Plants from invasive populations often have higher growth rates than conspecifics from native populations due to better environmental adaptability. However, the roles of improved chlorophyll fluorescence or antioxidant defenses in helping them to grow better under adverse situations are insufficient, even though this is a key physiological question for elucidating mechanisms of plant invasion. Here, we conducted experiments with eight native (China) and eight introduced (US) populations of Chinese tallow tree (Triadica sebifera). We tested how salinity, nutrients (overall amount or N:P in two separate experiments) and their interaction affected T. sebifera aboveground biomass, leaf area, chlorophyll fluorescence and antioxidant defenses. Plants from introduced populations were larger than those from native populations but salinity and nutrient shortage (low nutrients or high N:P) reduced this advantage, possibly reflecting differences in chlorophyll fluorescence based on their higher PSII maximum photochemical efficiency (Fv/Fm) and PSI maximum photo-oxidizsable P700 in higher nutrient conditions. Native population plants had lower Fv/Fm with saline. Except in high nutrients/ N:P with salinity, introduced population plants had lower electron transfer rate and photochemical quantum yield. There were no differences in antioxidant defenses between introduced and native populations except accumulation of hydrogen peroxide (H2O2) which was lower for introduced populations. Low nutrients, high N:P or salinity increased total antioxidant capacity and H2O2. Our results indicate that nutrients and salinity induce differences in H2O2 contents and chlorophyll fluorescence characteristics between introduced and native populations of an invasive plant, illuminating adaptive mechanisms using photosynthetic physiological descriptors in order to predict invasions.
{"title":"Chlorophyll fluorescence characteristics and H2O2 contents of Chinese tallow tree are dependent on population origin, nutrients and salinity","authors":"Mengyue He, Lihong Ge, Xue Hui, Wenrao Li, Jianqing Ding, Evan Siemann","doi":"10.1093/aobpla/plae024","DOIUrl":"https://doi.org/10.1093/aobpla/plae024","url":null,"abstract":"Plants from invasive populations often have higher growth rates than conspecifics from native populations due to better environmental adaptability. However, the roles of improved chlorophyll fluorescence or antioxidant defenses in helping them to grow better under adverse situations are insufficient, even though this is a key physiological question for elucidating mechanisms of plant invasion. Here, we conducted experiments with eight native (China) and eight introduced (US) populations of Chinese tallow tree (Triadica sebifera). We tested how salinity, nutrients (overall amount or N:P in two separate experiments) and their interaction affected T. sebifera aboveground biomass, leaf area, chlorophyll fluorescence and antioxidant defenses. Plants from introduced populations were larger than those from native populations but salinity and nutrient shortage (low nutrients or high N:P) reduced this advantage, possibly reflecting differences in chlorophyll fluorescence based on their higher PSII maximum photochemical efficiency (Fv/Fm) and PSI maximum photo-oxidizsable P700 in higher nutrient conditions. Native population plants had lower Fv/Fm with saline. Except in high nutrients/ N:P with salinity, introduced population plants had lower electron transfer rate and photochemical quantum yield. There were no differences in antioxidant defenses between introduced and native populations except accumulation of hydrogen peroxide (H2O2) which was lower for introduced populations. Low nutrients, high N:P or salinity increased total antioxidant capacity and H2O2. Our results indicate that nutrients and salinity induce differences in H2O2 contents and chlorophyll fluorescence characteristics between introduced and native populations of an invasive plant, illuminating adaptive mechanisms using photosynthetic physiological descriptors in order to predict invasions.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"82 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fiona Ruth Worthy, Douglas Allen Shaefer, Dhanushka Wanasinghe, Jian Chu Xu, Li Song Wang, Xin Yu Wang
Background and Aims Cyanobacteria require liquid water for photosynthesis, whereas green algae can photosynthesise with water vapour alone. We discovered that several Lobaria spp. which normally have cyanobacteria as the sole photobiont, in some regions of the trans-Himalayas also harboured green algae. We tested whether green algal acquisition was: limited to high elevations; obtained from neighbouring chloro-Lobaria species; enabled photosynthesis at low humidity. Methods Lobaria spp. were collected from 2000 – 4000 m elevation. Spectrophotometry quantified green algal abundance by measuring chlorophyll b (absent in cyanobacteria). Thalli cross-sections visually confirmed green algal presence. We sequenced gene regions: Lobaria (ITS-EF-1α-RPB2), green algae (18S-RBC-L) and Nostoc (16S). Phylogenetic analysis determined myco-photobiont associations. We used a custom closed-circuit gas exchange system with an infrared gas analyzer to measure CO2 exchange rates for desiccated specimens at 33%, 76%, 86% and 98% humidity. Key results Cross-sections revealed that the photobiont layers in putative cyano-Lobaria contained both cyanobacteria and green algae, indicating that they should be considered chloro-cyanolichens. Chloro-Lobaria had no visible cephalodia nor cyanobacteria in the photobiont layer. Chloro-Lobaria and chloro-cyano-Lobaria had comparable levels of chlorophyll b. Chloro-Lobaria usually contained Symbiochloris. Chloro-cyano-Lobaria mainly associated with Parachloroidium and Nostoc; infrequently with Symbiochloris, Apatococcus, Chloroidium, Pseudochlorella, Trebouxia. Sequences from two green algal genera were obtained from within some thalli. Desiccated specimens of every Lobaria species could attain net photosynthesis with light exposure and 33% humidity. CO2 exchange dynamics over a five-day period differed between species. Conclusions At all elevations, chloro-cyano-Lobaria spp. had abundant green algae in the photobiont layer, but green algal strains mostly differed to those of chloro-Lobaria spp. Both chloro-Lobaria and chloro-cyano-Lobaria were capable of conducting photosynthesis without liquid water. The data strongly suggest that they attained positive net photosynthesis.
