Xiaojun Liu, James A. Craven, Victoria Tschirhart, Stephen E. Grasby
In this study, we describe a deep learning (DL)-based workflow for the three-dimensional (3D) geophysical inversion of magnetotelluric (MT) data. We derived a mathematical connection between a 3D resistivity model and the surface-observed electric/magnetic field response by using a fully connected neural network framework (U-Net). Limited by computer hardware functionality, the resistivity models were generated by using a random walk technique to enlarge the generalization coverage of the neural network model, and 15,000 paired datasets were utilized to train and validate it. Grid search was used to select the optimal configuration parameters. With the optimal model framework from the parameter tuning phase, the metrics showed stable convergence during model training/validation. In the test period, the trained model was applied to predict the resistivity distribution by using both the simulated synthetic and the real MT data from the Mount Meager area, British Columbia. The reliability of the model prediction was verified with noised input data from the synthetic model. The calculated results can be used to reconstruct the position and shape trends of bodies with anomalous resistivity, which verifies the stability and performance of the DL-based 3D inversion algorithm and showcases its potential practical applications.
{"title":"Estimating Three-Dimensional Resistivity Distribution with Magnetotelluric Data and a Deep Learning Algorithm","authors":"Xiaojun Liu, James A. Craven, Victoria Tschirhart, Stephen E. Grasby","doi":"10.3390/rs16183400","DOIUrl":"https://doi.org/10.3390/rs16183400","url":null,"abstract":"In this study, we describe a deep learning (DL)-based workflow for the three-dimensional (3D) geophysical inversion of magnetotelluric (MT) data. We derived a mathematical connection between a 3D resistivity model and the surface-observed electric/magnetic field response by using a fully connected neural network framework (U-Net). Limited by computer hardware functionality, the resistivity models were generated by using a random walk technique to enlarge the generalization coverage of the neural network model, and 15,000 paired datasets were utilized to train and validate it. Grid search was used to select the optimal configuration parameters. With the optimal model framework from the parameter tuning phase, the metrics showed stable convergence during model training/validation. In the test period, the trained model was applied to predict the resistivity distribution by using both the simulated synthetic and the real MT data from the Mount Meager area, British Columbia. The reliability of the model prediction was verified with noised input data from the synthetic model. The calculated results can be used to reconstruct the position and shape trends of bodies with anomalous resistivity, which verifies the stability and performance of the DL-based 3D inversion algorithm and showcases its potential practical applications.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"4 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Darren Ghent, Jasdeep Singh Anand, Karen Veal, John Remedios
Land Surface Temperature (LST) is integral to our understanding of the radiative energy budget of the Earth’s surface since it provides the best approximation to the thermodynamic temperature that drives the outgoing longwave flux from surface to atmosphere. Since 5 July 2017, an operational LST product has been available from the Sentinel-3A mission, with the corresponding product being available from Sentinel-3B since 17 November 2018. Here, we present the first paper describing formal products, including algorithms, for the Sea and Land Surface Temperature Radiometer (SLSTR) instruments onboard Sentinel-3A and 3B (SLSTR-A and SLSTR-B, respectively). We evaluate the quality of both the Land Surface Temperature Climate Change Initiative (LST_cci) product and the Copernicus operational LST product (SL_2_LST) for the years 2018 to 2021. The evaluation takes the form of a validation against ground-based observations of LST across eleven well-established in situ stations. For the validation, the mean absolute daytime and night-time difference against the in situ measurements for the LST_cci product is 0.77 K and 0.50 K, respectively, for SLSTR-A, and 0.91 K and 0.54 K, respectively, for SLSTR-B. These are an improvement on the corresponding statistics for the SL_2_LST product, which are 1.45 K (daytime) and 0.76 (night-time) for SLSTR-A, and 1.29 K (daytime) and 0.77 (night-time) for SLSTR-B. The key influencing factors in this improvement include an upgraded database of reference states for the generation of retrieval coefficients, higher stratification of the auxiliary data for the biome and fractional vegetation, and enhanced cloud masking.
