首页 > 最新文献

Remote Sensing最新文献

英文 中文
A First Extension of the Robust Satellite Technique RST-FLOOD to Sentinel-2 Data for the Mapping of Flooded Areas: The Case of the Emilia Romagna (Italy) 2023 Event 首次将 RST-FLOOD 强健卫星技术扩展到哨兵-2 数据,用于绘制洪涝地区地图:艾米利亚-罗马涅(意大利)2023 年事件案例
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-17 DOI: 10.3390/rs16183450
Valeria Satriano, Emanuele Ciancia, Nicola Pergola, Valerio Tramutoli
Extreme meteorological events hit our planet with increasing frequency, resulting in an ever-increasing number of natural disasters. Flash floods generated by intense and violent rains are among the most dangerous natural disasters that compromise crops and cause serious damage to infrastructure and human lives. In the case of such a kind of disastrous events, timely and accurate information about the location and extent of the affected areas can be crucial to better plan and implement recovery and containment interventions. Satellite systems may efficiently provide such information at different spatial/temporal resolutions. Several authors have developed satellite techniques to detect and map inundated areas using both Synthetic Aperture Radar (SAR) and a new generation of high-resolution optical data but with some accuracy limits, mostly due to the use of fixed thresholds to discriminate between the inundated and unaffected areas. In this paper, the RST-FLOOD fully automatic technique, which does not suffer from the aforementioned limitation, has been exported for the first time to the mid–high-spatial resolution (20 m) optical data provided by the Copernicus Sentinel-2 Multi-Spectral Instrument (MSI). The technique was originally designed for and successfully applied to Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) satellite data at a mid–low spatial resolution (from 1000 to 375 m). The processing chain was implemented in a completely automatic mode within the Google Earth Engine (GEE) platform to study the recent strong flood event that occurred in May 2023 in Emilia Romagna (Italy). The outgoing results were compared with those obtained through the implementation of an existing independent optical-based technique and the products provided by the official Copernicus Emergency Management Service (CEMS), which is responsible for releasing information during crisis events. The comparisons carried out show that RST-FLOOD is a simple implementation technique able to retrieve more sensitive and effective information than the other optical-based methodology analyzed here and with an accuracy better than the one offered by the CEMS products with a significantly reduced delivery time.
极端气象事件越来越频繁地袭击我们的星球,导致自然灾害的数量不断增加。强暴雨引发的山洪是最危险的自然灾害之一,会危及农作物,对基础设施和人类生命造成严重破坏。在发生这类灾难性事件时,及时准确地掌握受灾地区的位置和范围对于更好地规划和实施恢复和遏制干预措施至关重要。卫星系统可以以不同的空间/时间分辨率有效地提供此类信息。一些学者已经开发出利用合成孔径雷达(SAR)和新一代高分辨率光学数据探测和绘制淹没区地图的卫星技术,但这些技术存在一定的精度限制,主要是因为使用固定阈值来区分淹没区和未受灾地区。本文首次将不受上述限制的 RST-FLOOD 全自动技术输出到哥白尼哨兵-2 多光谱仪器(MSI)提供的中高空间分辨率(20 米)光学数据中。该技术最初是为高级甚高分辨率辐射计(AVHRR)、中分辨率成像分光仪(MODIS)和可见红外成像辐射计套件(VIIRS)的中低空间分辨率(从 1000 米到 375 米)卫星数据设计的,并成功应用于这些数据。处理链在谷歌地球引擎(GEE)平台上以完全自动的模式实施,以研究最近于 2023 年 5 月在艾米利亚-罗马涅(意大利)发生的强洪水事件。得出的结果与通过实施现有的独立光学技术获得的结果以及官方哥白尼应急管理服务(CEMS)提供的产品进行了比较,后者负责在危机事件期间发布信息。比较结果表明,RST-FLOOD 是一种简单的实施技术,与本文分析的其他基于光学的方法相比,它能够检索到更灵敏、更有效的信息,其准确性优于哥白尼应急管理服务系统的产品,同时大大缩短了发送时间。
{"title":"A First Extension of the Robust Satellite Technique RST-FLOOD to Sentinel-2 Data for the Mapping of Flooded Areas: The Case of the Emilia Romagna (Italy) 2023 Event","authors":"Valeria Satriano, Emanuele Ciancia, Nicola Pergola, Valerio Tramutoli","doi":"10.3390/rs16183450","DOIUrl":"https://doi.org/10.3390/rs16183450","url":null,"abstract":"Extreme meteorological events hit our planet with increasing frequency, resulting in an ever-increasing number of natural disasters. Flash floods generated by intense and violent rains are among the most dangerous natural disasters that compromise crops and cause serious damage to infrastructure and human lives. In the case of such a kind of disastrous events, timely and accurate information about the location and extent of the affected areas can be crucial to better plan and implement recovery and containment interventions. Satellite systems may efficiently provide such information at different spatial/temporal resolutions. Several authors have developed satellite techniques to detect and map inundated areas using both Synthetic Aperture Radar (SAR) and a new generation of high-resolution optical data but with some accuracy limits, mostly due to the use of fixed thresholds to discriminate between the inundated and unaffected areas. In this paper, the RST-FLOOD fully automatic technique, which does not suffer from the aforementioned limitation, has been exported for the first time to the mid–high-spatial resolution (20 m) optical data provided by the Copernicus Sentinel-2 Multi-Spectral Instrument (MSI). The technique was originally designed for and successfully applied to Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) satellite data at a mid–low spatial resolution (from 1000 to 375 m). The processing chain was implemented in a completely automatic mode within the Google Earth Engine (GEE) platform to study the recent strong flood event that occurred in May 2023 in Emilia Romagna (Italy). The outgoing results were compared with those obtained through the implementation of an existing independent optical-based technique and the products provided by the official Copernicus Emergency Management Service (CEMS), which is responsible for releasing information during crisis events. The comparisons carried out show that RST-FLOOD is a simple implementation technique able to retrieve more sensitive and effective information than the other optical-based methodology analyzed here and with an accuracy better than the one offered by the CEMS products with a significantly reduced delivery time.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"37 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar Cycle Dependence of Migrating Diurnal Tide in the Equatorial Mesosphere and Lower Thermosphere 赤道中间层和低热层昼潮迁移的太阳周期依赖性
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-16 DOI: 10.3390/rs16183437
Shuai Liu, Guoying Jiang, Bingxian Luo, Jiyao Xu, Ruilin Lin, Yajun Zhu, Weijun Liu
Atmospheric migrating diurnal tide (DW1) is one of the prominent variabilities in the mesosphere and lower thermosphere (MLT). The existence of the solar cycle dependence of DW1 is debated, and there exist different and even opposite findings at different latitudes. In this paper, the solar cycle dependence of temperature DW1 in the equatorial mesosphere and lower thermosphere (MLT) is investigated using temperature global observations from TIMED/SABER spanning 22 years (2002–2023). The results show that (a) the solar cycle dependence of temperature DW1 is seen very clearly at the equator. The maximum correlation coefficient between DW1 and the F10.7 index occurs at 87km, with 0.72; the second maximum coefficient occurs at 99 km, with 0.62. The coefficient could reach 0.87 at 87 km and 0.67 at 99 km after dropping the years influenced by the Stratosphere Quasi-biennial oscillation (SQBO) disruption event. (b) DW1 shows a lag response to the solar cycle at the equator. DW1 amplitudes show a 1-year lag to the F10.7 index at 87 km and a 2-year lag to the F10.7 index at 99 km.