{"title":"Acquisition of green algal photobionts enables both chlorolichens and chloro-cyanolichens to activate photosynthesis at low humidity without liquid water","authors":"Fiona Ruth Worthy, Douglas Allen Shaefer, Dhanushka Wanasinghe, Jian Chu Xu, Li Song Wang, Xin Yu Wang","doi":"10.1093/aobpla/plae025","DOIUrl":"https://doi.org/10.1093/aobpla/plae025","url":null,"abstract":"Background and Aims Cyanobacteria require liquid water for photosynthesis, whereas green algae can photosynthesise with water vapour alone. We discovered that several Lobaria spp. which normally have cyanobacteria as the sole photobiont, in some regions of the trans-Himalayas also harboured green algae. We tested whether green algal acquisition was: limited to high elevations; obtained from neighbouring chloro-Lobaria species; enabled photosynthesis at low humidity. Methods Lobaria spp. were collected from 2000 – 4000 m elevation. Spectrophotometry quantified green algal abundance by measuring chlorophyll b (absent in cyanobacteria). Thalli cross-sections visually confirmed green algal presence. We sequenced gene regions: Lobaria (ITS-EF-1α-RPB2), green algae (18S-RBC-L) and Nostoc (16S). Phylogenetic analysis determined myco-photobiont associations. We used a custom closed-circuit gas exchange system with an infrared gas analyzer to measure CO2 exchange rates for desiccated specimens at 33%, 76%, 86% and 98% humidity. Key results Cross-sections revealed that the photobiont layers in putative cyano-Lobaria contained both cyanobacteria and green algae, indicating that they should be considered chloro-cyanolichens. Chloro-Lobaria had no visible cephalodia nor cyanobacteria in the photobiont layer. Chloro-Lobaria and chloro-cyano-Lobaria had comparable levels of chlorophyll b. Chloro-Lobaria usually contained Symbiochloris. Chloro-cyano-Lobaria mainly associated with Parachloroidium and Nostoc; infrequently with Symbiochloris, Apatococcus, Chloroidium, Pseudochlorella, Trebouxia. Sequences from two green algal genera were obtained from within some thalli. Desiccated specimens of every Lobaria species could attain net photosynthesis with light exposure and 33% humidity. CO2 exchange dynamics over a five-day period differed between species. Conclusions At all elevations, chloro-cyano-Lobaria spp. had abundant green algae in the photobiont layer, but green algal strains mostly differed to those of chloro-Lobaria spp. Both chloro-Lobaria and chloro-cyano-Lobaria were capable of conducting photosynthesis without liquid water. The data strongly suggest that they attained positive net photosynthesis.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"23 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140828897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shanice Van Haeften, Yichen Kang, Caitlin Dudley, Andries Potgieter, Hannah Robinson, Eric Dinglasan, Kylie Wenham, Thomas Noble, Lisa Kelly, Colin A Douglas, Lee Hickey, Millicent R Smith
Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is an important source of plant protein for consumers and a high-value export crop for growers across Asia, Australia, and Africa. However, many commercial cultivars are highly vulnerable to biotic stresses, which rapidly reduces yield within the season. Fusarium oxysporum is a soil-borne pathogen that is a growing concern for mungbean growers globally. This pathogen causes Fusarium wilt by infecting the root system of the plant resulting in devastating yield reductions. To understand the impact of Fusarium on mungbean development and productivity and to identify tolerant genotypes, a panel of 23 diverse accessions were studied. Field trials conducted in 2016 and 2021 in Warwick, Queensland, Australia under rainfed conditions investigated the variation in phenology, canopy and yield component traits under disease and disease-free conditions. Analyses revealed a high degree of genetic variation for all traits. By comparing the performance of these traits across these two environments, we identified key traits that underpin yield under disease and disease-free conditions. Aboveground biomass components at 50% flowering were identified as significant drivers of yield development under disease-free conditions and when impacted by Fusarium resulted in up to 96% yield reduction. Additionally, eight genotypes were identified to be tolerant to Fusarium. These genotypes were found to display differing phenological and morphological behaviours, thereby demonstrating the potential to breed for tolerant lines with a range of diverse trait variations. The identification of tolerant genotypes that sustain yield under disease pressure may be exploited in crop improvement programs.