{"title":"The Operational and Climate Land Surface Temperature Products from the Sea and Land Surface Temperature Radiometers on Sentinel-3A and 3B","authors":"Darren Ghent, Jasdeep Singh Anand, Karen Veal, John Remedios","doi":"10.3390/rs16183403","DOIUrl":"https://doi.org/10.3390/rs16183403","url":null,"abstract":"Land Surface Temperature (LST) is integral to our understanding of the radiative energy budget of the Earth’s surface since it provides the best approximation to the thermodynamic temperature that drives the outgoing longwave flux from surface to atmosphere. Since 5 July 2017, an operational LST product has been available from the Sentinel-3A mission, with the corresponding product being available from Sentinel-3B since 17 November 2018. Here, we present the first paper describing formal products, including algorithms, for the Sea and Land Surface Temperature Radiometer (SLSTR) instruments onboard Sentinel-3A and 3B (SLSTR-A and SLSTR-B, respectively). We evaluate the quality of both the Land Surface Temperature Climate Change Initiative (LST_cci) product and the Copernicus operational LST product (SL_2_LST) for the years 2018 to 2021. The evaluation takes the form of a validation against ground-based observations of LST across eleven well-established in situ stations. For the validation, the mean absolute daytime and night-time difference against the in situ measurements for the LST_cci product is 0.77 K and 0.50 K, respectively, for SLSTR-A, and 0.91 K and 0.54 K, respectively, for SLSTR-B. These are an improvement on the corresponding statistics for the SL_2_LST product, which are 1.45 K (daytime) and 0.76 (night-time) for SLSTR-A, and 1.29 K (daytime) and 0.77 (night-time) for SLSTR-B. The key influencing factors in this improvement include an upgraded database of reference states for the generation of retrieval coefficients, higher stratification of the auxiliary data for the biome and fractional vegetation, and enhanced cloud masking.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"60 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deep learning methods like convolution neural networks (CNNs) and transformers are successfully applied in hyperspectral image (HSI) classification due to their ability to extract local contextual features and explore global dependencies, respectively. However, CNNs struggle in modeling long-term dependencies, and transformers may miss subtle spatial-spectral features. To address these challenges, this paper proposes an innovative hybrid HSI classification method aggregating hierarchical spatial-spectral features from a CNN and long pixel dependencies from a transformer. The proposed aggregation multi-hierarchical feature network (AMHFN) is designed to capture various hierarchical features and long dependencies from HSI, improving classification accuracy and efficiency. The proposed AMHFN consists of three key modules: (a) a Local-Pixel Embedding module (LPEM) for capturing prominent spatial-spectral features; (b) a Multi-Scale Convolutional Extraction (MSCE) module to capture multi-scale local spatial-spectral features and aggregate hierarchical local features; (c) a Multi-Scale Global Extraction (MSGE) module to explore multi-scale global dependencies and integrate multi-scale hierarchical global dependencies. Rigorous experiments on three public hyperspectral image (HSI) datasets demonstrated the superior performance of the proposed AMHFN method.
{"title":"AMHFN: Aggregation Multi-Hierarchical Feature Network for Hyperspectral Image Classification","authors":"Xiaofei Yang, Yuxiong Luo, Zhen Zhang, Dong Tang, Zheng Zhou, Haojin Tang","doi":"10.3390/rs16183412","DOIUrl":"https://doi.org/10.3390/rs16183412","url":null,"abstract":"Deep learning methods like convolution neural networks (CNNs) and transformers are successfully applied in hyperspectral image (HSI) classification due to their ability to extract local contextual features and explore global dependencies, respectively. However, CNNs struggle in modeling long-term dependencies, and transformers may miss subtle spatial-spectral features. To address these challenges, this paper proposes an innovative hybrid HSI classification method aggregating hierarchical spatial-spectral features from a CNN and long pixel dependencies from a transformer. The proposed aggregation multi-hierarchical feature network (AMHFN) is designed to capture various hierarchical features and long dependencies from HSI, improving classification accuracy and efficiency. The proposed AMHFN consists of three key modules: (a) a Local-Pixel Embedding module (LPEM) for capturing prominent spatial-spectral features; (b) a Multi-Scale Convolutional Extraction (MSCE) module to capture multi-scale local spatial-spectral features and aggregate hierarchical local features; (c) a Multi-Scale Global Extraction (MSGE) module to explore multi-scale global dependencies and integrate multi-scale hierarchical global dependencies. Rigorous experiments on three public hyperspectral image (HSI) datasets demonstrated the superior performance of the proposed AMHFN method.