大气迁移昼潮(DW1)是中间层和低温层(MLT)的突出变化之一。关于 DW1 是否存在太阳周期依赖性存在争议,不同纬度存在不同甚至相反的结论。本文利用 TIMED/SABER 22 年(2002-2023 年)的全球温度观测资料,研究了赤道中间层和低温层(MLT)温度 DW1 与太阳周期的关系。结果表明:(a) 温度 DW1 的太阳周期依赖性在赤道非常明显。DW1 与 F10.7 指数的最大相关系数出现在 87 公里处,为 0.72;第二个最大相关系数出现在 99 公里处,为 0.62。剔除受平流层准双年振荡(SQBO)扰动事件影响的年份后,该系数在 87 公里处可达到 0.87,在 99 公里处可达到 0.67。(b) DW1 在赤道显示出对太阳周期的滞后响应。DW1 振幅在 87 公里处与 F10.7 指数滞后 1 年,在 99 公里处与 F10.7 指数滞后 2 年。
{"title":"Solar Cycle Dependence of Migrating Diurnal Tide in the Equatorial Mesosphere and Lower Thermosphere","authors":"Shuai Liu, Guoying Jiang, Bingxian Luo, Jiyao Xu, Ruilin Lin, Yajun Zhu, Weijun Liu","doi":"10.3390/rs16183437","DOIUrl":"https://doi.org/10.3390/rs16183437","url":null,"abstract":"Atmospheric migrating diurnal tide (DW1) is one of the prominent variabilities in the mesosphere and lower thermosphere (MLT). The existence of the solar cycle dependence of DW1 is debated, and there exist different and even opposite findings at different latitudes. In this paper, the solar cycle dependence of temperature DW1 in the equatorial mesosphere and lower thermosphere (MLT) is investigated using temperature global observations from TIMED/SABER spanning 22 years (2002–2023). The results show that (a) the solar cycle dependence of temperature DW1 is seen very clearly at the equator. The maximum correlation coefficient between DW1 and the F10.7 index occurs at 87km, with 0.72; the second maximum coefficient occurs at 99 km, with 0.62. The coefficient could reach 0.87 at 87 km and 0.67 at 99 km after dropping the years influenced by the Stratosphere Quasi-biennial oscillation (SQBO) disruption event. (b) DW1 shows a lag response to the solar cycle at the equator. DW1 amplitudes show a 1-year lag to the F10.7 index at 87 km and a 2-year lag to the F10.7 index at 99 km.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"65 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Reconstruction from SLAM-Based Point Clouds: Results from the Datasets of the 2023 SIFET Benchmark 基于 SLAM 的点云表面重构:来自 2023 SIFET 基准数据集的结果
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-16 DOI: 10.3390/rs16183439
Antonio Matellon, Eleonora Maset, Alberto Beinat, Domenico Visintini
The rapid technological development that geomatics has been experiencing in recent years is leading to increasing ease, productivity and reliability of three-dimensional surveys, with portable laser scanner systems based on Simultaneous Localization and Mapping (SLAM) technology, gradually replacing traditional techniques in certain applications. Although the performance of such systems in terms of point cloud accuracy and noise level has been deeply investigated in the literature, there are fewer works about the evaluation of their use for surface reconstruction, cartographic production, and as-built Building Information Model (BIM) creation. The objective of this study is to assess the suitability of SLAM devices for surface modeling in an urban/architectural environment. To this end, analyses are carried out on the datasets acquired by three commercial portable laser scanners in the context of a benchmark organized in 2023 by the Italian Society of Photogrammetry and Topography (SIFET). In addition to the conventional point cloud assessment, we propose a comparison between the reconstructed mesh and a ground-truth model, employing a model-to-model methodology. The outcomes are promising, with the average distance between models ranging from 0.2 to 1.4 cm. However, the surfaces modeled from the terrestrial laser scanning point cloud show a level of detail that is still unmatched by SLAM systems.