绿豆 [Vigna radiata (L.) R. Wilczek var. radiata] 是消费者重要的植物蛋白来源,也是亚洲、澳大利亚和非洲种植者的高价值出口作物。然而,许多商业栽培品种极易受到生物胁迫的影响,从而在一季内迅速减产。Fusarium oxysporum 是一种土传病原体,是全球绿豆种植者日益关注的问题。这种病原体通过感染植物根系引起镰刀菌枯萎病,导致毁灭性减产。为了了解镰刀菌对绿豆生长发育和产量的影响,并确定耐受的基因型,研究人员对 23 个不同的品种进行了研究。2016 年和 2021 年,在澳大利亚昆士兰州沃里克市的雨水灌溉条件下进行了田间试验,调查了病害和无病害条件下的物候、冠层和产量成分性状的变化。分析表明,所有性状的遗传变异程度都很高。通过比较这些性状在两种环境下的表现,我们确定了在有病和无病条件下支撑产量的关键性状。在无病害条件下,50%开花期的地上生物量成分被确定为产量发展的重要驱动因素,而当受到镰刀菌影响时,产量减少高达96%。此外,还确定了 8 个耐镰刀菌的基因型。发现这些基因型表现出不同的表观和形态行为,从而证明了培育具有一系列不同性状变异的耐受性品系的潜力。在作物改良计划中,可以利用鉴定出的耐受性基因型来维持病害压力下的产量。
{"title":"Fusarium wilt constrains mungbean yield due to reduction in source availability","authors":"Shanice Van Haeften, Yichen Kang, Caitlin Dudley, Andries Potgieter, Hannah Robinson, Eric Dinglasan, Kylie Wenham, Thomas Noble, Lisa Kelly, Colin A Douglas, Lee Hickey, Millicent R Smith","doi":"10.1093/aobpla/plae021","DOIUrl":"https://doi.org/10.1093/aobpla/plae021","url":null,"abstract":"Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is an important source of plant protein for consumers and a high-value export crop for growers across Asia, Australia, and Africa. However, many commercial cultivars are highly vulnerable to biotic stresses, which rapidly reduces yield within the season. Fusarium oxysporum is a soil-borne pathogen that is a growing concern for mungbean growers globally. This pathogen causes Fusarium wilt by infecting the root system of the plant resulting in devastating yield reductions. To understand the impact of Fusarium on mungbean development and productivity and to identify tolerant genotypes, a panel of 23 diverse accessions were studied. Field trials conducted in 2016 and 2021 in Warwick, Queensland, Australia under rainfed conditions investigated the variation in phenology, canopy and yield component traits under disease and disease-free conditions. Analyses revealed a high degree of genetic variation for all traits. By comparing the performance of these traits across these two environments, we identified key traits that underpin yield under disease and disease-free conditions. Aboveground biomass components at 50% flowering were identified as significant drivers of yield development under disease-free conditions and when impacted by Fusarium resulted in up to 96% yield reduction. Additionally, eight genotypes were identified to be tolerant to Fusarium. These genotypes were found to display differing phenological and morphological behaviours, thereby demonstrating the potential to breed for tolerant lines with a range of diverse trait variations. The identification of tolerant genotypes that sustain yield under disease pressure may be exploited in crop improvement programs.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"48 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent changes in water availability can be crucial for the development, growth, and carbon budget of forests. Therefore, our aim was to determine the effect of reduced throughfall and severe summer drought on stem CO2 efflux as a function of temperature and stem increment. Stem CO2 efflux was measured using the chamber method on oak and hornbeam under four treatments: coppice, thinned-coppice, and both coppice and thinned-coppice with 30%-reduced throughfall. The first year of the experiment had favourable soil water availability and the second year was characterized by a dry summer. While reduced throughfall had no effect on stem CO2 efflux, the summer drought decreased efflux by 43-81% during July and August. The stem CO2 efflux was reduced less severely (by 13-40%) in September when the drought persisted but the stem increment was already negligible. The stem increment was also strongly affected by the drought, which was reflected in its paired relationship with stem CO2 efflux over the two experimental years. The study showed that summer dry periods significantly and rapidly reduce stem CO2 efflux, whereas a constant 30% rainfall reduction needs probably a longer time to affect stem properties, and indirectly stem CO2 efflux.
