首页 > 最新文献

Remote Sensing最新文献

英文 中文
Himawari-8 Sea Surface Temperature Products from the Australian Bureau of Meteorology 澳大利亚气象局的 Himawari-8 海洋表面温度产品
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.3390/rs16183381
Pallavi Govekar, Christopher Griffin, Owen Embury, Jonathan Mittaz, Helen Mary Beggs, Christopher J. Merchant
As a contribution to the Integrated Marine Observing System (IMOS), the Bureau of Meteorology introduces new reprocessed Himawari-8 satellite-derived Sea Surface Temperature (SST) products. The Radiative Transfer Model and a Bayesian cloud clearing method is used to retrieve SSTs every 10 min from the geostationary satellite Himawari-8. An empirical Sensor Specific Error Statistics (SSES) model, introduced herein, is applied to calculate bias and standard deviation for the retrieved SSTs. The SST retrieval and compositing method, along with validation results, are discussed. The monthly statistics for comparisons of Himawari-8 Level 2 Product (L2P) skin SST against in situ SST quality monitoring (iQuam) in situ SST datasets, adjusted for thermal stratification, showed a mean bias of −0.2/−0.1 K and a standard deviation of 0.4–0.7 K for daytime/night-time after bias correction, where satellite zenith angles were less than 60° and the quality level was greater than 2. For ease of use, these native resolution SST data have been composited using a method introduced herein that retains retrieved measurements, to hourly, 4-hourly and daily SST products, and projected onto the rectangular IMOS 0.02 degree grid. On average, 4-hourly products cover ≈10% more of the IMOS domain, while one-night composites cover ≈25% more of the IMOS domain than a typical 1 h composite. All available Himawari-8 data have been reprocessed for the September 2015–December 2022 period. The 10 min temporal resolution of the newly developed Himawari-8 SST data enables a daily composite with enhanced spatial coverage, effectively filling in SST gaps caused by transient clouds occlusion. Anticipated benefits of the new Himawari-8 products include enhanced data quality for applications like IMOS OceanCurrent and investigations into marine thermal stress, marine heatwaves, and ocean upwelling in near-coastal regions.
作为对综合海洋观测系统(IMOS)的贡献,气象局推出了经重新处理的向日葵-8 号卫星海面温度(SST)新产品。利用辐射传输模型和贝叶斯云清除方法,每 10 分钟从地球静止卫星 Himawari-8 获取一次 SST。本文介绍的传感器特定误差统计(SSES)经验模型用于计算检索到的 SST 的偏差和标准偏差。本文讨论了 SST 检索和合成方法以及验证结果。在卫星天顶角小于 60°、质量等级大于 2 级的情况下,经热分层调整后的向日葵-8 号二级产品(L2P)表层海温与原地海温质量监测(iQuam)原地海温数据集的月度统计比较显示,偏差校正后的日间/夜间平均偏差为-0.2/-0.1 K,标准偏差为 0.4-0.7 K。为便于使用,这些原始分辨率的海温数据已采用本文介绍的一种方法进行了合成,保留了检索到的测量数据,形成了每小时、每 4 小时和每天的海温产品,并投影到 IMOS 0.02 度的矩形网格上。平均而言,4 小时产品覆盖的 IMOS 域面积≈10%,而一夜合成数据覆盖的 IMOS 域面积比典型的 1 小时合成数据≈25%。所有可用的 Himawari-8 数据都经过重新处理,时间跨度为 2015 年 9 月至 2022 年 12 月。新开发的向日葵-8 SST 数据的时间分辨率为 10 分钟,因此能够生成空间覆盖范围更广的每日合成数据,有效填补了瞬时云遮挡造成的 SST 缺口。新的向日葵-8 产品的预期效益包括提高 IMOS OceanCurrent 等应用的数据质量,以及调查近海岸地区的海洋热应力、海洋热浪和海洋上升流。
{"title":"Himawari-8 Sea Surface Temperature Products from the Australian Bureau of Meteorology","authors":"Pallavi Govekar, Christopher Griffin, Owen Embury, Jonathan Mittaz, Helen Mary Beggs, Christopher J. Merchant","doi":"10.3390/rs16183381","DOIUrl":"https://doi.org/10.3390/rs16183381","url":null,"abstract":"As a contribution to the Integrated Marine Observing System (IMOS), the Bureau of Meteorology introduces new reprocessed Himawari-8 satellite-derived Sea Surface Temperature (SST) products. The Radiative Transfer Model and a Bayesian cloud clearing method is used to retrieve SSTs every 10 min