"10.1093/aobpla/plae038","DOIUrl":"https://doi.org/10.1093/aobpla/plae038","url":null,"abstract":"The plant growth regulator 6-benzylaminopurine (BAP) is an important component of plant nutrient medium with tendency to accelerate physiological, biochemical and molecular processes in woody plants such as olive. To date, limited knowledge is available on the role of BAP in mediating physiological, biochemical, and genetic activities in olives under in vitro conditions. To cover this research gap, the current study was conducted with the objective of studying the role of BAP in regulating physiological traits (chlorophyll, CO2 assimilation), antioxidant enzymes (superoxide dismutase, catalase, and peroxidase), metabolic contents (starch, sucrose, and flavonoids) and gene expression (OeRbcl, OePOD10, OeSOD10, OeCAT7, OeSS4, OeSuSY7, OeF3GT, and OeChlH) under varying concentrations (0, 0.5, 1.5 and 2.5 mg L-1) within the provided in vitro conditions. The explants obtained from different olive cultivars (‘Leccino’, ‘Gemlik’, ‘Moraiolo’, ‘Arbosana’) were cultured on olive medium (OM) provided with different BAP concentrations using a two-factorial design, and data were analyzed statistically. All traits increased significantly under in vitro conditions due to increasing concentrations of BAP; however, this increase was more dramatic at 2.5 mg L−1 and the least dramatic at 0.5 mg L−1. Moreover correlation, principal component analysis (PCA) and heatmap cluster analysis confirmed significant changes in the paired association and expression of traits with changing BAP concentration and type of olive cultivars. Likewise, the expression of all genes varied due to changes in BAP concentration in all cultivars, corresponding to variation in physiological and biochemical traits. Moreover, the spectrographs generated via scanning electron microscopy further indicated the variations in the distribution of elements in olive leaf samples due to varying BAP concentrations. Although all cultivars showed a significant response to in vitro varying concentrations of BAP, the response of Arbosana was statistically more significant. In conclusion, the current study proved the dynamic impact of the varying BAP concentrations on regulating the physiological, biochemical, and molecular attributes of olive cultivars.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"12 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nhu Q Truong, Larry M York, Allyssa Decker, Margaret R Douglas
Climate change models predict increasing precipitation variability in the mid-latitude regions of Earth, generating a need to reduce negative impacts of these changes on crop production. Despite considerable research on how cover crops support agriculture in a changing climate, understanding is limited of how climate change influences the growth of cover crops. We investigated the early development of two common cover crop species – crimson clover (Trifolium incarnatum L.) and rye (Secale cereale L.) – and hypothesized that growing them in mixture would ameliorate stress from drought or waterlogging. This hypothesis was tested in a 25-day greenhouse experiment, where the two factors (species number, water stress) were fully crossed in randomized blocks, and plant responses were quantified through survival, growth rate, biomass production, and root morphology. Water stress negatively influenced the early growth of these two species in contrasting ways: crimson clover was susceptible to drought while rye performed poorly under waterlogging. Per-plant biomass in rye was always greater in mixture than in monoculture, while per-plant biomass of crimson clover was greater in mixture under drought. Both species grew longer roots in mixture than in monoculture under drought, and total biomass of mixtures did not differ significantly from the more-productive monoculture (rye) in any water condition. In the face of increasingly variable precipitation, growing crimson clover and rye together has potential to ameliorate water stress, a possibility that should be further investigated in field experiments.
{"title":"A mixture of grass-legume cover crop species may ameliorate water stress in a changing climate","authors":"Nhu Q Truong, Larry M York, Allyssa Decker, Margaret R Douglas","doi":"10.1093/aobpla/plae039","DOIUrl":"https://doi.org/10.1093/aobpla/plae039","url":null,"abstract":"Climate change models predict increasing precipitation variability in the mid-latitude regions of Earth, generating a need to reduce negative impacts of these changes on crop production. Despite considerable research on how cover crops support agriculture in a changing climate, understanding is limited of how climate change influences the growth of cover crops. We investigated the early development of two common cover crop species – crimson clover (Trifolium incarnatum L.) and rye (Secale cereale L.) – and hypothesized that growing them in mixture would ameliorate stress from drought or waterlogging. This hypothesis was tested in a 25-day greenhouse experiment, where the two factors (species number, water stress) were fully crossed in randomized blocks, and plant responses were quantified through survival, growth rate, biomass production, and root morphology. Water stress negatively influenced the early growth of these two species in contrasting ways: crimson clover was susceptible to drought while rye performed poorly under waterlogging. Per-plant biomass in rye was always greater in mixture than in monoculture, while per-plant biomass of crimson clover was greater in mixture under drought. Both species grew longer roots in mixture than in monoculture under drought, and total biomass of mixtures did not differ significantly from the more-productive monoculture (rye) in any water condition. In the face of increasingly variable precipitation, growing crimson clover and rye together has potential to ameliorate water stress, a possibility that should be further investigated in field experiments.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"3 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stomatal anatomy and behavior are key to managing gas exchange fluxes, which require coordination with the plant vascular system to adequately supply leaves with water. Stomatal response times and regulation of water loss are generally understudied in ferns, especially across habits (i.e., epiphytic and terrestrial) and habitats (i.e., wet mesic and dry xeric environments). Our objectives were to 1) determine if hydraulic and anatomical traits that control water use are correlated with their habitats (i.e., xeric, mesic) and habits (i.e., epiphytic, terrestrial) for ferns and lycophytes across taxa, and 2) explore how those traits and others like average leaf water residence time correlate with stomatal function using a subset of closely related species. Epiphytic species had lower vein densities than terrestrial species, while xeric species had higher vein densities than mesic species. Xeric ferns also had smaller stomata than mesic ferns, but had similar stomatal densities. Further, in a subset of mesic and xeric ferns, the xeric ferns had higher maximum stomatal conductance and water content, as well as shorter average stomatal opening responses to light intensity, but stomatal closing times did not differ. Finally, shorter stomatal opening and closing responses were correlated with shorter water residence time. Our study highlights anatomical and physiological differences between ferns and lycophytes, which may partially explain habitat preference based on their optimization of light and water.