{"title":"Does lower water availability limit stem CO2 efflux of oak and hornbeam coppices?","authors":"Eva Darenova, Robert Knott, Tomáš Vichta","doi":"10.1093/aobpla/plae023","DOIUrl":"https://doi.org/10.1093/aobpla/plae023","url":null,"abstract":"Recent changes in water availability can be crucial for the development, growth, and carbon budget of forests. Therefore, our aim was to determine the effect of reduced throughfall and severe summer drought on stem CO2 efflux as a function of temperature and stem increment. Stem CO2 efflux was measured using the chamber method on oak and hornbeam under four treatments: coppice, thinned-coppice, and both coppice and thinned-coppice with 30%-reduced throughfall. The first year of the experiment had favourable soil water availability and the second year was characterized by a dry summer. While reduced throughfall had no effect on stem CO2 efflux, the summer drought decreased efflux by 43-81% during July and August. The stem CO2 efflux was reduced less severely (by 13-40%) in September when the drought persisted but the stem increment was already negligible. The stem increment was also strongly affected by the drought, which was reflected in its paired relationship with stem CO2 efflux over the two experimental years. The study showed that summer dry periods significantly and rapidly reduce stem CO2 efflux, whereas a constant 30% rainfall reduction needs probably a longer time to affect stem properties, and indirectly stem CO2 efflux.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"78 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
André Dunedin Gossweiler, Brian C Smart, Brent S Hulke
The expansive range of Lewis flax (Linum lewisii Pursh.), an herbaceous perennial, exposes the species to a diversity of climatic conditions. As interest in the domestication and adoption of perennial crop alternatives grows and interest in this species for natural area restoration continues, the assurance of a commercial plant variety’s ability to endure the full range of possible climatic extremes is paramount. This study examines the freezing tolerance of a geographically representative sampling of 44 Lewis flax accessions at winter temperature extremes experienced in the northern Great Plains of the United States. Survival analysis models were adapted to include temperature exposure, in replacement of ordinal time typically used in such models, to produce statistics evaluating reactions to extreme temperatures that Lewis flax would encounter in our field environments. Our results revealed Lewis flax is more freezing tolerant than previously reported, and revealed four accessions with significantly superior genetic freezing tolerance than the released ‘Maple Grove’ cultivar. Furthermore, regrowth analyses indicate variation among accessions not associated with survival, which could lead to improving regrowth rate and survival simultaneously. These findings and their methodology expand the understanding of Lewis flax adaptation for winter hardiness and offer an efficient, new model that can be used to evaluate freezing tolerance at ordinal temperatures without requiring extensive prior physiological knowledge for a species.