from the geostationary satellite Himawari-8. An empirical Sensor Specific Error Statistics (SSES) model, introduced herein, is applied to calculate bias and standard deviation for the retrieved SSTs. The SST retrieval and compositing method, along with validation results, are discussed. The monthly statistics for comparisons of Himawari-8 Level 2 Product (L2P) skin SST against in situ SST quality monitoring (iQuam) in situ SST datasets, adjusted for thermal stratification, showed a mean bias of −0.2/−0.1 K and a standard deviation of 0.4–0.7 K for daytime/night-time after bias correction, where satellite zenith angles were less than 60° and the quality level was greater than 2. For ease of use, these native resolution SST data have been composited using a method introduced herein that retains retrieved measurements, to hourly, 4-hourly and daily SST products, and projected onto the rectangular IMOS 0.02 degree grid. On average, 4-hourly products cover ≈10% more of the IMOS domain, while one-night composites cover ≈25% more of the IMOS domain than a typical 1 h composite. All available Himawari-8 data have been reprocessed for the September 2015–December 2022 period. The 10 min temporal resolution of the newly developed Himawari-8 SST data enables a daily composite with enhanced spatial coverage, effectively filling in SST gaps caused by transient clouds occlusion. Anticipated benefits of the new Himawari-8 products include enhanced data quality for applications like IMOS OceanCurrent and investigations into marine thermal stress, marine heatwaves, and ocean upwelling in near-coastal regions.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"44 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphological Features of Severe Ionospheric Weather Associated with Typhoon Doksuri in 2023 2023 年与台风 "杜苏芮 "有关的严重电离层天气的形态特征
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.3390/rs16183375
Wang Li, Fangsong Yang, Jiayi Yang, Renzhong Zhang, Juan Lin, Dongsheng Zhao, Craig M. Hancock
The atmospheric gravity waves (AGWs) generated by severe typhoons can facilitate the transfer of energy from the troposphere to the ionosphere, resulting in medium-scale traveling ionospheric disturbances (MSTIDs). However, the complex three-dimensional nature of MSTIDs over oceanic regions presents challenges for detection using ground-based Global Navigation Satellite System (GNSS) networks. This study employs a hybrid approach combining space-based and ground-based techniques to investigate the spatiotemporal characteristics of ionospheric perturbations during Typhoon Doksuri. Plane maps depict significant plasma fluctuations extending outward from the typhoon’s gale wind zone on 24 July, reaching distances of up to 1800 km from the typhoon’s center, while space weather conditions remained relatively calm. These ionospheric perturbations propagated at velocities between 173 m/s and 337 m/s, consistent with AGW features and associated propagation speeds. Vertical mapping reveals that energy originating from Typhoon Doksuri propagated upward through a 500 km layer, resulting in substantial enhancements of plasma density and temperature in the topside ionosphere. Notably, the topside horizontal density gradient was 1.5 to 2 times greater than that observed in the bottom-side ionosphere. Both modeling and observational data convincingly demonstrate that the weak background winds favored the generation of AGWs associated with Typhoon Doksuri, influencing the development of distinct MSTIDs.