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"165 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The 2017 Jiuzhaigou earthquake (Ms = 7.0) struck the eastern Tibetan Plateau and caused extensive concern. However, the reported slip models of this earthquake have distinct discrepancies and cannot provide a good fit for GPS data. The Jiuzhaigou earthquake also presents a good opportunity to investigate the question of how to avoid overfitting of InSAR observations for co-seismic slip inversions. To comprehend this shock, we first used pre-seismic satellite optical images to extract a surface trace of the seismogenic fault, which constitutes the northern segment of the Huya Fault. Then, we collected GPS observations as well as to measure the co-seismic displacements. Lastly, joint inversions were carried out to obtain the slip distribution. Our results showed that the released moment was 5.3 × 1018 N m, equivalent to Mw 6.4 with a rigidity of 30 GPa. The maximum slip at a depth of ~6.8 km reached up to 1.12 m, dominated by left-lateral strike-slip. The largest potential surface rupture occurred in the center of the seismogenic fault with strike- and dip-slip components of 0.4 m and 0.2 m, respectively. Comparison with the focal mechanisms of the 1973 Ms 6.5 earthquake and the 1976 triplet of earthquakes (Mw > 6) on the middle and south segments of the Huya Fault indicated different regional motion and slip mechanisms on the three segments. The distribution of co-seismic landslides had a strong correlation with surface displacements rather than surface rupture.
{"title":"Revisiting the 2017 Jiuzhaigou (Sichuan, China) Earthquake: Implications for Slip Inversions Based on InSAR Data","authors":"Zhengwen Sun, Yingwen Zhao","doi":"10.3390/rs16183406","DOIUrl":"https://doi.org/10.3390/rs16183406","url":null,"abstract":"The 2017 Jiuzhaigou earthquake (Ms = 7.0) struck the eastern Tibetan Plateau and caused extensive concern. However, the reported slip models of this earthquake have distinct discrepancies and cannot provide a good fit for GPS data. The Jiuzhaigou earthquake also presents a good opportunity to investigate the question of how to avoid overfitting of InSAR observations for co-seismic slip inversions. To comprehend this shock, we first used pre-seismic satellite optical images to extract a surface trace of the seismogenic fault, which constitutes the northern segment of the Huya Fault. Then, we collected GPS observations as well as to measure the co-seismic displacements. Lastly, joint inversions were carried out to obtain the slip distribution. Our results showed that the released moment was 5.3 × 1018 N m, equivalent to Mw 6.4 with a rigidity of 30 GPa. The maximum slip at a depth of ~6.8 km reached up to 1.12 m, dominated by left-lateral strike-slip. The largest potential surface rupture occurred in the center of the seismogenic fault with strike- and dip-slip components of 0.4 m and 0.2 m, respectively. Comparison with the focal mechanisms of the 1973 Ms 6.5 earthquake and the 1976 triplet of earthquakes (Mw > 6) on the middle and south segments of the Huya Fault indicated different regional motion and slip mechanisms on the three segments. The distribution of co-seismic landslides had a strong correlation with surface displacements rather than surface rupture.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"26 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonardo Laipelt, Julia Brusso Rossi, Bruno Comini de Andrade, Morris Scherer-Warren, Anderson Ruhoff
The expansion of cropland in tropical regions has significantly accelerated in recent decades, triggering an escalation in water demand and changing the total water loss to the atmosphere (evapotranspiration). Additionally, the increase in areas dedicated to agriculture in tropical climates coincides with an increased frequency of drought events, leading to a series of conflicts among water users. However, detailed studies on the impacts of changes in water use due to agriculture expansion, including irrigation, are still lacking. Furthermore, the higher presence of clouds in tropical environments poses challenges for the availability of high-resolution data for vegetation monitoring via satellite images. This study aims to analyze 37 years of agricultural expansion using the Landsat collection and a satellite-based model (geeSEBAL) to assess changes in evapotranspiration resulting from cropland expansion in tropical climates, focusing on the São Marcos River Basin in Brazil. It also used a methodology for estimating daily evapotranspiration on days without satellite images. The results showed a 34% increase in evapotranspiration from rainfed areas, mainly driven by soybean cultivation. In addition, irrigated areas increased their water use, despite not significantly changing water use at the basin scale. Conversely, natural vegetation areas decreased their evapotranspiration rates by 22%, suggesting possible further implications with advancing changes in land use and land cover. Thus, this study underscores the importance of using satellite-based evapotranspiration estimates to enhance our understanding of water use across different land use types and scales, thereby improving water management strategies on a large scale.