{"title":"Survival analysis of freezing stress in the North American native perennial flax, Linum lewisii Pursh","authors":"André Dunedin Gossweiler, Brian C Smart, Brent S Hulke","doi":"10.1093/aobpla/plae022","DOIUrl":"https://doi.org/10.1093/aobpla/plae022","url":null,"abstract":"The expansive range of Lewis flax (Linum lewisii Pursh.), an herbaceous perennial, exposes the species to a diversity of climatic conditions. As interest in the domestication and adoption of perennial crop alternatives grows and interest in this species for natural area restoration continues, the assurance of a commercial plant variety’s ability to endure the full range of possible climatic extremes is paramount. This study examines the freezing tolerance of a geographically representative sampling of 44 Lewis flax accessions at winter temperature extremes experienced in the northern Great Plains of the United States. Survival analysis models were adapted to include temperature exposure, in replacement of ordinal time typically used in such models, to produce statistics evaluating reactions to extreme temperatures that Lewis flax would encounter in our field environments. Our results revealed Lewis flax is more freezing tolerant than previously reported, and revealed four accessions with significantly superior genetic freezing tolerance than the released ‘Maple Grove’ cultivar. Furthermore, regrowth analyses indicate variation among accessions not associated with survival, which could lead to improving regrowth rate and survival simultaneously. These findings and their methodology expand the understanding of Lewis flax adaptation for winter hardiness and offer an efficient, new model that can be used to evaluate freezing tolerance at ordinal temperatures without requiring extensive prior physiological knowledge for a species.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"66 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Premise Heterostyly, a genetic style polymorphism, is linked to symmetric pollen transfer, vital for its maintenance. Clonal growth typically impacts sexual reproduction by influencing pollen transfer. However, the floral morph variation remains poorly understood under the combined effects of pollinators and clonal growth in heterostyly characterized by negative frequency-dependent selection and disassortative mating. Methods We estimated morph ratios, ramets per genet, and heterostylous syndrome, and quantified legitimate pollen transfer via clonal growth, pollinators, and reciprocal herkogamy between floral morphs in Limonium otolepis, a fragmented population composed of five subpopulations in the desert environment of northwestern China, with small flower and large floral morph variation. Results All subpopulations but one exhibited pollen-stigma morphology dimorphism. The compatibility between mating types with different pollen-stigma morphologies remained consistent regardless of reciprocal herkogamy. Biased ratios and ramets per genet of the two mating types with distinct pollen-stigma morphologies caused asymmetric pollen flow and varying fruit sets in all subpopulations. Short-tongued insects were the primary pollinators due to small flower sizes. However, pollen-feeding Syrphidae sp. triggered asymmetry in pollen flow between high and low sex organs, with short-styled morphs having lower stigma pollen depositions and greater variation. Clonal growth amplified this variation by reducing intermorph pollen transfer. Conclusions Pollinators and clonal growth jointly drive floral morph variation. H-morphs with the same stigma-anther position and self-incompatibility, which mitigate the disadvantages of sunken low sex organs with differing from the classical homostyly, might arise from long- and short-styled morphs through a “relaxed selection”. This study is the first to uncover the occurrence of the H-morph and its associated influencing factors in a distylous plant featuring clonal growth, small flowers, and a fragmented population.
{"title":"Floral morph variation mediated by clonal growth and pollinator functional groups of Limonium otolepis in a heterostylous fragmented population","authors":"Dengfu Ren, Fangfang Jiao, Aiqin Zhang, Jing Zhao, Jing Zhang","doi":"10.1093/aobpla/plae020","DOIUrl":"https://doi.org/10.1093/aobpla/plae020","url":null,"abstract":"Premise Heterostyly, a genetic style polymorphism, is linked to symmetric pollen transfer, vital for its maintenance. Clonal growth typically impacts sexual reproduction by influencing pollen transfer. However, the floral morph variation remains poorly understood under the combined effects of pollinators and clonal growth in heterostyly characterized by negative frequency-dependent selection and disassortative mating. Methods We estimated morph ratios, ramets per genet, and heterostylous syndrome, and quantified legitimate pollen transfer via clonal growth, pollinators, and reciprocal herkogamy between floral morphs in Limonium otolepis, a fragmented population composed of five subpopulations in the desert environment of northwestern China, with small flower and large floral morph variation. Results All subpopulations but one exhibited pollen-stigma morphology dimorphism. The compatibility between mating types with different pollen-stigma morphologies remained consistent regardless of reciprocal herkogamy. Biased ratios and ramets per genet of the two mating types with distinct pollen-stigma morphologies caused asymmetric pollen flow and varying fruit sets in all subpopulations. Short-tongued insects were the primary pollinators due to small flower sizes. However, pollen-feeding Syrphidae sp. triggered asymmetry in pollen flow between high and low sex organs, with short-styled morphs having lower stigma pollen depositions and greater variation. Clonal growth amplified this variation by reducing intermorph pollen transfer. Conclusions Pollinators and clonal growth jointly drive floral morph variation. H-morphs with the same stigma-anther position and self-incompatibility, which mitigate the disadvantages of sunken low sex organs with differing from the classical homostyly, might arise from long- and short-styled morphs through a “relaxed selection”. This study is the first to uncover the occurrence of the H-morph and its associated influencing factors in a distylous plant featuring clonal growth, small flowers, and a fragmented population.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"33 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140312684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingli Hu, Zhanhong Ren, Ning Rong, Mei Bai, Hong Wu, Ming Yang
