Extreme meteorological events hit our planet with increasing frequency, resulting in an ever-increasing number of natural disasters. Flash floods generated by intense and violent rains are among the most dangerous natural disasters that compromise crops and cause serious damage to infrastructure and human lives. In the case of such a kind of disastrous events, timely and accurate information about the location and extent of the affected areas can be crucial to better plan and implement recovery and containment interventions. Satellite systems may efficiently provide such information at different spatial/temporal resolutions. Several authors have developed satellite techniques to detect and map inundated areas using both Synthetic Aperture Radar (SAR) and a new generation of high-resolution optical data but with some accuracy limits, mostly due to the use of fixed thresholds to discriminate between the inundated and unaffected areas. In this paper, the RST-FLOOD fully automatic technique, which does not suffer from the aforementioned limitation, has been exported for the first time to the mid–high-spatial resolution (20 m) optical data provided by the Copernicus Sentinel-2 Multi-Spectral Instrument (MSI). The technique was originally designed for and successfully applied to Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) satellite data at a mid–low spatial resolution (from 1000 to 375 m). The processing chain was implemented in a completely automatic mode within the Google Earth Engine (GEE) platform to study the recent strong flood event that occurred in May 2023 in Emilia Romagna (Italy). The outgoing results were compared with those obtained through the implementation of an existing independent optical-based technique and the products provided by the official Copernicus Emergency Management Service (CEMS), which is responsible for releasing information during crisis events. The comparisons carried out show that RST-FLOOD is a simple implementation technique able to retrieve more sensitive and effective information than the other optical-based methodology analyzed here and with an accuracy better than the one offered by the CEMS products with a significantly reduced delivery time.
{"title":"A First Extension of the Robust Satellite Technique RST-FLOOD to Sentinel-2 Data for the Mapping of Flooded Areas: The Case of the Emilia Romagna (Italy) 2023 Event","authors":"Valeria Satriano, Emanuele Ciancia, Nicola Pergola, Valerio Tramutoli","doi":"10.3390/rs16183450","DOIUrl":"https://doi.org/10.3390/rs16183450","url":null,"abstract":"Extreme meteorological events hit our planet with increasing frequency, resulting in an ever-increasing number of natural disasters. Flash floods generated by intense and violent rains are among the most dangerous natural disasters that compromise crops and cause serious damage to infrastructure and human lives. In the case of such a kind of disastrous events, timely and accurate information about the location and extent of the affected areas can be crucial to better plan and implement recovery and containment interventions. Satellite systems may efficiently provide such information at different spatial/temporal resolutions. Several authors have developed satellite techniques to detect and map inundated areas using both Synthetic Aperture Radar (SAR) and a new generation of high-resolution optical data but with some accuracy limits, mostly due to the use of fixed thresholds to discriminate between the inundated and unaffected areas. In this paper, the RST-FLOOD fully automatic technique, which does not suffer from the aforementioned limitation, has been exported for the first time to the mid–high-spatial resolution (20 m) optical data provided by the Copernicus Sentinel-2 Multi-Spectral Instrument (MSI). The technique was originally designed for and successfully applied to Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) satellite data at a mid–low spatial resolution (from 1000 to 375 m). The processing chain was implemented in a completely automatic mode within the Google Earth Engine (GEE) platform to study the recent strong flood event that occurred in May 2023 in Emilia Romagna (Italy). The outgoing results were compared with those obtained through the implementation of an existing independent optical-based technique and the products provided by the official Copernicus Emergency Management Service (CEMS), which is responsible for releasing information during crisis events. The comparisons carried out show that RST-FLOOD is a simple implementation technique able to retrieve more sensitive and effective information than the other optical-based methodology analyzed here and with an accuracy better than the one offered by the CEMS products with a significantly reduced delivery time.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"37 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atmospheric migrating diurnal tide (DW1) is one of the prominent variabilities in the mesosphere and lower thermosphere (MLT). The existence of the solar cycle dependence of DW1 is debated, and there exist different and even opposite findings at different latitudes. In this paper, the solar cycle dependence of temperature DW1 in the equatorial mesosphere and lower thermosphere (MLT) is investigated using temperature global observations from TIMED/SABER spanning 22 years (2002–2023). The results show that (a) the solar cycle dependence of temperature DW1 is seen very clearly at the equator. The maximum correlation coefficient between DW1 and the F10.7 index occurs at 87km, with 0.72; the second maximum coefficient occurs at 99 km, with 0.62. The coefficient could reach 0.87 at 87 km and 0.67 at 99 km after dropping the years influenced by the Stratosphere Quasi-biennial oscillation (SQBO) disruption event. (b) DW1 shows a lag response to the solar cycle at the equator. DW1 amplitudes show a 1-year lag to the F10.7 index at 87 km and a 2-year lag to the F10.7 index at 99 km.