近年来,地理信息学技术发展迅速,基于同步定位与绘图(SLAM)技术的便携式激光扫描仪系统在某些应用中逐渐取代了传统技术,从而提高了三维测量的便捷性、生产率和可靠性。虽然文献中已对此类系统在点云精度和噪声水平方面的性能进行了深入研究,但对其在表面重建、制图和竣工建筑信息模型(BIM)创建方面的应用进行评估的著作较少。本研究的目的是评估 SLAM 设备在城市/建筑环境中进行表面建模的适用性。为此,在意大利摄影测量和地形协会(SIFET)于 2023 年组织的基准测试中,对三台商用便携式激光扫描仪获取的数据集进行了分析。除了传统的点云评估外,我们还采用模型对模型的方法,对重建网格和地面实况模型进行了比较。结果很不错,模型之间的平均距离在 0.2 到 1.4 厘米之间。然而,根据地面激光扫描点云建模的表面显示出的细节水平仍然是 SLAM 系统无法比拟的。
{"title":"Surface Reconstruction from SLAM-Based Point Clouds: Results from the Datasets of the 2023 SIFET Benchmark","authors":"Antonio Matellon, Eleonora Maset, Alberto Beinat, Domenico Visintini","doi":"10.3390/rs16183439","DOIUrl":"https://doi.org/10.3390/rs16183439","url":null,"abstract":"The rapid technological development that geomatics has been experiencing in recent years is leading to increasing ease, productivity and reliability of three-dimensional surveys, with portable laser scanner systems based on Simultaneous Localization and Mapping (SLAM) technology, gradually replacing traditional techniques in certain applications. Although the performance of such systems in terms of point cloud accuracy and noise level has been deeply investigated in the literature, there are fewer works about the evaluation of their use for surface reconstruction, cartographic production, and as-built Building Information Model (BIM) creation. The objective of this study is to assess the suitability of SLAM devices for surface modeling in an urban/architectural environment. To this end, analyses are carried out on the datasets acquired by three commercial portable laser scanners in the context of a benchmark organized in 2023 by the Italian Society of Photogrammetry and Topography (SIFET). In addition to the conventional point cloud assessment, we propose a comparison between the reconstructed mesh and a ground-truth model, employing a model-to-model methodology. The outcomes are promising, with the average distance between models ranging from 0.2 to 1.4 cm. However, the surfaces modeled from the terrestrial laser scanning point cloud show a level of detail that is still unmatched by SLAM systems.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"23 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microphysical Characteristics of Monsoon Precipitation over Yangtze-and-Huai River Basin and South China: A Comparative Study from GPM DPR Observation 长江-淮河流域及华南季风降水的微物理特征:来自 GPM DPR 观测的比较研究
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-16 DOI: 10.3390/rs16183433
Zelin Wang, Xiong Hu, Weihua Ai, Junqi Qiao, Xianbin Zhao
It is rare to conduct a comparative analysis of precipitation characteristics across regions based on long-term homogeneous active satellite observations. By collocating the Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM DPR) observations with European Centre for Medium-Range Weather Forecasts 5th Reanalysis (ERA5) data, this study comparatively examines the microphysics of monsoon precipitation in the rainy season over the Yangtze-and-Huai River Basin (YHRB) and South China (SC) from 2014 to 2023. The comparative analysis is made in terms of precipitation types and intensities, precipitation efficiency index (PEI), and ice phase layer (IPL) width. The results show that the mean near-surface precipitation rate and PEI are generally higher over SC (2.87 mm/h, 3.43 h−1) than over YHRB (2.27 mm/h, 3.22 h−1) due to the more frequent occurrence of convective precipitation. The DSD characteristics of heavy precipitation in the wet season for both regions are similar to those of deep ocean convection, which is associated with a greater amount of water vapor. However, over SC, there are larger but fewer raindrops in the near-surface precipitation. Moreover, moderate PEI precipitation is the main contributor to heavy precipitation (>8 mm/h). Stratiform precipitation over YHRB is frequent enough to contribute more than convective precipitation to heavy precipitation (8–20 mm/h). The combined effect of stronger convective available potential energy and low-level vertical wind favors intense convection over SC, resulting in a larger storm top height (STH) than that over YHRB. Consequently, it is conducive to enhancing the microphysical processes of the ice and melt phases within the precipitation. The vertical wind can also influence the liquid phase processes below the melting layer. Collectively, these dynamic microphysical processes are important in shaping the efficiency and intensity of precipitation.