强台风产生的大气重力波(AGWs)可促进能量从对流层向电离层转移,从而导致中尺度巡回电离层扰动(MSTIDs)。然而,海洋区域上空的中尺度巡回电离层扰动具有复杂的三维性质,这给使用地基全球导航卫星系统(GNSS)网络进行探测带来了挑战。本研究采用天基和地基技术相结合的混合方法,研究台风 "杜苏芮 "期间电离层扰动的时空特征。平面图描绘了 7 月 24 日从台风大风区向外延伸的显著等离子体波动,距离台风中心达 1800 公里,而空间天气条件仍然相对平静。这些电离层扰动的传播速度介于 173 米/秒和 337 米/秒之间,符合 AGW 特征和相关传播速度。垂直分布图显示,台风 "杜苏芮 "的能量通过 500 千米层向上传播,导致顶部电离层的等离子体密度和温度大幅提高。值得注意的是,顶部水平密度梯度是底部电离层观测到的密度梯度的 1.5 到 2 倍。建模和观测数据都令人信服地表明,弱背景风有利于与台风 "杜苏芮 "相关的 AGW 的生成,影响了独特的 MSTID 的发展。
{"title":"Morphological Features of Severe Ionospheric Weather Associated with Typhoon Doksuri in 2023","authors":"Wang Li, Fangsong Yang, Jiayi Yang, Renzhong Zhang, Juan Lin, Dongsheng Zhao, Craig M. Hancock","doi":"10.3390/rs16183375","DOIUrl":"https://doi.org/10.3390/rs16183375","url":null,"abstract":"The atmospheric gravity waves (AGWs) generated by severe typhoons can facilitate the transfer of energy from the troposphere to the ionosphere, resulting in medium-scale traveling ionospheric disturbances (MSTIDs). However, the complex three-dimensional nature of MSTIDs over oceanic regions presents challenges for detection using ground-based Global Navigation Satellite System (GNSS) networks. This study employs a hybrid approach combining space-based and ground-based techniques to investigate the spatiotemporal characteristics of ionospheric perturbations during Typhoon Doksuri. Plane maps depict significant plasma fluctuations extending outward from the typhoon’s gale wind zone on 24 July, reaching distances of up to 1800 km from the typhoon’s center, while space weather conditions remained relatively calm. These ionospheric perturbations propagated at velocities between 173 m/s and 337 m/s, consistent with AGW features and associated propagation speeds. Vertical mapping reveals that energy originating from Typhoon Doksuri propagated upward through a 500 km layer, resulting in substantial enhancements of plasma density and temperature in the topside ionosphere. Notably, the topside horizontal density gradient was 1.5 to 2 times greater than that observed in the bottom-side ionosphere. Both modeling and observational data convincingly demonstrate that the weak background winds favored the generation of AGWs associated with Typhoon Doksuri, influencing the development of distinct MSTIDs.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"1 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ANN-Based Filtering of Drone LiDAR in Coastal Salt Marshes Using Spatial–Spectral Features 利用空间光谱特征对沿海盐沼中的无人机激光雷达进行基于 ANN 的过滤
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.3390/rs16183373
Kunbo Liu, Shuai Liu, Kai Tan, Mingbo Yin, Pengjie Tao
Salt marshes provide diverse habitats for a wide range of creatures and play a key defensive and buffering role in resisting extreme marine hazards for coastal communities. Accurately obtaining the terrains of salt marshes is crucial for the comprehensive management and conservation of coastal resources and ecology. However, dense vegetation coverage, periodic tide inundation, and pervasive ditch distribution create challenges for measuring or estimating salt marsh terrains. These environmental factors make most existing techniques and methods ineffective in terms of data acquisition resolution, accuracy, and efficiency. Drone multi-line light detection and ranging (LiDAR) has offered a fire-new perspective in the 3D point cloud data acquisition and potentially exhibited great superiority in accurately deriving salt marsh terrains. The prerequisite for terrain characterization from drone multi-line LiDAR data is point cloud filtering, which means that ground points must be discriminated from the non-ground points. Existing filtering methods typically rely on either LiDAR geometric or intensity features. These methods may not perform well in salt marshes with dense, diverse, and complex vegetation. This study proposes a new filtering method for drone multi-line LiDAR point clouds in salt marshes based on the artificial neural network (ANN) machine learning model. First, a series of spatial–spectral features at the individual (e.g., elevation, distance, and intensity) and neighborhood (e.g., eigenvalues, linearity, and sphericity) scales are derived from the original data. Then, the derived spatial–spectral features are selected to remove the related and redundant ones for optimizing the performance of the ANN model. Finally, the reserved features are integrated as input variables in the ANN model to characterize their nonlinear relationships with the point categories (ground or non-ground) at different perspectives. A case study of two typical salt marshes at the mouth of the Yangtze River, using a drone 6-line LiDAR, demonstrates the effectiveness and generalization of the proposed filtering method. The average G-mean and AUC achieved were 0.9441 and 0.9450, respectively, outperforming traditional geometric information-based methods and other advanced machine learning methods, as well as the deep learning model (RandLA-Net). Additionally, the integration of spatial–spectral features at individual–neighborhood scales results in better filtering outcomes than using either single-type or single-scale features. The proposed method offers an innovative strategy for drone LiDAR point cloud filtering and salt marsh terrain derivation under the novel solution of deeply integrating geometric and radiometric data.