{"title":"Solar Cycle Dependence of Migrating Diurnal Tide in the Equatorial Mesosphere and Lower Thermosphere","authors":"Shuai Liu, Guoying Jiang, Bingxian Luo, Jiyao Xu, Ruilin Lin, Yajun Zhu, Weijun Liu","doi":"10.3390/rs16183437","DOIUrl":"https://doi.org/10.3390/rs16183437","url":null,"abstract":"Atmospheric migrating diurnal tide (DW1) is one of the prominent variabilities in the mesosphere and lower thermosphere (MLT). The existence of the solar cycle dependence of DW1 is debated, and there exist different and even opposite findings at different latitudes. In this paper, the solar cycle dependence of temperature DW1 in the equatorial mesosphere and lower thermosphere (MLT) is investigated using temperature global observations from TIMED/SABER spanning 22 years (2002–2023). The results show that (a) the solar cycle dependence of temperature DW1 is seen very clearly at the equator. The maximum correlation coefficient between DW1 and the F10.7 index occurs at 87km, with 0.72; the second maximum coefficient occurs at 99 km, with 0.62. The coefficient could reach 0.87 at 87 km and 0.67 at 99 km after dropping the years influenced by the Stratosphere Quasi-biennial oscillation (SQBO) disruption event. (b) DW1 shows a lag response to the solar cycle at the equator. DW1 amplitudes show a 1-year lag to the F10.7 index at 87 km and a 2-year lag to the F10.7 index at 99 km.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"65 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio Matellon, Eleonora Maset, Alberto Beinat, Domenico Visintini
The rapid technological development that geomatics has been experiencing in recent years is leading to increasing ease, productivity and reliability of three-dimensional surveys, with portable laser scanner systems based on Simultaneous Localization and Mapping (SLAM) technology, gradually replacing traditional techniques in certain applications. Although the performance of such systems in terms of point cloud accuracy and noise level has been deeply investigated in the literature, there are fewer works about the evaluation of their use for surface reconstruction, cartographic production, and as-built Building Information Model (BIM) creation. The objective of this study is to assess the suitability of SLAM devices for surface modeling in an urban/architectural environment. To this end, analyses are carried out on the datasets acquired by three commercial portable laser scanners in the context of a benchmark organized in 2023 by the Italian Society of Photogrammetry and Topography (SIFET). In addition to the conventional point cloud assessment, we propose a comparison between the reconstructed mesh and a ground-truth model, employing a model-to-model methodology. The outcomes are promising, with the average distance between models ranging from 0.2 to 1.4 cm. However, the surfaces modeled from the terrestrial laser scanning point cloud show a level of detail that is still unmatched by SLAM systems.