根据长期同质主动卫星观测资料对不同地区的降水特征进行比较分析是非常罕见的。本研究将全球降水测量双频降水雷达(GPM DPR)观测资料与欧洲中期天气预报中心第五次再分析(ERA5)资料相结合,比较研究了2014-2023年长江-淮河流域和华南地区雨季季风降水的微物理特征。从降水类型和强度、降水效率指数(PEI)和冰相层宽度等方面进行了对比分析。结果表明,由于对流性降水出现较频繁,南充地区的平均近地面降水速率和降水效率指数(2.87 mm/h,3.43 h-1)普遍高于渝东南地区(2.27 mm/h,3.22 h-1)。两地雨季强降水的 DSD 特性与深海对流相似,都与水汽量较大有关。然而,在南极洲上空,近地面降水中的雨滴较大但较少。此外,中等 PEI 降水是强降水(>8 毫米/小时)的主要成因。YHRB上空的层状降水足够频繁,比对流降水对强降水(8-20 毫米/小时)的贡献更大。对流可用势能较强和低层垂直风的共同作用,有利于南中国海上空的强对流,导致风暴顶部高度(STH)比YHRB上空大。因此,这有利于加强降水中冰相和融化相的微物理过程。垂直风还会影响融化层以下的液相过程。总之,这些动态微物理过程对降水效率和强度的形成非常重要。
{"title":"Microphysical Characteristics of Monsoon Precipitation over Yangtze-and-Huai River Basin and South China: A Comparative Study from GPM DPR Observation","authors":"Zelin Wang, Xiong Hu, Weihua Ai, Junqi Qiao, Xianbin Zhao","doi":"10.3390/rs16183433","DOIUrl":"https://doi.org/10.3390/rs16183433","url":null,"abstract":"It is rare to conduct a comparative analysis of precipitation characteristics across regions based on long-term homogeneous active satellite observations. By collocating the Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM DPR) observations with European Centre for Medium-Range Weather Forecasts 5th Reanalysis (ERA5) data, this study comparatively examines the microphysics of monsoon precipitation in the rainy season over the Yangtze-and-Huai River Basin (YHRB) and South China (SC) from 2014 to 2023. The comparative analysis is made in terms of precipitation types and intensities, precipitation efficiency index (PEI), and ice phase layer (IPL) width. The results show that the mean near-surface precipitation rate and PEI are generally higher over SC (2.87 mm/h, 3.43 h−1) than over YHRB (2.27 mm/h, 3.22 h−1) due to the more frequent occurrence of convective precipitation. The DSD characteristics of heavy precipitation in the wet season for both regions are similar to those of deep ocean convection, which is associated with a greater amount of water vapor. However, over SC, there are larger but fewer raindrops in the near-surface precipitation. Moreover, moderate PEI precipitation is the main contributor to heavy precipitation (>8 mm/h). Stratiform precipitation over YHRB is frequent enough to contribute more than convective precipitation to heavy precipitation (8–20 mm/h). The combined effect of stronger convective available potential energy and low-level vertical wind favors intense convection over SC, resulting in a larger storm top height (STH) than that over YHRB. Consequently, it is conducive to enhancing the microphysical processes of the ice and melt phases within the precipitation. The vertical wind can also influence the liquid phase processes below the melting layer. Collectively, these dynamic microphysical processes are important in shaping the efficiency and intensity of precipitation.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"52 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semantic Segmentation-Driven Integration of Point Clouds from Mobile Scanning Platforms in Urban Environments 城市环境中移动扫描平台点云的语义分割驱动集成
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-16 DOI: 10.3390/rs16183434
Joanna Koszyk, Aleksandra Jasińska, Karolina Pargieła, Anna Malczewska, Kornelia Grzelka, Agnieszka Bieda, Łukasz Ambroziński
Precise and complete 3D representations of architectural structures or industrial sites are essential for various applications, including structural monitoring or cadastre. However, acquiring these datasets can be time-consuming, particularly for large objects. Mobile scanning systems offer a solution for such cases. In the case of complex scenes, multiple scanning systems are required to obtain point clouds that can be merged into a comprehensive representation of the object. Merging individual point clouds obtained from different sensors or at different times can be difficult due to discrepancies caused by moving objects or changes in the scene over time, such as seasonal variations in vegetation. In this study, we present the integration of point clouds obtained from two mobile scanning platforms within a built-up area. We utilized a combination of a quadruped robot and an unmanned aerial vehicle (UAV). The PointNet++ network was employed to conduct a semantic segmentation task, enabling the detection of non-ground objects. The experimental tests used the Toronto 3D dataset and DALES for network training. Based on the performance, the model trained on DALES was chosen for further research. The proposed integration algorithm involved semantic segmentation of both point clouds, dividing them into square subregions, and performing subregion selection by checking the emptiness or when both subregions contained points. Parameters such as local density, centroids, coverage, and Euclidean distance were evaluated. Point cloud merging and augmentation enhanced with semantic segmentation and clustering resulted in the exclusion of points associated with these movable objects from the point clouds. The comparative analysis of the method and simple merging was performed based on file size, number of points, mean roughness, and noise estimation. The proposed method provided adequate results with the improvement of point cloud quality indicators.
建筑结构或工业场地精确而完整的三维表示对于结构监测或地籍等各种应用都至关重要。然而,获取这些数据集非常耗时,尤其是对于大型物体。移动扫描系统为这种情况提供了解决方案。对于复杂的场景,需要多个扫描系统来获取点云,并将其合并为物体的综合表征。由于移动物体或场景随时间的变化(如植被的季节性变化)会造成差异,因此很难合并从不同传感器或不同时间获得的单个点云。在本研究中,我们介绍了在一个建筑密集区中整合从两个移动扫描平台获得的点云的方法。我们使用了四足机器人和无人机(UAV)的组合。利用 PointNet++ 网络执行语义分割任务,从而能够检测非地面物体。实验测试使用多伦多 3D 数据集和 DALES 进行网络训练。根据性能,选择了在 DALES 上训练的模型作为进一步研究的对象。所提出的整合算法包括对两个点云进行语义分割,将其划分为正方形子区域,并通过检查空性或当两个子区域都包含点时进行子区域选择。对局部密度、中心点、覆盖率和欧氏距离等参数进行了评估。通过语义分割和聚类增强点云合并和增强功能,可以从点云中排除与这些可移动物体相关的点。根据文件大小、点数、平均粗糙度和噪声估计,对该方法和简单合并进行了比较分析。建议的方法在改善点云质量指标方面提供了充分的结果。
{"title":"Semantic Segmentation-Driven Integration of Point Clouds from Mobile Scanning Platforms in Urban Environments","authors":"Joanna Koszyk, Aleksandra Jasińska, Karolina Pargieła, Anna Malczewska, Kornelia Grzelka, Agnieszka Bieda, Łukasz Ambroziński","doi":"10.3390/rs16183434","DOIUrl":"https://doi.org/10.3390/rs16183434","url":null,"abstract":"Precise and complete 3D representations of architectural structures or industrial sites are essential for various applications, including structural monitoring or cadastre. However, acquiring these datasets can be time-consuming, particularly for large objects. Mobile scanning systems offer a solution for such cases. In the case of complex scenes, multiple scanning systems are required to obtain point clouds that can be merged into a comprehensive representation of the object. Merging individual point clouds obtained from different sensors or at different times can be difficult due to discrepancies caused by moving objects or changes in the scene over time, such as seasonal variations in vegetation. In this study, we present the integration of point clouds obtained from two mobile scanning platforms within a built-up area. We utilized a combination of a quadruped robot and an unmanned aerial vehicle (UAV). The PointNet++ network was employed to conduct a semantic segmentation task, enabling the detection of non-ground objects. The experimental tests used the Toronto 3D dataset and DALES for network training. Based on the performance, the model trained on DALES was chosen for further research. The proposed integration algorithm involved semantic segmentation of both point clouds, dividing them into square subregions, and performing subregion selection by checking the emptiness or when both subregions contained points. Parameters such as local density, centroids, coverage, and Euclidean distance were evaluated. Point cloud merging and augmentation enhanced with semantic segmentation and clustering resulted in the exclusion of points associated with these movable objects from the point clouds. The comparative analysis of the method and simple merging was performed based on file size, number of points, mean roughness, and noise estimation. The proposed method provided adequate results with the improvement of point cloud quality indicators.