Evolution of cellular characteristics is a fundamental aspect of evolutionary biology, but knowledge about evolution at the cellular level is very limited. In particular, whether a certain intracellular characteristic evolved in angiosperms, and what significance of such evolution is to angiosperms, if it exists, are important and yet unanswered questions. We have found that bidirectional cytokinesis occurs or likely occurs in male meiosis in extant basal and near-basal angiosperm lineages, which differs from the unidirectional cytokinesis in male meiosis in monocots and eudicots. This pattern of cytokinesis in angiosperms seems to align with the distribution pattern of angiosperms with the lineages basal to monocots and eudicots living in tropical, subtropical, or temperate environments and monocots and eudicots in an expanded range of environments including tropical, subtropical, temperate, subarctic and arctic environments. These two cytokinetic modes seem to result from two phragmoplast types, respectively. A phragmoplast in the bidirectional cytokinesis dynamically associate with the leading edge of a growing cell plate whereas a phragmoplast in the unidirectional cytokinesis is localized to an entire division plane. The large assembly of microtubules in the phragmoplast in unidirectional cytokinesis may be indicative of increased microtubule stability compared with that of the small microtubule assembly in the phragmoplast in bidirectional cytokinesis. Microtubules could conceivably increase their stability from evolutionary changes in tubulins and/or microtubule-associated proteins. Microtubules are very sensitive to low temperatures, which should be a reason for plants to be sensitive to low temperatures. If monocots and eudicots have more stable microtubules than other angiosperms, they will be expected to deal with low temperatures better than other angiosperms. Future investigations into the male meiotic cytokinetic directions, microtubule stability at low temperatures, and proteins affecting microtubule stability in more species may shed light on how plants evolved to inhabit cold environments.
{"title":"A possible pattern in the evolution of male meiotic cytokinesis in angiosperms","authors":"Mingli Hu, Zhanhong Ren, Ning Rong, Mei Bai, Hong Wu, Ming Yang","doi":"10.1093/aobpla/plae017","DOIUrl":"https://doi.org/10.1093/aobpla/plae017","url":null,"abstract":"Evolution of cellular characteristics is a fundamental aspect of evolutionary biology, but knowledge about evolution at the cellular level is very limited. In particular, whether a certain intracellular characteristic evolved in angiosperms, and what significance of such evolution is to angiosperms, if it exists, are important and yet unanswered questions. We have found that bidirectional cytokinesis occurs or likely occurs in male meiosis in extant basal and near-basal angiosperm lineages, which differs from the unidirectional cytokinesis in male meiosis in monocots and eudicots. This pattern of cytokinesis in angiosperms seems to align with the distribution pattern of angiosperms with the lineages basal to monocots and eudicots living in tropical, subtropical, or temperate environments and monocots and eudicots in an expanded range of environments including tropical, subtropical, temperate, subarctic and arctic environments. These two cytokinetic modes seem to result from two phragmoplast types, respectively. A phragmoplast in the bidirectional cytokinesis dynamically associate with the leading edge of a growing cell plate whereas a phragmoplast in the unidirectional cytokinesis is localized to an entire division plane. The large assembly of microtubules in the phragmoplast in unidirectional cytokinesis may be indicative of increased microtubule stability compared with that of the small microtubule assembly in the phragmoplast in bidirectional cytokinesis. Microtubules could conceivably increase their stability from evolutionary changes in tubulins and/or microtubule-associated proteins. Microtubules are very sensitive to low temperatures, which should be a reason for plants to be sensitive to low temperatures. If monocots and eudicots have more stable microtubules than other angiosperms, they will be expected to deal with low temperatures better than other angiosperms. Future investigations into the male meiotic cytokinetic directions, microtubule stability at low temperatures, and proteins affecting microtubule stability in more species may shed light on how plants evolved to inhabit cold environments.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"52 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140297479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pramod Rathor, Punita Upadhyay, Aman Ullah, Linda Yuya Gorim, Malinda S Thilakarathna
Humic acids have been widely used for centuries to enhance plant growth and productivity. The beneficial effects of humic acids have been attributed to different functional groups and phytohormone-like compounds enclosed in macrostructure. However, the mechanisms underlying the plant growth-promoting effects of humic acids are only partially understood. We hypothesize that the bio-stimulatory effect of humic acids is mainly due to the modulation of innate pathways of auxin and cytokinin biosynthesis in treated plants. A physiological investigation along with molecular characterization was carried out to understand the mechanism of bio-stimulatory effects of humic acid. A gene expression analysis was performed for the genes involved in auxin and cytokinin biosynthesis pathways in wheat seedlings. Furthermore, Arabidopsis thaliana transgenic lines generated by fusing the auxin-responsive DR5 and cytokinin-responsive ARR5 promoter to ß-glucuronidase (GUS) reporter were used to study the GUS expression analysis in humic acid treated seedlings. This study demonstrates that humic acid treatment improved the shoot and root growth of wheat seedlings. The expression of several genes involved in auxin (Tryptophan Aminotransferase of Arabidopsis and Gretchen Hagen 3.2) and cytokinin (Lonely Guy3) biosynthesis pathways was up-regulated in humic acid treated seedlings compared to the control. Furthermore, GUS expression analysis showed that bioactive compounds of humic acid stimulate endogenous auxin and cytokinin-like activities. This study is the first report in which using ARR5 :GUS lines we demonstrate the biostimulants activity of humic acid.