近年来,地理信息学技术发展迅速,基于同步定位与绘图(SLAM)技术的便携式激光扫描仪系统在某些应用中逐渐取代了传统技术,从而提高了三维测量的便捷性、生产率和可靠性。虽然文献中已对此类系统在点云精度和噪声水平方面的性能进行了深入研究,但对其在表面重建、制图和竣工建筑信息模型(BIM)创建方面的应用进行评估的著作较少。本研究的目的是评估 SLAM 设备在城市/建筑环境中进行表面建模的适用性。为此,在意大利摄影测量和地形协会(SIFET)于 2023 年组织的基准测试中,对三台商用便携式激光扫描仪获取的数据集进行了分析。除了传统的点云评估外,我们还采用模型对模型的方法,对重建网格和地面实况模型进行了比较。结果很不错,模型之间的平均距离在 0.2 到 1.4 厘米之间。然而,根据地面激光扫描点云建模的表面显示出的细节水平仍然是 SLAM 系统无法比拟的。
{"title":"Surface Reconstruction from SLAM-Based Point Clouds: Results from the Datasets of the 2023 SIFET Benchmark","authors":"Antonio Matellon, Eleonora Maset, Alberto Beinat, Domenico Visintini","doi":"10.3390/rs16183439","DOIUrl":"https://doi.org/10.3390/rs16183439","url":null,"abstract":"The rapid technological development that geomatics has been experiencing in recent years is leading to increasing ease, productivity and reliability of three-dimensional surveys, with portable laser scanner systems based on Simultaneous Localization and Mapping (SLAM) technology, gradually replacing traditional techniques in certain applications. Although the performance of such systems in terms of point cloud accuracy and noise level has been deeply investigated in the literature, there are fewer works about the evaluation of their use for surface reconstruction, cartographic production, and as-built Building Information Model (BIM) creation. The objective of this study is to assess the suitability of SLAM devices for surface modeling in an urban/architectural environment. To this end, analyses are carried out on the datasets acquired by three commercial portable laser scanners in the context of a benchmark organized in 2023 by the Italian Society of Photogrammetry and Topography (SIFET). In addition to the conventional point cloud assessment, we propose a comparison between the reconstructed mesh and a ground-truth model, employing a model-to-model methodology. The outcomes are promising, with the average distance between models ranging from 0.2 to 1.4 cm. However, the surfaces modeled from the terrestrial laser scanning point cloud show a level of detail that is still unmatched by SLAM systems.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"23 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is rare to conduct a comparative analysis of precipitation characteristics across regions based on long-term homogeneous active satellite observations. By collocating the Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM DPR) observations with European Centre for Medium-Range Weather Forecasts 5th Reanalysis (ERA5) data, this study comparatively examines the microphysics of monsoon precipitation in the rainy season over the Yangtze-and-Huai River Basin (YHRB) and South China (SC) from 2014 to 2023. The comparative analysis is made in terms of precipitation types and intensities, precipitation efficiency index (PEI), and ice phase layer (IPL) width. The results show that the mean near-surface precipitation rate and PEI are generally higher over SC (2.87 mm/h, 3.43 h−1) than over YHRB (2.27 mm/h, 3.22 h−1) due to the more frequent occurrence of convective precipitation. The DSD characteristics of heavy precipitation in the wet season for both regions are similar to those of deep ocean convection, which is associated with a greater amount of water vapor. However, over SC, there are larger but fewer raindrops in the near-surface precipitation. Moreover, moderate PEI precipitation is the main contributor to heavy precipitation (>8 mm/h). Stratiform precipitation over YHRB is frequent enough to contribute more than convective precipitation to heavy precipitation (8–20 mm/h). The combined effect of stronger convective available potential energy and low-level vertical wind favors intense convection over SC, resulting in a larger storm top height (STH) than that over YHRB. Consequently, it is conducive to enhancing the microphysical processes of the ice and melt phases within the precipitation. The vertical wind can also influence the liquid phase processes below the melting layer. Collectively, these dynamic microphysical processes are important in shaping the efficiency and intensity of precipitation.