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"198 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Denoising of Photon-Counting LiDAR Bathymetry Based on Adaptive Variable OPTICS Model and Its Accuracy Assessment 基于自适应可变 OPTICS 模型的光子计数激光雷达水深测量去噪及其精度评估
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-16 DOI: 10.3390/rs16183438
Peize Li, Yangrui Xu, Yanpeng Zhao, Kun Liang, Yuanjie Si
Spaceborne photon-counting LiDAR holds significant potential for shallow-water bathymetry. However, the received photon data often contain substantial noise, complicating the extraction of elevation information. Currently, a denoising algorithm named ordering points to identify the clustering structure (OPTICS) draws people’s attention because of its strong performance under high background noise. However, this algorithm’s fixed input variables can lead to inaccurate photon distribution parameters in areas near the water bottom, which results in inadequate denoising in these areas, affecting bathymetric accuracy. To address this issue, an Adaptive Variable OPTICS (AV-OPTICS) model is proposed in this paper. Unlike the traditional OPTICS model with fixed input variables, the proposed model dynamically adjusts input variables based on point cloud distribution. This adjustment ensures accurate measurement of photon distribution parameters near the water bottom, thereby enhancing denoising effects in these areas and improving bathymetric accuracy. The findings indicate that, compared to traditional OPTICS methods, AV-OPTICS achieves higher -values and lower cohesions, demonstrating better denoising performance near the water bottom. Furthermore, this method achieves an average of 0.28 m and of 0.31 m, indicating better bathymetric accuracy than traditional OPTICS methods. This study provides a promising solution for shallow-water bathymetry based on photon-counting LiDAR data.
空间光子计数激光雷达在浅水测深方面具有巨大潜力。然而,接收到的光子数据往往含有大量噪声,使海拔信息的提取变得复杂。目前,一种名为 "排序点识别聚类结构(OPTICS)"的去噪算法因其在高背景噪声下的强大性能而备受关注。然而,该算法的固定输入变量会导致靠近水底区域的光子分布参数不准确,从而导致这些区域的去噪不充分,影响测深精度。为解决这一问题,本文提出了自适应变量 OPTICS(AV-OPTICS)模型。与输入变量固定的传统 OPTICS 模型不同,本文提出的模型可根据点云分布动态调整输入变量。这种调整可确保精确测量水底附近的光子分布参数,从而增强这些区域的去噪效果,提高测深精度。研究结果表明,与传统的 OPTICS 方法相比,AV-OPTICS 可获得更高的 - 值和更低的内聚值,在水底附近表现出更好的去噪性能。此外,与传统 OPTICS 方法相比,AV-OPTICS 方法实现了平均 0.28 米和 0.31 米的水深测量精度。这项研究为基于光子计数激光雷达数据的浅水测深提供了一种前景广阔的解决方案。
{"title":"Denoising of Photon-Counting LiDAR Bathymetry Based on Adaptive Variable OPTICS Model and Its Accuracy Assessment","authors":"Peize Li, Yangrui Xu, Yanpeng Zhao, Kun Liang, Yuanjie Si","doi":"10.3390/rs16183438","DOIUrl":"https://doi.org/10.3390/rs16183438","url":null,"abstract":"Spaceborne photon-counting LiDAR holds significant potential for shallow-water bathymetry. However, the received photon data often contain substantial noise, complicating the extraction of elevation information. Currently, a denoising algorithm named ordering points to identify the clustering structure (OPTICS) draws people’s attention because of its strong performance under high background noise. However, this algorithm’s fixed input variables can lead to inaccurate photon distribution parameters in areas near the water bottom, which results in inadequate denoising in these areas, affecting bathymetric accuracy. To address this issue, an Adaptive Variable OPTICS (AV-OPTICS) model is proposed in this paper. Unlike the traditional OPTICS model with fixed input variables, the proposed model dynamically adjusts input variables based on point cloud distribution. This adjustment ensures accurate measurement of photon distribution parameters near the water bottom, thereby enhancing denoising effects in these areas and improving bathymetric accuracy. The findings indicate that, compared to traditional OPTICS methods, AV-OPTICS achieves higher -values and lower cohesions, demonstrating better denoising performance near the water bottom. Furthermore, this method achieves an average of 0.28 m and of 0.31 m, indicating better bathymetric accuracy than traditional OPTICS methods. This study provides a promising solution for shallow-water bathymetry based on photon-counting LiDAR data.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"3 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sea–Land Segmentation of Remote-Sensing Images with Prompt Mask-Attention 利用提示遮罩对遥感图像进行海陆分割
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-16 DOI: 10.3390/rs16183432
Yingjie Ji, Weiguo Wu, Shiqiang Nie, Jinyu Wang, Song Liu
Remote-sensing technology has gradually become one of the most important ways to extract sea–land boundaries due to its large scale, high efficiency, and low cost. However, sea–land segmentation (SLS) is still a challenging problem because of data diversity and inconsistency, “different objects with the same spectrum” or “the same object with different spectra”, and noise and interference problems, etc. In this paper, a new sea–land segmentation method (PMFormer) for remote-sensing images is proposed. The contributions are mainly two points. First, based on Mask2Former architecture, we introduce the prompt mask by normalized difference water index (NDWI) of the target image and prompt encoder architecture. The prompt mask provides more reasonable constraints for attention so that the segmentation errors are alleviated in small region boundaries and small branches, which are caused by insufficiency of prior information by large data diversity or inconsistency. Second, for the large intra-class difference problem in the foreground–background segmentation in sea–land scenes, we use deep clustering to simplify the query vectors and make them more suitable for binary segmentation. Then, traditional NDWI and eight other deep-learning methods are thoroughly compared with the proposed PMFormer on three open sea–land datasets. The efficiency of the proposed method is confirmed, after the quantitative analysis, qualitative analysis, time consumption, error distribution, etc. are presented by detailed contrast experiments.