{"title":"Assessing Evapotranspiration Changes in Response to Cropland Expansion in Tropical Climates","authors":"Leonardo Laipelt, Julia Brusso Rossi, Bruno Comini de Andrade, Morris Scherer-Warren, Anderson Ruhoff","doi":"10.3390/rs16183404","DOIUrl":"https://doi.org/10.3390/rs16183404","url":null,"abstract":"The expansion of cropland in tropical regions has significantly accelerated in recent decades, triggering an escalation in water demand and changing the total water loss to the atmosphere (evapotranspiration). Additionally, the increase in areas dedicated to agriculture in tropical climates coincides with an increased frequency of drought events, leading to a series of conflicts among water users. However, detailed studies on the impacts of changes in water use due to agriculture expansion, including irrigation, are still lacking. Furthermore, the higher presence of clouds in tropical environments poses challenges for the availability of high-resolution data for vegetation monitoring via satellite images. This study aims to analyze 37 years of agricultural expansion using the Landsat collection and a satellite-based model (geeSEBAL) to assess changes in evapotranspiration resulting from cropland expansion in tropical climates, focusing on the São Marcos River Basin in Brazil. It also used a methodology for estimating daily evapotranspiration on days without satellite images. The results showed a 34% increase in evapotranspiration from rainfed areas, mainly driven by soybean cultivation. In addition, irrigated areas increased their water use, despite not significantly changing water use at the basin scale. Conversely, natural vegetation areas decreased their evapotranspiration rates by 22%, suggesting possible further implications with advancing changes in land use and land cover. Thus, this study underscores the importance of using satellite-based evapotranspiration estimates to enhance our understanding of water use across different land use types and scales, thereby improving water management strategies on a large scale.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"3 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Srishti Gwal, Dipaka Ranjan Sena, Prashant K. Srivastava, Sanjeev K. Srivastava
Hydrological Ecosystem Services (HES) are crucial components of environmental sustainability and provide indispensable benefits. The present study identifies critical hot and cold spots areas of HES in the Aglar watershed of the Indian Himalayan Region using six HES descriptors, namely water yield (WYLD), crop yield factor (CYF), sediment yield (SYLD), base flow (LATQ), surface runoff (SURFQ), and total water retention (TWR). The analysis was conducted using weightage-based approaches under two methods: (1) evaluating six HES descriptors individually and (2) grouping them into broad ecosystem service categories. Furthermore, the study assessed pixel-level uncertainties that arose because of the distinctive methods used in the identification of hot and cold spots. The associated synergies and trade-offs among HES descriptors were examined too. From method 1, 0.26% area of the watershed was classified as cold spots and 3.18% as hot spots, whereas method 2 classified 2.42% area as cold spots and 2.36% as hot spots. Pixel-level uncertainties showed that 0.57 km2 and 6.86 km2 of the watershed were consistently under cold and hot spots, respectively, using method 1, whereas method 2 identified 2.30 km2 and 6.97 km2 as cold spots and hot spots, respectively. The spatial analysis of hot spots showed consistent patterns in certain parts of the watershed, primarily in the south to southwest region, while cold spots were mainly found on the eastern side. Upon analyzing HES descriptors within broad ecosystem service categories, hot spots were mainly in the southern part, and cold spots were scattered throughout the watershed, especially in agricultural and scrubland areas. The significant synergistic relation between LATQ and WYLD, and sediment retention and WYLD and trade-offs between SURFQ and HES descriptors like WYLD, LATQ, sediment retention, and TWR was attributed to varying factors such as land use and topography impacting the water balance components in the watershed. The findings underscore the critical need for targeted conservation efforts to maintain the ecologically sensitive regions at watershed scale.