{"title":"Humic Acid Improves Wheat Growth by Modulating Auxin and Cytokinin Biosynthesis Pathways","authors":"Pramod Rathor, Punita Upadhyay, Aman Ullah, Linda Yuya Gorim, Malinda S Thilakarathna","doi":"10.1093/aobpla/plae018","DOIUrl":"https://doi.org/10.1093/aobpla/plae018","url":null,"abstract":"Humic acids have been widely used for centuries to enhance plant growth and productivity. The beneficial effects of humic acids have been attributed to different functional groups and phytohormone-like compounds enclosed in macrostructure. However, the mechanisms underlying the plant growth-promoting effects of humic acids are only partially understood. We hypothesize that the bio-stimulatory effect of humic acids is mainly due to the modulation of innate pathways of auxin and cytokinin biosynthesis in treated plants. A physiological investigation along with molecular characterization was carried out to understand the mechanism of bio-stimulatory effects of humic acid. A gene expression analysis was performed for the genes involved in auxin and cytokinin biosynthesis pathways in wheat seedlings. Furthermore, Arabidopsis thaliana transgenic lines generated by fusing the auxin-responsive DR5 and cytokinin-responsive ARR5 promoter to ß-glucuronidase (GUS) reporter were used to study the GUS expression analysis in humic acid treated seedlings. This study demonstrates that humic acid treatment improved the shoot and root growth of wheat seedlings. The expression of several genes involved in auxin (Tryptophan Aminotransferase of Arabidopsis and Gretchen Hagen 3.2) and cytokinin (Lonely Guy3) biosynthesis pathways was up-regulated in humic acid treated seedlings compared to the control. Furthermore, GUS expression analysis showed that bioactive compounds of humic acid stimulate endogenous auxin and cytokinin-like activities. This study is the first report in which using ARR5 :GUS lines we demonstrate the biostimulants activity of humic acid.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"22 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140297455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Exitrons are exonic-introns. This subclass of intron-retention alternative splicing does not contain a Pre-Terminating stop Codon. Therefore, when retained, they are always a part of a protein. Intron retention is a frequent phenomenon predominantly found in plants, which results in either the degradation of the transcripts or can serve as a stable intermediate to be processed upon induction by specific signals or the cell status. Interestingly, exitrons have coding ability and may confer additional attributes to the proteins that retain them. Therefore, exitron-containing and exitron-spliced isoforms will be a driving force for creating protein diversity in the proteome of an organism. This review establishes a basic understanding of exitron, discussing its genesis, key features, identification methods, and functions. We also try to depict its other potential roles. The present review also aims to provide a fundamental background to those who found such exitronic sequences in their gene(s) and to speculate the future course of studies.