遥感技术以其规模大、效率高、成本低等优势逐渐成为提取海域边界的重要方法之一。然而,由于数据的多样性和不一致性、"不同物体具有相同光谱 "或 "相同物体具有不同光谱 "以及噪声和干扰问题等,海陆分割(SLS)仍然是一个具有挑战性的问题。本文提出了一种新的遥感图像海陆分割方法(PMFormer)。其贡献主要有两点。首先,在 Mask2Former 架构的基础上,引入了目标图像归一化差分水指数(NDWI)的提示掩码和提示编码器架构。提示掩码为注意力提供了更合理的约束,从而减轻了因数据多样性或不一致性导致的先验信息不足而造成的小区域边界和小分支分割错误。其次,针对海陆场景前景-背景分割中类内差异较大的问题,我们采用深度聚类来简化查询向量,使其更适合二元分割。然后,在三个开放海陆数据集上对传统的 NDWI 和其他八种深度学习方法与所提出的 PMFormer 进行了深入比较。通过详细的对比实验,从定量分析、定性分析、时间消耗、误差分布等方面证实了所提方法的高效性。
{"title":"Sea–Land Segmentation of Remote-Sensing Images with Prompt Mask-Attention","authors":"Yingjie Ji, Weiguo Wu, Shiqiang Nie, Jinyu Wang, Song Liu","doi":"10.3390/rs16183432","DOIUrl":"https://doi.org/10.3390/rs16183432","url":null,"abstract":"Remote-sensing technology has gradually become one of the most important ways to extract sea–land boundaries due to its large scale, high efficiency, and low cost. However, sea–land segmentation (SLS) is still a challenging problem because of data diversity and inconsistency, “different objects with the same spectrum” or “the same object with different spectra”, and noise and interference problems, etc. In this paper, a new sea–land segmentation method (PMFormer) for remote-sensing images is proposed. The contributions are mainly two points. First, based on Mask2Former architecture, we introduce the prompt mask by normalized difference water index (NDWI) of the target image and prompt encoder architecture. The prompt mask provides more reasonable constraints for attention so that the segmentation errors are alleviated in small region boundaries and small branches, which are caused by insufficiency of prior information by large data diversity or inconsistency. Second, for the large intra-class difference problem in the foreground–background segmentation in sea–land scenes, we use deep clustering to simplify the query vectors and make them more suitable for binary segmentation. Then, traditional NDWI and eight other deep-learning methods are thoroughly compared with the proposed PMFormer on three open sea–land datasets. The efficiency of the proposed method is confirmed, after the quantitative analysis, qualitative analysis, time consumption, error distribution, etc. are presented by detailed contrast experiments.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"5 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-Optical Properties and Ocean Colour Satellite Retrieval along the Coastal Waters of the Western Iberian Coast (WIC) 伊比利亚西海岸(WIC)沿岸水域的生物光学特性和海洋颜色卫星检索
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-16 DOI: 10.3390/rs16183440
Luciane Favareto, Natalia Rudorff, Vanda Brotas, Andreia Tracana, Carolina Sá, Carla Palma, Ana C. Brito
Essential Climate Variables (ECVs) like ocean colour provide crucial information on the Optically Active Constituents (OACs) of seawater, such as phytoplankton, non-algal particles, and coloured dissolved organic matter (CDOM). The challenge in estimating these constituents through remote sensing is in accurately distinguishing and quantifying optical and biogeochemical properties, e.g., absorption coefficients and the concentration of chlorophyll a (Chla), especially in complex waters. This study evaluated the temporal and spatial variability of bio-optical properties in the coastal waters of the Western Iberian Coast (WIC), contributing to the assessment of satellite retrievals. In situ data from three oceanographic cruises conducted in 2019–2020 across different seasons were analyzed. Field-measured biogenic light absorption coefficients were compared to satellite estimates from Ocean-Colour Climate Change Initiative (OC-CCI) reflectance data using semi-analytical approaches (QAA, GSM, GIOP). Key findings indicate substantial variability in bio-optical properties across different seasons and regions. New bio-optical coefficients improved satellite data retrieval, reducing uncertainties and providing more reliable phytoplankton absorption estimates. These results highlight the need for region-specific algorithms to accurately capture the unique optical characteristics of coastal waters. Improved comprehension of bio-optical variability and retrieval techniques offers valuable insights for future research and coastal environment monitoring using satellite ocean colour data.