{"title":"Microphysical Characteristics of Monsoon Precipitation over Yangtze-and-Huai River Basin and South China: A Comparative Study from GPM DPR Observation","authors":"Zelin Wang, Xiong Hu, Weihua Ai, Junqi Qiao, Xianbin Zhao","doi":"10.3390/rs16183433","DOIUrl":"https://doi.org/10.3390/rs16183433","url":null,"abstract":"It is rare to conduct a comparative analysis of precipitation characteristics across regions based on long-term homogeneous active satellite observations. By collocating the Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM DPR) observations with European Centre for Medium-Range Weather Forecasts 5th Reanalysis (ERA5) data, this study comparatively examines the microphysics of monsoon precipitation in the rainy season over the Yangtze-and-Huai River Basin (YHRB) and South China (SC) from 2014 to 2023. The comparative analysis is made in terms of precipitation types and intensities, precipitation efficiency index (PEI), and ice phase layer (IPL) width. The results show that the mean near-surface precipitation rate and PEI are generally higher over SC (2.87 mm/h, 3.43 h−1) than over YHRB (2.27 mm/h, 3.22 h−1) due to the more frequent occurrence of convective precipitation. The DSD characteristics of heavy precipitation in the wet season for both regions are similar to those of deep ocean convection, which is associated with a greater amount of water vapor. However, over SC, there are larger but fewer raindrops in the near-surface precipitation. Moreover, moderate PEI precipitation is the main contributor to heavy precipitation (>8 mm/h). Stratiform precipitation over YHRB is frequent enough to contribute more than convective precipitation to heavy precipitation (8–20 mm/h). The combined effect of stronger convective available potential energy and low-level vertical wind favors intense convection over SC, resulting in a larger storm top height (STH) than that over YHRB. Consequently, it is conducive to enhancing the microphysical processes of the ice and melt phases within the precipitation. The vertical wind can also influence the liquid phase processes below the melting layer. Collectively, these dynamic microphysical processes are important in shaping the efficiency and intensity of precipitation.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"52 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joanna Koszyk, Aleksandra Jasińska, Karolina Pargieła, Anna Malczewska, Kornelia Grzelka, Agnieszka Bieda, Łukasz Ambroziński
Precise and complete 3D representations of architectural structures or industrial sites are essential for various applications, including structural monitoring or cadastre. However, acquiring these datasets can be time-consuming, particularly for large objects. Mobile scanning systems offer a solution for such cases. In the case of complex scenes, multiple scanning systems are required to obtain point clouds that can be merged into a comprehensive representation of the object. Merging individual point clouds obtained from different sensors or at different times can be difficult due to discrepancies caused by moving objects or changes in the scene over time, such as seasonal variations in vegetation. In this study, we present the integration of point clouds obtained from two mobile scanning platforms within a built-up area. We utilized a combination of a quadruped robot and an unmanned aerial vehicle (UAV). The PointNet++ network was employed to conduct a semantic segmentation task, enabling the detection of non-ground objects. The experimental tests used the Toronto 3D dataset and DALES for network training. Based on the performance, the model trained on DALES was chosen for further research. The proposed integration algorithm involved semantic segmentation of both point clouds, dividing them into square subregions, and performing subregion selection by checking the emptiness or when both subregions contained points. Parameters such as local density, centroids, coverage, and Euclidean distance were evaluated. Point cloud merging and augmentation enhanced with semantic segmentation and clustering resulted in the exclusion of points associated with these movable objects from the point clouds. The comparative analysis of the method and simple merging was performed based on file size, number of points, mean roughness, and noise estimation. The proposed method provided adequate results with the improvement of point cloud quality indicators.