{"title":"Stomatal behavior and water relations in ferns and lycophytes across habits and habitats","authors":"Kyra A Prats, Adam B Roddy, Craig R Brodersen","doi":"10.1093/aobpla/plae041","DOIUrl":"https://doi.org/10.1093/aobpla/plae041","url":null,"abstract":"Stomatal anatomy and behavior are key to managing gas exchange fluxes, which require coordination with the plant vascular system to adequately supply leaves with water. Stomatal response times and regulation of water loss are generally understudied in ferns, especially across habits (i.e., epiphytic and terrestrial) and habitats (i.e., wet mesic and dry xeric environments). Our objectives were to 1) determine if hydraulic and anatomical traits that control water use are correlated with their habitats (i.e., xeric, mesic) and habits (i.e., epiphytic, terrestrial) for ferns and lycophytes across taxa, and 2) explore how those traits and others like average leaf water residence time correlate with stomatal function using a subset of closely related species. Epiphytic species had lower vein densities than terrestrial species, while xeric species had higher vein densities than mesic species. Xeric ferns also had smaller stomata than mesic ferns, but had similar stomatal densities. Further, in a subset of mesic and xeric ferns, the xeric ferns had higher maximum stomatal conductance and water content, as well as shorter average stomatal opening responses to light intensity, but stomatal closing times did not differ. Finally, shorter stomatal opening and closing responses were correlated with shorter water residence time. Our study highlights anatomical and physiological differences between ferns and lycophytes, which may partially explain habitat preference based on their optimization of light and water.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"44 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bamboos stand out among other tall plants in being able to generate positive pressure in the xylem at night, pushing water up to the leaves and causing drops to fall from leaf tips as guttation that can amount to a steady nocturnal “bamboo rain”. The location and mechanism of nocturnal pressure generation in bamboos are unknown, as are the benefits for the plants. We conducted a study on the tall tropical bamboo species Bambusa oldhamii (giant timber bamboo) growing outdoors in southern California under full irrigation to determine where in the plant the nocturnal pressure is generated, when it rises in the evening, and when it dissipates in the morning. We hypothesized that the buildup of positive pressure would be triggered by the cessation of transpiration-driven sap flow and that resumption of sap flow in the morning would cause the pressure to dissipate. Nocturnal pressure was observed in mature stems and rhizomes, but never in roots. Pressure was episodic and associated with stem swelling and was usually, but not always, higher in rhizomes and basal stems than in stems at greater height. Time series analyses revealed that dry atmospheric conditions were followed by lower nocturnal pressure and rainfall events by higher stem pressure. Nocturnal pressure was unrelated to sap flow and even was generated for a short time in isolated stem pieces placed in water. We conclude that nocturnal pressure in bamboo is not “root pressure” but is generated in the pseudo-woody rhizomes and stems. It is unrelated to the presence or absence of sap flow and therefore must be created outside of vessels, such as in phloem, parenchyma, or fibers. It is unlikely to be a drought adaptation and may benefit the plants by maximizing stem water storage for daytime transpiration or by transporting nutrients to the leaves.
{"title":"Positive pressure in bamboo is generated in stems and rhizomes, not in roots","authors":"Joseph M Michaud, Kerri Mocko, H Jochen Schenk","doi":"10.1093/aobpla/plae040","DOIUrl":"https://doi.org/10.1093/aobpla/plae040","url":null,"abstract":"Bamboos stand out among other tall plants in being able to generate positive pressure in the xylem at night, pushing water up to the leaves and causing drops to fall from leaf tips as guttation that can amount to a steady nocturnal “bamboo rain”. The location and mechanism of nocturnal pressure generation in bamboos are unknown, as are the benefits for the plants. We conducted a study on the tall tropical bamboo species Bambusa oldhamii (giant timber bamboo) growing outdoors in southern California under full irrigation to determine where in the plant the nocturnal pressure is generated, when it rises in the evening, and when it dissipates in the morning. We hypothesized that the buildup of positive pressure would be triggered by the cessation of transpiration-driven sap flow and that resumption of sap flow in the morning would cause the pressure to dissipate. Nocturnal pressure was observed in mature stems and rhizomes, but never in roots. Pressure was episodic and associated with stem swelling and was usually, but not always, higher in rhizomes and basal stems than in stems at greater height. Time series analyses revealed that dry atmospheric conditions were followed by lower nocturnal pressure and rainfall events by higher stem pressure. Nocturnal pressure was unrelated to sap flow and even was generated for a short time in isolated stem pieces placed in water. We conclude that nocturnal pressure in bamboo is not “root pressure” but is generated in the pseudo-woody rhizomes and stems. It is unrelated to the presence or absence of sap flow and therefore must be created outside of vessels, such as in phloem, parenchyma, or fibers. It is unlikely to be a drought adaptation and may benefit the plants by maximizing stem water storage for daytime transpiration or by transporting nutrients to the leaves.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"30 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}