海洋颜色等基本气候变量(ECVs)提供了有关海水中光学活性成分(OACs)的重要信息,如浮游植物、非藻类颗粒和有色溶解有机物(CDOM)。通过遥感估算这些成分所面临的挑战是如何准确区分和量化光学和生物地球化学特性,如吸收系数和叶绿素 a(Chla)浓度,尤其是在复杂水域。这项研究评估了伊比利亚西海岸(WIC)沿岸水域生物光学特性的时空变异性,有助于对卫星检索结果进行评估。分析了 2019-2020 年进行的三次跨季节海洋巡航的现场数据。使用半分析方法(QAA、GSM、GIOP)将实地测量的生物光吸收系数与海洋-颜色气候变化倡议(OC-CCI)反射率数据的卫星估计值进行了比较。主要研究结果表明,不同季节和地区的生物光学特性存在很大差异。新的生物光学系数改进了卫星数据检索,减少了不确定性,并提供了更可靠的浮游植物吸收估计值。这些结果突出表明,要准确捕捉沿岸水域独特的光学特征,就必须采用特定区域的算法。提高对生物光学变异性和检索技术的理解,为今后利用卫星海洋颜色数据进行研究和沿海环境监测提供了宝贵的见解。
{"title":"Bio-Optical Properties and Ocean Colour Satellite Retrieval along the Coastal Waters of the Western Iberian Coast (WIC)","authors":"Luciane Favareto, Natalia Rudorff, Vanda Brotas, Andreia Tracana, Carolina Sá, Carla Palma, Ana C. Brito","doi":"10.3390/rs16183440","DOIUrl":"https://doi.org/10.3390/rs16183440","url":null,"abstract":"Essential Climate Variables (ECVs) like ocean colour provide crucial information on the Optically Active Constituents (OACs) of seawater, such as phytoplankton, non-algal particles, and coloured dissolved organic matter (CDOM). The challenge in estimating these constituents through remote sensing is in accurately distinguishing and quantifying optical and biogeochemical properties, e.g., absorption coefficients and the concentration of chlorophyll a (Chla), especially in complex waters. This study evaluated the temporal and spatial variability of bio-optical properties in the coastal waters of the Western Iberian Coast (WIC), contributing to the assessment of satellite retrievals. In situ data from three oceanographic cruises conducted in 2019–2020 across different seasons were analyzed. Field-measured biogenic light absorption coefficients were compared to satellite estimates from Ocean-Colour Climate Change Initiative (OC-CCI) reflectance data using semi-analytical approaches (QAA, GSM, GIOP). Key findings indicate substantial variability in bio-optical properties across different seasons and regions. New bio-optical coefficients improved satellite data retrieval, reducing uncertainties and providing more reliable phytoplankton absorption estimates. These results highlight the need for region-specific algorithms to accurately capture the unique optical characteristics of coastal waters. Improved comprehension of bio-optical variability and retrieval techniques offers valuable insights for future research and coastal environment monitoring using satellite ocean colour data.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"23 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Context-Aware DGCN-Based Ship Formation Recognition in Remote Sensing Images 遥感图像中基于上下文感知的 DGCN 船舶编队识别
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-16 DOI: 10.3390/rs16183435
Tao Zhang, Xiaogang Yang, Ruitao Lu, Xueli Xie, Siyu Wang, Shuang Su
Ship detection and formation recognition in remote sensing have increasingly garnered attention. However, research remains challenging due to arbitrary orientation, dense arrangement, and the complex background of ships. To enhance the analysis of ship situations in channels, we model the ships as the key points and propose a context-aware DGCN-based ship formation recognition method. First, we develop a center point-based ship detection subnetwork, which employs depth-separable convolution to reduce parameter redundancy and combines coordinate attention with an oriented response network to generate direction-invariant feature maps. The center point of each ship is predicted by regression of the offset, target scale, and angle to realize the ship detection. Then, we adopt the spatial similarity of the ship center points to cluster the ship group, utilizing the Delaunay triangulation method to establish the topological graph structure of the ship group. Finally, we design a context-aware Dense Graph Convolutional Network (DGCN) with graph structure to achieve formation recognition. Experimental results on HRSD2016 and SGF datasets demonstrate that the proposed method can detect arbitrarily oriented ships and identify formations, attaining state-of-the-art performance.
遥感中的船舶探测和编队识别越来越受到关注。然而,由于船舶的任意方位、密集排列和复杂背景,研究工作仍然充满挑战。为了加强对航道中船舶情况的分析,我们将船舶建模为关键点,并提出了一种基于上下文感知的 DGCN 船舶编队识别方法。首先,我们开发了基于中心点的船舶检测子网络,该网络采用深度分离卷积来减少参数冗余,并将坐标注意与定向响应网络相结合来生成方向不变的特征图。通过对偏移量、目标尺度和角度进行回归,预测出每艘船的中心点,从而实现船舶检测。然后,我们利用船舶中心点的空间相似性对船舶群进行聚类,利用 Delaunay 三角测量法建立船舶群的拓扑图结构。最后,我们设计了具有图结构的上下文感知密集图卷积网络(DGCN)来实现编队识别。在 HRSD2016 和 SGF 数据集上的实验结果表明,所提出的方法可以检测任意方向的舰船并识别编队,达到了最先进的性能。
{"title":"Context-Aware DGCN-Based Ship Formation Recognition in Remote Sensing Images","authors":"Tao Zhang, Xiaogang Yang, Ruitao Lu, Xueli Xie, Siyu Wang, Shuang Su","doi":"10.3390/rs16183435","DOIUrl":"https://doi.org/10.3390/rs16183435","url":null,"abstract":"Ship detection and formation recognition in remote sensing have increasingly garnered attention. However, research remains challenging due to arbitrary orientation, dense arrangement, and the complex background of ships. To enhance the analysis of ship situations in channels, we model the ships as the key points and propose a context-aware DGCN-based ship formation recognition method. First, we develop a center point-based ship detection subnetwork, which employs depth-separable convolution to reduce parameter redundancy and combines coordinate attention with an oriented response network to generate direction-invariant feature maps. The center point of each ship is predicted by regression of the offset, target scale, and angle to realize the ship detection. Then, we adopt the spatial similarity of the ship center points to cluster the ship group, utilizing the Delaunay triangulation method to establish the topological graph structure of the ship group. Finally, we design a context-aware Dense Graph Convolutional Network (DGCN) with graph structure to achieve formation recognition. Experimental results on HRSD2016 and SGF datasets demonstrate that the proposed method can detect arbitrarily oriented ships and identify formations, attaining state-of-the-art performance.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"20 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing Air Quality Dynamics during Short-Period Social Upheaval Events in Quito, Ecuador, Using a Remote Sensing Framework 利用遥感框架评估厄瓜多尔基多短时期社会动荡事件期间的空气质量动态