{"title":"Identifying Conservation Priority Areas of Hydrological Ecosystem Service Using Hot and Cold Spot Analysis at Watershed Scale","authors":"Srishti Gwal, Dipaka Ranjan Sena, Prashant K. Srivastava, Sanjeev K. Srivastava","doi":"10.3390/rs16183409","DOIUrl":"https://doi.org/10.3390/rs16183409","url":null,"abstract":"Hydrological Ecosystem Services (HES) are crucial components of environmental sustainability and provide indispensable benefits. The present study identifies critical hot and cold spots areas of HES in the Aglar watershed of the Indian Himalayan Region using six HES descriptors, namely water yield (WYLD), crop yield factor (CYF), sediment yield (SYLD), base flow (LATQ), surface runoff (SURFQ), and total water retention (TWR). The analysis was conducted using weightage-based approaches under two methods: (1) evaluating six HES descriptors individually and (2) grouping them into broad ecosystem service categories. Furthermore, the study assessed pixel-level uncertainties that arose because of the distinctive methods used in the identification of hot and cold spots. The associated synergies and trade-offs among HES descriptors were examined too. From method 1, 0.26% area of the watershed was classified as cold spots and 3.18% as hot spots, whereas method 2 classified 2.42% area as cold spots and 2.36% as hot spots. Pixel-level uncertainties showed that 0.57 km2 and 6.86 km2 of the watershed were consistently under cold and hot spots, respectively, using method 1, whereas method 2 identified 2.30 km2 and 6.97 km2 as cold spots and hot spots, respectively. The spatial analysis of hot spots showed consistent patterns in certain parts of the watershed, primarily in the south to southwest region, while cold spots were mainly found on the eastern side. Upon analyzing HES descriptors within broad ecosystem service categories, hot spots were mainly in the southern part, and cold spots were scattered throughout the watershed, especially in agricultural and scrubland areas. The significant synergistic relation between LATQ and WYLD, and sediment retention and WYLD and trade-offs between SURFQ and HES descriptors like WYLD, LATQ, sediment retention, and TWR was attributed to varying factors such as land use and topography impacting the water balance components in the watershed. The findings underscore the critical need for targeted conservation efforts to maintain the ecologically sensitive regions at watershed scale.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"73 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As both satellite imagery and image-based machine learning methods continue to improve and become more accessible, they are being utilized in an increasing number of sectors and applications. Recent applications using convolutional neural networks (CNNs) and satellite imagery include estimating socioeconomic and development indicators such as poverty, road quality, and conflict. This article builds on existing work leveraging satellite imagery and machine learning for estimation or prediction, to explore the potential to extend these methods temporally. Using Landsat 8 imagery and data from the Armed Conflict Location & Event Data Project (ACLED) we produce subnational predictions of the risk of conflict fatalities in Nigeria during 2015, 2017, and 2019 using distinct models trained on both yearly and six-month windows of data from the preceding year. We find that predictions at conflict sites leveraging imagery from the preceding year for training can predict conflict fatalities in the following year with an area under the receiver operating characteristic curve (AUC) of over 75% on average. While models consistently outperform a baseline comparison, and performance in individual periods can be strong (AUC > 80%), changes based on ground conditions such as the geographic scope of conflict can degrade performance in subsequent periods. In addition, we find that training models using an entire year of data slightly outperform models using only six months of data. Overall, the findings suggest CNN-based methods are moderately effective at detecting features in Landsat satellite imagery associated with the risk of fatalities from conflict events across time periods.