盐沼为多种生物提供了多样化的栖息地,在抵御极端海洋灾害方面为沿海社区发挥着重要的防御和缓冲作用。准确获取盐沼地形对于沿海资源和生态的综合管理和保护至关重要。然而,茂密的植被覆盖、周期性的潮水淹没和无处不在的沟渠分布,给盐沼地形的测量或估算带来了挑战。这些环境因素使得大多数现有技术和方法在数据采集分辨率、准确性和效率方面效果不佳。无人机多线光探测与测距(LiDAR)为三维点云数据采集提供了一个全新的视角,在准确推导盐沼地形方面可能表现出巨大的优势。利用无人机多线激光雷达数据进行地形特征描述的前提是点云过滤,这意味着必须将地面点与非地面点区分开来。现有的过滤方法通常依赖于激光雷达的几何特征或强度特征。这些方法在植被茂密、多样且复杂的盐沼中可能效果不佳。本研究基于人工神经网络(ANN)机器学习模型,提出了一种新的盐沼无人机多线激光雷达点云过滤方法。首先,从原始数据中导出一系列单个(如高程、距离和强度)和邻域(如特征值、线性度和球度)尺度的空间光谱特征。然后,对得出的空间光谱特征进行筛选,去除相关和冗余特征,以优化 ANN 模型的性能。最后,将保留的特征作为输入变量整合到 ANN 模型中,以描述它们与不同视角下的点类别(地面或非地面)之间的非线性关系。利用无人机 6 线激光雷达对长江口两片典型盐碱地进行了案例研究,证明了所提滤波方法的有效性和普适性。所获得的平均 G 均值和 AUC 分别为 0.9441 和 0.9450,优于传统的基于几何信息的方法和其他先进的机器学习方法,以及深度学习模型(RandLA-Net)。此外,与使用单一类型或单一尺度的特征相比,整合单个邻域尺度的空间光谱特征能带来更好的过滤效果。所提出的方法为无人机激光雷达点云滤波和盐沼地形推导提供了一种创新策略,是几何数据和辐射数据深度整合的新颖解决方案。
{"title":"ANN-Based Filtering of Drone LiDAR in Coastal Salt Marshes Using Spatial–Spectral Features","authors":"Kunbo Liu, Shuai Liu, Kai Tan, Mingbo Yin, Pengjie Tao","doi":"10.3390/rs16183373","DOIUrl":"https://doi.org/10.3390/rs16183373","url":null,"abstract":"Salt marshes provide diverse habitats for a wide range of creatures and play a key defensive and buffering role in resisting extreme marine hazards for coastal communities. Accurately obtaining the terrains of salt marshes is crucial for the comprehensive management and conservation of coastal resources and ecology. However, dense vegetation coverage, periodic tide inundation, and pervasive ditch distribution create challenges for measuring or estimating salt marsh terrains. These environmental factors make most existing techniques and methods ineffective in terms of data acquisition resolution, accuracy, and efficiency. Drone multi-line light detection and ranging (LiDAR) has offered a fire-new perspective in the 3D point cloud data acquisition and potentially exhibited great superiority in accurately deriving salt marsh terrains. The prerequisite for terrain characterization from drone multi-line LiDAR data is point cloud filtering, which means that ground points must be discriminated from the non-ground points. Existing filtering methods typically rely on either LiDAR geometric or intensity features. These methods may not perform well in salt marshes with dense, diverse, and complex vegetation. This study proposes a new filtering method for drone multi-line LiDAR point clouds in salt marshes based on the artificial neural network (ANN) machine learning model. First, a series of spatial–spectral features at the individual (e.g., elevation, distance, and intensity) and neighborhood (e.g., eigenvalues, linearity, and sphericity) scales are derived from the original data. Then, the derived spatial–spectral features are selected to remove the related and redundant ones for optimizing the performance of the ANN model. Finally, the reserved features are integrated as input variables in the ANN model to characterize their nonlinear relationships with the point categories (ground or non-ground) at different perspectives. A case study of two typical salt marshes at the mouth of the Yangtze River, using a drone 6-line LiDAR, demonstrates the effectiveness and generalization of the proposed filtering method. The average G-mean and AUC achieved were 0.9441 and 0.9450, respectively, outperforming traditional geometric information-based methods and other advanced machine learning methods, as well as the deep learning model (RandLA-Net). Additionally, the integration of spatial–spectral features at individual–neighborhood scales results in better filtering outcomes than using either single-type or single-scale features. The proposed method offers an innovative strategy for drone LiDAR point cloud filtering and salt marsh terrain derivation under the novel solution of deeply integrating geometric and radiometric data.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"60 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Alfalfa Biomass Prediction: An Innovative Framework Using Remote Sensing Data 加强紫花苜蓿生物量预测:利用遥感数据的创新框架