建筑结构或工业场地精确而完整的三维表示对于结构监测或地籍等各种应用都至关重要。然而,获取这些数据集非常耗时,尤其是对于大型物体。移动扫描系统为这种情况提供了解决方案。对于复杂的场景,需要多个扫描系统来获取点云,并将其合并为物体的综合表征。由于移动物体或场景随时间的变化(如植被的季节性变化)会造成差异,因此很难合并从不同传感器或不同时间获得的单个点云。在本研究中,我们介绍了在一个建筑密集区中整合从两个移动扫描平台获得的点云的方法。我们使用了四足机器人和无人机(UAV)的组合。利用 PointNet++ 网络执行语义分割任务,从而能够检测非地面物体。实验测试使用多伦多 3D 数据集和 DALES 进行网络训练。根据性能,选择了在 DALES 上训练的模型作为进一步研究的对象。所提出的整合算法包括对两个点云进行语义分割,将其划分为正方形子区域,并通过检查空性或当两个子区域都包含点时进行子区域选择。对局部密度、中心点、覆盖率和欧氏距离等参数进行了评估。通过语义分割和聚类增强点云合并和增强功能,可以从点云中排除与这些可移动物体相关的点。根据文件大小、点数、平均粗糙度和噪声估计,对该方法和简单合并进行了比较分析。建议的方法在改善点云质量指标方面提供了充分的结果。
{"title":"Semantic Segmentation-Driven Integration of Point Clouds from Mobile Scanning Platforms in Urban Environments","authors":"Joanna Koszyk, Aleksandra Jasińska, Karolina Pargieła, Anna Malczewska, Kornelia Grzelka, Agnieszka Bieda, Łukasz Ambroziński","doi":"10.3390/rs16183434","DOIUrl":"https://doi.org/10.3390/rs16183434","url":null,"abstract":"Precise and complete 3D representations of architectural structures or industrial sites are essential for various applications, including structural monitoring or cadastre. However, acquiring these datasets can be time-consuming, particularly for large objects. Mobile scanning systems offer a solution for such cases. In the case of complex scenes, multiple scanning systems are required to obtain point clouds that can be merged into a comprehensive representation of the object. Merging individual point clouds obtained from different sensors or at different times can be difficult due to discrepancies caused by moving objects or changes in the scene over time, such as seasonal variations in vegetation. In this study, we present the integration of point clouds obtained from two mobile scanning platforms within a built-up area. We utilized a combination of a quadruped robot and an unmanned aerial vehicle (UAV). The PointNet++ network was employed to conduct a semantic segmentation task, enabling the detection of non-ground objects. The experimental tests used the Toronto 3D dataset and DALES for network training. Based on the performance, the model trained on DALES was chosen for further research. The proposed integration algorithm involved semantic segmentation of both point clouds, dividing them into square subregions, and performing subregion selection by checking the emptiness or when both subregions contained points. Parameters such as local density, centroids, coverage, and Euclidean distance were evaluated. Point cloud merging and augmentation enhanced with semantic segmentation and clustering resulted in the exclusion of points associated with these movable objects from the point clouds. The comparative analysis of the method and simple merging was performed based on file size, number of points, mean roughness, and noise estimation. The proposed method provided adequate results with the improvement of point cloud quality indicators.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"198 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peize Li, Yangrui Xu, Yanpeng Zhao, Kun Liang, Yuanjie Si
Spaceborne photon-counting LiDAR holds significant potential for shallow-water bathymetry. However, the received photon data often contain substantial noise, complicating the extraction of elevation information. Currently, a denoising algorithm named ordering points to identify the clustering structure (OPTICS) draws people’s attention because of its strong performance under high background noise. However, this algorithm’s fixed input variables can lead to inaccurate photon distribution parameters in areas near the water bottom, which results in inadequate denoising in these areas, affecting bathymetric accuracy. To address this issue, an Adaptive Variable OPTICS (AV-OPTICS) model is proposed in this paper. Unlike the traditional OPTICS model with fixed input variables, the proposed model dynamically adjusts input variables based on point cloud distribution. This adjustment ensures accurate measurement of photon distribution parameters near the water bottom, thereby enhancing denoising effects in these areas and improving bathymetric accuracy. The findings indicate that, compared to traditional OPTICS methods, AV-OPTICS achieves higher -values and lower cohesions, demonstrating better denoising performance near the water bottom. Furthermore, this method achieves an average of 0.28 m and of 0.31 m, indicating better bathymetric accuracy than traditional OPTICS methods. This study provides a promising solution for shallow-water bathymetry based on photon-counting LiDAR data.