{"title":"Spatiotemporal Prediction of Conflict Fatality Risk Using Convolutional Neural Networks and Satellite Imagery","authors":"Seth Goodman, Ariel BenYishay, Daniel Runfola","doi":"10.3390/rs16183411","DOIUrl":"https://doi.org/10.3390/rs16183411","url":null,"abstract":"As both satellite imagery and image-based machine learning methods continue to improve and become more accessible, they are being utilized in an increasing number of sectors and applications. Recent applications using convolutional neural networks (CNNs) and satellite imagery include estimating socioeconomic and development indicators such as poverty, road quality, and conflict. This article builds on existing work leveraging satellite imagery and machine learning for estimation or prediction, to explore the potential to extend these methods temporally. Using Landsat 8 imagery and data from the Armed Conflict Location & Event Data Project (ACLED) we produce subnational predictions of the risk of conflict fatalities in Nigeria during 2015, 2017, and 2019 using distinct models trained on both yearly and six-month windows of data from the preceding year. We find that predictions at conflict sites leveraging imagery from the preceding year for training can predict conflict fatalities in the following year with an area under the receiver operating characteristic curve (AUC) of over 75% on average. While models consistently outperform a baseline comparison, and performance in individual periods can be strong (AUC > 80%), changes based on ground conditions such as the geographic scope of conflict can degrade performance in subsequent periods. In addition, we find that training models using an entire year of data slightly outperform models using only six months of data. Overall, the findings suggest CNN-based methods are moderately effective at detecting features in Landsat satellite imagery associated with the risk of fatalities from conflict events across time periods.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"177 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In remote watersheds or large water bodies, monitoring water quality parameters is often impractical due to high costs and time-consuming processes. To address this issue, a cost-effective methodology based on remote sensing was developed to predict water quality parameters over a large and operationally challenging area, especially focusing on East Lake. Sentinel-2 satellite image data were used as a proxy, and a multiple linear regression model was developed to quantify water quality parameters, namely chlorophyll-a, total nitrogen, total phosphorus, ammonia nitrogen and chemical oxygen demand. This model was then applied to East Lake to obtain the temporal and spatial distribution of these water quality parameters. By identifying the locations with the highest concentrations along the boundaries of East Lake, potential pollution sources could be inferred. The results demonstrate that the developed multiple linear regression model provided a satisfactory relationship between the measured and simulated water quality parameters. The coefficients of determination R2 of the multiple linear regression models for chlorophyll-a, total nitrogen, total phosphorus, ammonia nitrogen and chemical oxygen demand were 0.943, 0.781, 0.470, 0.624 and 0.777, respectively. The potential pollution source locations closely matched the officially published information on East Lake pollutant discharges. Therefore, using remote sensing imagery to establish a multiple linear regression model is a feasible approach for understanding the exceedance and distribution of various water quality parameters in East Lake.
{"title":"Establishment of Remote Sensing Inversion Model and Its Application in Pollution Source Identification: A Case Study of East Lake in Wuhan","authors":"Shiyue He, Yanjun Zhang, Lan Luo, Yuanxin Song","doi":"10.3390/rs16183402","DOIUrl":"https://doi.org/10.3390/rs16183402","url":null,"abstract":"In remote watersheds or large water bodies, monitoring water quality parameters is often impractical due to high costs and time-consuming processes. To address this issue, a cost-effective methodology based on remote sensing was developed to predict water quality parameters over a large and operationally challenging area, especially focusing on East Lake. Sentinel-2 satellite image data were used as a proxy, and a multiple linear regression model was developed to quantify water quality parameters, namely chlorophyll-a, total nitrogen, total phosphorus, ammonia nitrogen and chemical oxygen demand. This model was then applied to East Lake to obtain the temporal and spatial distribution of these water quality parameters. By identifying the locations with the highest concentrations along the boundaries of East Lake, potential pollution sources could be inferred. The results demonstrate that the developed multiple linear regression model provided a satisfactory relationship between the measured and simulated water quality parameters. The coefficients of determination R2 of the multiple linear regression models for chlorophyll-a, total nitrogen, total phosphorus, ammonia nitrogen and chemical oxygen demand were 0.943, 0.781, 0.470, 0.624 and 0.777, respectively. The potential pollution source locations closely matched the officially published information on East Lake pollutant discharges. Therefore, using remote sensing imagery to establish a multiple linear regression model is a feasible approach for understanding the exceedance and distribution of various water quality parameters in East Lake.