{"title":"Exitrons: offering new roles to retained introns - the novel regulators of protein diversity and utility","authors":"Muhammed Shamnas v, Akanksha Singh, Anuj Kumar, Gyan Prakash Mishra, Subodh Kumar Sinha","doi":"10.1093/aobpla/plae014","DOIUrl":"https://doi.org/10.1093/aobpla/plae014","url":null,"abstract":"Exitrons are exonic-introns. This subclass of intron-retention alternative splicing does not contain a Pre-Terminating stop Codon. Therefore, when retained, they are always a part of a protein. Intron retention is a frequent phenomenon predominantly found in plants, which results in either the degradation of the transcripts or can serve as a stable intermediate to be processed upon induction by specific signals or the cell status. Interestingly, exitrons have coding ability and may confer additional attributes to the proteins that retain them. Therefore, exitron-containing and exitron-spliced isoforms will be a driving force for creating protein diversity in the proteome of an organism. This review establishes a basic understanding of exitron, discussing its genesis, key features, identification methods, and functions. We also try to depict its other potential roles. The present review also aims to provide a fundamental background to those who found such exitronic sequences in their gene(s) and to speculate the future course of studies.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"72 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacob L Watts, Graham J Dow, Thomas N Buckley, Christopher D Muir
Photosynthesis is co-limited by multiple factors depending on the plant and its environment. These include biochemical rate limitations, internal and external water potentials, temperature, irradiance, and carbon dioxide (CO2). Amphis- tomatous leaves have stomata on both abaxial and adaxial leaf surfaces. This feature is considered an adaptation to alleviate CO2 diffusion limitations in pro- ductive environments as the diffusion path length from stomate to chloroplast is effectively halved in amphistomatous leaves. Plants may also reduce CO2 limitations through other aspects of optimal stomatal anatomy: stomatal den- sity, distribution, patterning, and size. A number of studies have demonstrated that stomata are overdispersed compared to a random distribution on a sin- gle leaf surface; however, despite their prevelance in nature and near ubiquity among crop species, much less is known about stomatal anatomy in amphis- tomatous leaves, especially the coordination between leaf surfaces. Here we use novel spatial statistics based on simulations and photosynthesis modeling to test hypotheses about how amphistomatous plants may optimize CO2 diffusion in the model angiosperm Arabidopsis thaliana grown in different light environ- ments. We find that 1) stomata are overdispersed, but not ideally dispersed, on both leaf surfaces across all light treatments; 2) the patterning of stomata on abaxial and adaxial leaf surfaces is independent; and 3) the theoretical im- provements to photosynthesis from abaxial-adaxial stomatal coordination are miniscule (≪ 1%) across the range of feasible parameter space. However, we also find that 4) stomatal size is correlated with the mesophyll volume that it supplies with CO2, suggesting that plants may optimize CO2 diffusion limita- tions through alternative pathways other than ideal, uniform stomatal spacing. We discuss the developmental, physical, and evolutionary constraits which may prohibit plants from reaching this theoretical adaptive peak of uniform stomatal spacing and inter-surface stomatal coordination. These findings contribute to our understanding of variation in the anatomy of amphistomatous leaves.
{"title":"Does stomatal patterning in amphistomatous leaves minimize the CO2 diffusion path length within leaves?","authors":"Jacob L Watts, Graham J Dow, Thomas N Buckley, Christopher D Muir","doi":"10.1093/aobpla/plae015","DOIUrl":"https://doi.org/10.1093/aobpla/plae015","url":null,"abstract":"Photosynthesis is co-limited by multiple factors depending on the plant and its environment. These include biochemical rate limitations, internal and external water potentials, temperature, irradiance, and carbon dioxide (CO2). Amphis- tomatous leaves have stomata on both abaxial and adaxial leaf surfaces. This feature is considered an adaptation to alleviate CO2 diffusion limitations in pro- ductive environments as the diffusion path length from stomate to chloroplast is effectively halved in amphistomatous leaves. Plants may also reduce CO2 limitations through other aspects of optimal stomatal anatomy: stomatal den- sity, distribution, patterning, and size. A number of studies have demonstrated that stomata are overdispersed compared to a random distribution on a sin- gle leaf surface; however, despite their prevelance in nature and near ubiquity among crop species, much less is known about stomatal anatomy in amphis- tomatous leaves, especially the coordination between leaf surfaces. Here we use novel spatial statistics based on simulations and photosynthesis modeling to test hypotheses about how amphistomatous plants may optimize CO2 diffusion in the model angiosperm Arabidopsis thaliana grown in different light environ- ments. We find that 1) stomata are overdispersed, but not ideally dispersed, on both leaf surfaces across all light treatments; 2) the patterning of stomata on abaxial and adaxial leaf surfaces is independent; and 3) the theoretical im- provements to photosynthesis from abaxial-adaxial stomatal coordination are miniscule (≪ 1%) across the range of feasible parameter space. However, we also find that 4) stomatal size is correlated with the mesophyll volume that it supplies with CO2, suggesting that plants may optimize CO2 diffusion limita- tions through alternative pathways other than ideal, uniform stomatal spacing. We discuss the developmental, physical, and evolutionary constraits which may prohibit plants from reaching this theoretical adaptive peak of uniform stomatal spacing and inter-surface stomatal coordination. These findings contribute to our understanding of variation in the anatomy of amphistomatous leaves.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"103 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}