{"title":"Denoising of Photon-Counting LiDAR Bathymetry Based on Adaptive Variable OPTICS Model and Its Accuracy Assessment","authors":"Peize Li, Yangrui Xu, Yanpeng Zhao, Kun Liang, Yuanjie Si","doi":"10.3390/rs16183438","DOIUrl":"https://doi.org/10.3390/rs16183438","url":null,"abstract":"Spaceborne photon-counting LiDAR holds significant potential for shallow-water bathymetry. However, the received photon data often contain substantial noise, complicating the extraction of elevation information. Currently, a denoising algorithm named ordering points to identify the clustering structure (OPTICS) draws people’s attention because of its strong performance under high background noise. However, this algorithm’s fixed input variables can lead to inaccurate photon distribution parameters in areas near the water bottom, which results in inadequate denoising in these areas, affecting bathymetric accuracy. To address this issue, an Adaptive Variable OPTICS (AV-OPTICS) model is proposed in this paper. Unlike the traditional OPTICS model with fixed input variables, the proposed model dynamically adjusts input variables based on point cloud distribution. This adjustment ensures accurate measurement of photon distribution parameters near the water bottom, thereby enhancing denoising effects in these areas and improving bathymetric accuracy. The findings indicate that, compared to traditional OPTICS methods, AV-OPTICS achieves higher -values and lower cohesions, demonstrating better denoising performance near the water bottom. Furthermore, this method achieves an average of 0.28 m and of 0.31 m, indicating better bathymetric accuracy than traditional OPTICS methods. This study provides a promising solution for shallow-water bathymetry based on photon-counting LiDAR data.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"3 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingjie Ji, Weiguo Wu, Shiqiang Nie, Jinyu Wang, Song Liu
Remote-sensing technology has gradually become one of the most important ways to extract sea–land boundaries due to its large scale, high efficiency, and low cost. However, sea–land segmentation (SLS) is still a challenging problem because of data diversity and inconsistency, “different objects with the same spectrum” or “the same object with different spectra”, and noise and interference problems, etc. In this paper, a new sea–land segmentation method (PMFormer) for remote-sensing images is proposed. The contributions are mainly two points. First, based on Mask2Former architecture, we introduce the prompt mask by normalized difference water index (NDWI) of the target image and prompt encoder architecture. The prompt mask provides more reasonable constraints for attention so that the segmentation errors are alleviated in small region boundaries and small branches, which are caused by insufficiency of prior information by large data diversity or inconsistency. Second, for the large intra-class difference problem in the foreground–background segmentation in sea–land scenes, we use deep clustering to simplify the query vectors and make them more suitable for binary segmentation. Then, traditional NDWI and eight other deep-learning methods are thoroughly compared with the proposed PMFormer on three open sea–land datasets. The efficiency of the proposed method is confirmed, after the quantitative analysis, qualitative analysis, time consumption, error distribution, etc. are presented by detailed contrast experiments.
{"title":"Sea–Land Segmentation of Remote-Sensing Images with Prompt Mask-Attention","authors":"Yingjie Ji, Weiguo Wu, Shiqiang Nie, Jinyu Wang, Song Liu","doi":"10.3390/rs16183432","DOIUrl":"https://doi.org/10.3390/rs16183432","url":null,"abstract":"Remote-sensing technology has gradually become one of the most important ways to extract sea–land boundaries due to its large scale, high efficiency, and low cost. However, sea–land segmentation (SLS) is still a challenging problem because of data diversity and inconsistency, “different objects with the same spectrum” or “the same object with different spectra”, and noise and interference problems, etc. In this paper, a new sea–land segmentation method (PMFormer) for remote-sensing images is proposed. The contributions are mainly two points. First, based on Mask2Former architecture, we introduce the prompt mask by normalized difference water index (NDWI) of the target image and prompt encoder architecture. The prompt mask provides more reasonable constraints for attention so that the segmentation errors are alleviated in small region boundaries and small branches, which are caused by insufficiency of prior information by large data diversity or inconsistency. Second, for the large intra-class difference problem in the foreground–background segmentation in sea–land scenes, we use deep clustering to simplify the query vectors and make them more suitable for binary segmentation. Then, traditional NDWI and eight other deep-learning methods are thoroughly compared with the proposed PMFormer on three open sea–land datasets. The efficiency of the proposed method is confirmed, after the quantitative analysis, qualitative analysis, time consumption, error distribution, etc. are presented by detailed contrast experiments.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"5 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luciane Favareto, Natalia Rudorff, Vanda Brotas, Andreia Tracana, Carolina Sá, Carla Palma, Ana C. Brito
Essential Climate Variables (ECVs) like ocean colour provide crucial information on the Optically Active Constituents (OACs) of seawater, such as phytoplankton, non-algal particles, and coloured dissolved organic matter (CDOM). The challenge in estimating these constituents through remote sensing is in accurately distinguishing and quantifying optical and biogeochemical properties, e.g., absorption coefficients and the concentration of chlorophyll a (Chla), especially in complex waters. This study evaluated the temporal and spatial variability of bio-optical properties in the coastal waters of the Western Iberian Coast (WIC), contributing to the assessment of satellite retrievals. In situ data from three oceanographic cruises conducted in 2019–2020 across different seasons were analyzed. Field-measured biogenic light absorption coefficients were compared to satellite estimates from Ocean-Colour Climate Change Initiative (OC-CCI) reflectance data using semi-analytical approaches (QAA, GSM, GIOP). Key findings indicate substantial variability in bio-optical properties across different seasons and regions. New bio-optical coefficients improved satellite data retrieval, reducing uncertainties and providing more reliable phytoplankton absorption estimates. These results highlight the need for region-specific algorithms to accurately capture the unique optical characteristics of coastal waters. Improved comprehension of bio-optical variability and retrieval techniques offers valuable insights for future research and coastal environment monitoring using satellite ocean colour data.