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-16 DOI: 10.3390/rs16183436
Cesar Ivan Alvarez, Santiago López, David Vásquez, Dayana Gualotuña
This study uses a remote sensing approach to investigate air quality fluctuations during two short-period social upheaval events caused by civil protests in 2019 and the COVID-19 pandemic in 2020 in Quito, Ecuador. We used data from the TROPOMI Sentinel-P5 satellite to evaluate the concentrations of two greenhouse gases, namely O3 and NO2. TROPOMI Sentinel-P5 satellite data are becoming essential in air quality monitoring, particularly for countries that lack ground-based monitoring systems. For a better approximation of satellite data with ground data, we related the remotely sensed data using ground station data and Pearson correlation analysis, which revealed a significant association between the two sources (0.43 ≤ r ≤ 0.78). Using paired t-test comparisons, we evaluated the differences in mean gas concentrations at 30 randomly selected intervals to identify significant changes before and after the events. The results indicate noticeable changes in the two gases over the three analysis periods. O3 significantly decreased between September and November 2019 and between March and May 2020, while NO2 significantly increased. NO2 levels decreased by 18% between February and March 2020 across the study area, as indicated by remote sensing data. The geovisualization of remotely sensed data over these periods supports these patterns, suggesting a potential connection with population density. The results show the complexity of drawing global conclusions about the impact of social disruptions on the atmosphere and emphasize the advantages of using remote sensing as an effective framework to address air quality changes over short periods of time. This study also highlights the advantages of a remote sensing approach to monitor atmospheric conditions in countries with limited air quality monitoring infrastructure and provides a valuable approach for the evaluation of short-term alterations in atmospheric conditions due to social disturbance events.
本研究采用遥感方法调查了厄瓜多尔基多在2019年民间抗议和2020年COVID-19大流行所引发的两次短周期社会动荡期间的空气质量波动。我们利用 TROPOMI Sentinel-P5 卫星的数据评估了两种温室气体(即臭氧和二氧化氮)的浓度。TROPOMI Sentinel-P5 卫星数据在空气质量监测中变得至关重要,尤其是对于缺乏地面监测系统的国家。为了使卫星数据与地面数据更加接近,我们利用地面站数据和皮尔逊相关分析将遥感数据联系起来,结果显示这两种数据源之间存在显著关联(0.43 ≤ r ≤ 0.78)。通过配对 t 检验比较,我们评估了随机选择的 30 个时间间隔内平均气体浓度的差异,以确定事件发生前后的显著变化。结果表明,这两种气体在三个分析期间发生了明显变化。O3 在 2019 年 9 月至 11 月以及 2020 年 3 月至 5 月期间明显减少,而 NO2 则明显增加。遥感数据显示,2020 年 2 月至 3 月期间,整个研究区域的二氧化氮水平下降了 18%。这些时期遥感数据的地理可视化支持这些模式,表明与人口密度存在潜在联系。研究结果表明了就社会干扰对大气层的影响得出全球性结论的复杂性,并强调了利用遥感技术作为有效框架来应对短时间内空气质量变化的优势。这项研究还强调了在空气质量监测基础设施有限的国家采用遥感方法监测大气状况的优势,并为评估社会干扰事件导致的大气状况短期变化提供了宝贵的方法。
{"title":"Assessing Air Quality Dynamics during Short-Period Social Upheaval Events in Quito, Ecuador, Using a Remote Sensing Framework","authors":"Cesar Ivan Alvarez, Santiago López, David Vásquez, Dayana Gualotuña","doi":"10.3390/rs16183436","DOIUrl":"https://doi.org/10.3390/rs16183436","url":null,"abstract":"This study uses a remote sensing approach to investigate air quality fluctuations during two short-period social upheaval events caused by civil protests in 2019 and the COVID-19 pandemic in 2020 in Quito, Ecuador. We used data from the TROPOMI Sentinel-P5 satellite to evaluate the concentrations of two greenhouse gases, namely O3 and NO2. TROPOMI Sentinel-P5 satellite data are becoming essential in air quality monitoring, particularly for countries that lack ground-based monitoring systems. For a better approximation of satellite data with ground data, we related the remotely sensed data using ground station data and Pearson correlation analysis, which revealed a significant association between the two sources (0.43 ≤ r ≤ 0.78). Using paired t-test comparisons, we evaluated the differences in mean gas concentrations at 30 randomly selected intervals to identify significant changes before and after the events. The results indicate noticeable changes in the two gases over the three analysis periods. O3 significantly decreased between September and November 2019 and between March and May 2020, while NO2 significantly increased. NO2 levels decreased by 18% between February and March 2020 across the study area, as indicated by remote sensing data. The geovisualization of remotely sensed data over these periods supports these patterns, suggesting a potential connection with population density. The results show the complexity of drawing global conclusions about the impact of social disruptions on the atmosphere and emphasize the advantages of using remote sensing as an effective framework to address air quality changes over short periods of time. This study also highlights the advantages of a remote sensing approach to monitor atmospheric conditions in countries with limited air quality monitoring infrastructure and provides a valuable approach for the evaluation of short-term alterations in atmospheric conditions due to social disturbance events.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"38 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Remote Sensing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1