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"50 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Urbanization is growing at a rapid pace, and this is being reflected in the rising energy consumption from fossil fuels, which is contributing significantly to greenhouse gas impacts and carbon emissions (CE). Aiming at the problems of the time delay, inconsistency, uneven spatial coverage scale, and low precision of the current regional carbon emissions from energy consumption accounting statistics, this study builds a precise model for estimating the carbon emissions from regional energy consumption and analyzes the spatio-temporal characteristics. Firstly, in order to estimate the carbon emissions resulting from energy consumption, a fixed effects model was built using data on province energy consumption and NPP-VIIRS-like nighttime lighting data. Secondly, the PRD urban agglomeration was selected as the case study area to estimate the carbon emissions from 2012 to 2020 and predict the carbon emissions from 2021 to 2023. Then, their multi-scale spatial and temporal distribution characteristics were analyzed through trends and hotspots. Lastly, the influence factors of CE from 2012 to 2020 were examined with the OLS, GWR, GTWR, and MGWR models, as well as a ridge regression to enhance the MGWR model. The findings indicate that, from 2012 to 2020, the carbon emissions in the PRD urban agglomeration were characterized by the non-equilibrium feature of “high in the middle and low at both ends”; from 2021 to 2023, the central and eastern regions saw the majority of its high carbon emission areas, the east saw the region with the highest rate of growth, the east and the periphery of the high value area were home to the area of medium values, while the southern, central, and northern regions were home to the low value areas; carbon emissions were positively impacted by population, economics, land area, and energy, and they were negatively impacted by science, technology, and environmental factors. This study could provide technical support for the long-term time-series monitoring and remote sensing inversion of the carbon emissions from energy consumption in large-scale, complex urban agglomerations.
{"title":"Estimation Model and Spatio-Temporal Analysis of Carbon Emissions from Energy Consumption with NPP-VIIRS-like Nighttime Light Images: A Case Study in the Pearl River Delta Urban Agglomeration of China","authors":"Mengru Song, Yanjun Wang, Yongshun Han, Yiye Ji","doi":"10.3390/rs16183407","DOIUrl":"https://doi.org/10.3390/rs16183407","url":null,"abstract":"Urbanization is growing at a rapid pace, and this is being reflected in the rising energy consumption from fossil fuels, which is contributing significantly to greenhouse gas impacts and carbon emissions (CE). Aiming at the problems of the time delay, inconsistency, uneven spatial coverage scale, and low precision of the current regional carbon emissions from energy consumption accounting statistics, this study builds a precise model for estimating the carbon emissions from regional energy consumption and analyzes the spatio-temporal characteristics. Firstly, in order to estimate the carbon emissions resulting from energy consumption, a fixed effects model was built using data on province energy consumption and NPP-VIIRS-like nighttime lighting data. Secondly, the PRD urban agglomeration was selected as the case study area to estimate the carbon emissions from 2012 to 2020 and predict the carbon emissions from 2021 to 2023. Then, their multi-scale spatial and temporal distribution characteristics were analyzed through trends and hotspots. Lastly, the influence factors of CE from 2012 to 2020 were examined with the OLS, GWR, GTWR, and MGWR models, as well as a ridge regression to enhance the MGWR model. The findings indicate that, from 2012 to 2020, the carbon emissions in the PRD urban agglomeration were characterized by the non-equilibrium feature of “high in the middle and low at both ends”; from 2021 to 2023, the central and eastern regions saw the majority of its high carbon emission areas, the east saw the region with the highest rate of growth, the east and the periphery of the high value area were home to the area of medium values, while the southern, central, and northern regions were home to the low value areas; carbon emissions were positively impacted by population, economics, land area, and energy, and they were negatively impacted by science, technology, and environmental factors. This study could provide technical support for the long-term time-series monitoring and remote sensing inversion of the carbon emissions from energy consumption in large-scale, complex urban agglomerations.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"2 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bulusu Subrahmanyam, V. S. N. Murty, Sarah B. Hall, Corinne B. Trott
We used NASA’s high-resolution (1/48° or 2.3 km, hourly) Estimating the Circulation and Climate of the Ocean (ECCO) estimates of salinity at a 1 m depth from November 2011 to October 2012 to detect semi-diurnal and diurnal internal tides (ITs) in the Andaman Sea and determine their characteristics in three 2° × 2° boxes off the Myanmar coast (box A), central Andaman Sea (box B), and off the Thailand coast (box C). We also used observed salinity and temperature data for the above period at the BD12-moored buoy in the central Andaman Sea. ECCO salinity data were bandpass-filtered with 11–14 h and 22–26 h periods. Large variations in filtered ECCO salinity (~0.1 psu) in the boxes corresponded with near-surface imprints of propagating ITs. Observed data from the box B domain reveals strong salinity stratification (halocline) in the upper 40 m. Our analyses reveal that the shallow halocline affects the signatures of propagating semi-diurnal ITs reaching the surface, but diurnal ITs propagating in the halocline reach up to the surface and bring variability in ECCO salinity. In box A, the semi-diurnal IT characteristics are higher speeds (0.96 m/s) with larger wavelengths (45 km), that are closer to theoretical mode 2 estimates, but the diurnal ITs propagating in the box A domain, with a possible source over the shelf of Gulf of Martaban, attain lower values (0.45 m/s, 38 km). In box B, the propagation speed is lower (higher) for semi-diurnal (diurnal) ITs. Estimates for box C are closer to those for box A.