{"title":"Bio-Optical Properties and Ocean Colour Satellite Retrieval along the Coastal Waters of the Western Iberian Coast (WIC)","authors":"Luciane Favareto, Natalia Rudorff, Vanda Brotas, Andreia Tracana, Carolina Sá, Carla Palma, Ana C. Brito","doi":"10.3390/rs16183440","DOIUrl":"https://doi.org/10.3390/rs16183440","url":null,"abstract":"Essential Climate Variables (ECVs) like ocean colour provide crucial information on the Optically Active Constituents (OACs) of seawater, such as phytoplankton, non-algal particles, and coloured dissolved organic matter (CDOM). The challenge in estimating these constituents through remote sensing is in accurately distinguishing and quantifying optical and biogeochemical properties, e.g., absorption coefficients and the concentration of chlorophyll a (Chla), especially in complex waters. This study evaluated the temporal and spatial variability of bio-optical properties in the coastal waters of the Western Iberian Coast (WIC), contributing to the assessment of satellite retrievals. In situ data from three oceanographic cruises conducted in 2019–2020 across different seasons were analyzed. Field-measured biogenic light absorption coefficients were compared to satellite estimates from Ocean-Colour Climate Change Initiative (OC-CCI) reflectance data using semi-analytical approaches (QAA, GSM, GIOP). Key findings indicate substantial variability in bio-optical properties across different seasons and regions. New bio-optical coefficients improved satellite data retrieval, reducing uncertainties and providing more reliable phytoplankton absorption estimates. These results highlight the need for region-specific algorithms to accurately capture the unique optical characteristics of coastal waters. Improved comprehension of bio-optical variability and retrieval techniques offers valuable insights for future research and coastal environment monitoring using satellite ocean colour data.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"23 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Zhang, Xiaogang Yang, Ruitao Lu, Xueli Xie, Siyu Wang, Shuang Su
Ship detection and formation recognition in remote sensing have increasingly garnered attention. However, research remains challenging due to arbitrary orientation, dense arrangement, and the complex background of ships. To enhance the analysis of ship situations in channels, we model the ships as the key points and propose a context-aware DGCN-based ship formation recognition method. First, we develop a center point-based ship detection subnetwork, which employs depth-separable convolution to reduce parameter redundancy and combines coordinate attention with an oriented response network to generate direction-invariant feature maps. The center point of each ship is predicted by regression of the offset, target scale, and angle to realize the ship detection. Then, we adopt the spatial similarity of the ship center points to cluster the ship group, utilizing the Delaunay triangulation method to establish the topological graph structure of the ship group. Finally, we design a context-aware Dense Graph Convolutional Network (DGCN) with graph structure to achieve formation recognition. Experimental results on HRSD2016 and SGF datasets demonstrate that the proposed method can detect arbitrarily oriented ships and identify formations, attaining state-of-the-art performance.
{"title":"Context-Aware DGCN-Based Ship Formation Recognition in Remote Sensing Images","authors":"Tao Zhang, Xiaogang Yang, Ruitao Lu, Xueli Xie, Siyu Wang, Shuang Su","doi":"10.3390/rs16183435","DOIUrl":"https://doi.org/10.3390/rs16183435","url":null,"abstract":"Ship detection and formation recognition in remote sensing have increasingly garnered attention. However, research remains challenging due to arbitrary orientation, dense arrangement, and the complex background of ships. To enhance the analysis of ship situations in channels, we model the ships as the key points and propose a context-aware DGCN-based ship formation recognition method. First, we develop a center point-based ship detection subnetwork, which employs depth-separable convolution to reduce parameter redundancy and combines coordinate attention with an oriented response network to generate direction-invariant feature maps. The center point of each ship is predicted by regression of the offset, target scale, and angle to realize the ship detection. Then, we adopt the spatial similarity of the ship center points to cluster the ship group, utilizing the Delaunay triangulation method to establish the topological graph structure of the ship group. Finally, we design a context-aware Dense Graph Convolutional Network (DGCN) with graph structure to achieve formation recognition. Experimental results on HRSD2016 and SGF datasets demonstrate that the proposed method can detect arbitrarily oriented ships and identify formations, attaining state-of-the-art performance.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"20 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cesar Ivan Alvarez, Santiago López, David Vásquez, Dayana Gualotuña
This study uses a remote sensing approach to investigate air quality fluctuations during two short-period social upheaval events caused by civil protests in 2019 and the COVID-19 pandemic in 2020 in Quito, Ecuador. We used data from the TROPOMI Sentinel-P5 satellite to evaluate the concentrations of two greenhouse gases, namely O3 and NO2. TROPOMI Sentinel-P5 satellite data are becoming essential in air quality monitoring, particularly for countries that lack ground-based monitoring systems. For a better approximation of satellite data with ground data, we related the remotely sensed data using ground station data and Pearson correlation analysis, which revealed a significant association between the two sources (0.43 ≤ r ≤ 0.78). Using paired t-test comparisons, we evaluated the differences in mean gas concentrations at 30 randomly selected intervals to identify significant changes before and after the events. The results indicate noticeable changes in the two gases over the three analysis periods. O3 significantly decreased between September and November 2019 and between March and May 2020, while NO2 significantly increased. NO2 levels decreased by 18% between February and March 2020 across the study area, as indicated by remote sensing data. The geovisualization of remotely sensed data over these periods supports these patterns, suggesting a potential connection with population density. The results show the complexity of drawing global conclusions about the impact of social disruptions on the atmosphere and emphasize the advantages of using remote sensing as an effective framework to address air quality changes over short periods of time. This study also highlights the advantages of a remote sensing approach to monitor atmospheric conditions in countries with limited air quality monitoring infrastructure and provides a valuable approach for the evaluation of short-term alterations in atmospheric conditions due to social disturbance events.
{"title":"Assessing Air Quality Dynamics during Short-Period Social Upheaval Events in Quito, Ecuador, Using a Remote Sensing Framework","authors":"Cesar Ivan Alvarez, Santiago López, David Vásquez, Dayana Gualotuña","doi":"10.3390/rs16183436","DOIUrl":"https://doi.org/10.3390/rs16183436","url":null,"abstract":"This study uses a remote sensing approach to investigate air quality fluctuations during two short-period social upheaval events caused by civil protests in 2019 and the COVID-19 pandemic in 2020 in Quito, Ecuador. We used data from the TROPOMI Sentinel-P5 satellite to evaluate the concentrations of two greenhouse gases, namely O3 and NO2. TROPOMI Sentinel-P5 satellite data are becoming essential in air quality monitoring, particularly for countries that lack ground-based monitoring systems. For a better approximation of satellite data with ground data, we related the remotely sensed data using ground station data and Pearson correlation analysis, which revealed a significant association between the two sources (0.43 ≤ r ≤ 0.78). Using paired t-test comparisons, we evaluated the differences in mean gas concentrations at 30 randomly selected intervals to identify significant changes before and after the events. The results indicate noticeable changes in the two gases over the three analysis periods. O3 significantly decreased between September and November 2019 and between March and May 2020, while NO2 significantly increased. NO2 levels decreased by 18% between February and March 2020 across the study area, as indicated by remote sensing data. The geovisualization of remotely sensed data over these periods supports these patterns, suggesting a potential connection with population density. The results show the complexity of drawing global conclusions about the impact of social disruptions on the atmosphere and emphasize the advantages of using remote sensing as an effective framework to address air quality changes over short periods of time. This study also highlights the advantages of a remote sensing approach to monitor atmospheric conditions in countries with limited air quality monitoring infrastructure and provides a valuable approach for the evaluation of short-term alterations in atmospheric conditions due to social disturbance events.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"38 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}