我们利用美国国家航空航天局(NASA)2011 年 11 月至 2012 年 10 月的高分辨率(1/48°或 2.3 千米,每小时)海洋环流和气候估算(ECCO)1 米深度的盐度估算数据,探测安达曼海的半日和昼夜内潮(ITs),并确定其在缅甸沿岸(方框 A)、安达曼海中部(方框 B)和泰国沿岸(方框 C)三个 2°×2° 方框内的特征。我们还使用了安达曼海中部 BD12 系泊浮标在上述期间的盐度和温度观测数据。ECCO 盐度数据经过带通滤波,周期分别为 11-14 小时和 22-26 小时。滤波后的 ECCO 盐度在方框内有较大变化(约 0.1 psu),与传播的 ITs 的近海面印迹相吻合。我们的分析表明,浅层卤化线影响了到达海面的半日流 IT 的传播特征,但在卤化线中传播的日流 IT 可以到达海面并带来 ECCO 盐度的变化。在方框 A 中,半昼夜 IT 的特征是传播速度较快(0.96 米/秒),波长较大(45 千米),更接近模式 2 的理论估计值,但在方框 A 域传播的昼夜 IT 值较低 (0.45 米/秒,38 千米),其来源可能在马塔班湾大陆架上。在方框 B 中,半日(昼)IT 传播速度较低(较高)。C 框的估计值与 A 框的估计值较为接近。
{"title":"Identification of Internal Tides in ECCO Estimates of Sea Surface Salinity in the Andaman Sea","authors":"Bulusu Subrahmanyam, V. S. N. Murty, Sarah B. Hall, Corinne B. Trott","doi":"10.3390/rs16183408","DOIUrl":"https://doi.org/10.3390/rs16183408","url":null,"abstract":"We used NASA’s high-resolution (1/48° or 2.3 km, hourly) Estimating the Circulation and Climate of the Ocean (ECCO) estimates of salinity at a 1 m depth from November 2011 to October 2012 to detect semi-diurnal and diurnal internal tides (ITs) in the Andaman Sea and determine their characteristics in three 2° × 2° boxes off the Myanmar coast (box A), central Andaman Sea (box B), and off the Thailand coast (box C). We also used observed salinity and temperature data for the above period at the BD12-moored buoy in the central Andaman Sea. ECCO salinity data were bandpass-filtered with 11–14 h and 22–26 h periods. Large variations in filtered ECCO salinity (~0.1 psu) in the boxes corresponded with near-surface imprints of propagating ITs. Observed data from the box B domain reveals strong salinity stratification (halocline) in the upper 40 m. Our analyses reveal that the shallow halocline affects the signatures of propagating semi-diurnal ITs reaching the surface, but diurnal ITs propagating in the halocline reach up to the surface and bring variability in ECCO salinity. In box A, the semi-diurnal IT characteristics are higher speeds (0.96 m/s) with larger wavelengths (45 km), that are closer to theoretical mode 2 estimates, but the diurnal ITs propagating in the box A domain, with a possible source over the shelf of Gulf of Martaban, attain lower values (0.45 m/s, 38 km). In box B, the propagation speed is lower (higher) for semi-diurnal (diurnal) ITs. Estimates for box C are closer to those for box A.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"734 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}