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.3390/rs16183379
Matias F. Lucero, Carlos M. Hernández, Ana J. P. Carcedo, Ariel Zajdband, Pierre C. Guillevic, Rasmus Houborg, Kevin Hamilton, Ignacio A. Ciampitti
Estimating pasture biomass has emerged as a promising avenue to assist farmers in identifying the best cutting times for maximizing biomass yield using satellite data. This study aims to develop an innovative framework integrating field and satellite data to estimate aboveground biomass in alfalfa (Medicago sativa L.) at farm scale. For this purpose, samples were collected throughout the 2022 growing season on different mowing dates at three fields in Kansas, USA. The satellite data employed comprised four sources: Sentinel-2, PlanetScope, Planet Fusion, and Biomass Proxy. A grid of hyperparameters was created to establish different combinations and select the best coefficients. The permutation feature importance technique revealed that the Planet’s PlanetScope near-infrared (NIR) band and the Biomass Proxy product were the predictive features with the highest contribution to the biomass prediction model’s. A Bayesian Additive Regression Tree (BART) was applied to explore its ability to build a predictive model. Its performance was assessed via statistical metrics (r2: 0.61; RMSE: 0.29 kg.m−2). Additionally, uncertainty quantifications were proposed with this framework to assess the range of error in the predictions. In conclusion, this integration in a nonparametric approach achieved a useful predicting tool with the potential to optimize farmers’ management decisions.
利用卫星数据估算牧草生物量已成为一种很有前途的方法,可帮助农民确定最佳割草时间,从而最大限度地提高生物量产量。本研究旨在开发一个创新框架,整合田间数据和卫星数据,以估算农场规模的紫花苜蓿(Medicago sativa L.)地上生物量。为此,研究人员在美国堪萨斯州三块田地的不同刈割日期收集了 2022 年整个生长季节的样本。采用的卫星数据有四个来源:哨兵-2、PlanetScope、Planet Fusion 和生物量代理。创建了一个超参数网格,以建立不同的组合并选择最佳系数。排列特征重要性技术显示,PlanetScope 的近红外波段和生物量代理产品是对生物量预测模型贡献最大的预测特征。应用贝叶斯加性回归树(BART)来探索其建立预测模型的能力。其性能通过统计指标进行评估(r2:0.61;RMSE:0.29 kg.m-2)。此外,该框架还提出了不确定性量化方法,以评估预测的误差范围。总之,这种非参数方法的整合提供了一种有用的预测工具,具有优化农民管理决策的潜力。
{"title":"Enhancing Alfalfa Biomass Prediction: An Innovative Framework Using Remote Sensing Data","authors":"Matias F. Lucero, Carlos M. Hernández, Ana J. P. Carcedo, Ariel Zajdband, Pierre C. Guillevic, Rasmus Houborg, Kevin Hamilton, Ignacio A. Ciampitti","doi":"10.3390/rs16183379","DOIUrl":"https://doi.org/10.3390/rs16183379","url":null,"abstract":"Estimating pasture biomass has emerged as a promising avenue to assist farmers in identifying the best cutting times for maximizing biomass yield using satellite data. This study aims to develop an innovative framework integrating field and satellite data to estimate aboveground biomass in alfalfa (Medicago sativa L.) at farm scale. For this purpose, samples were collected throughout the 2022 growing season on different mowing dates at three fields in Kansas, USA. The satellite data employed comprised four sources: Sentinel-2, PlanetScope, Planet Fusion, and Biomass Proxy. A grid of hyperparameters was created to establish different combinations and select the best coefficients. The permutation feature importance technique revealed that the Planet’s PlanetScope near-infrared (NIR) band and the Biomass Proxy product were the predictive features with the highest contribution to the biomass prediction model’s. A Bayesian Additive Regression Tree (BART) was applied to explore its ability to build a predictive model. Its performance was assessed via statistical metrics (r2: 0.61; RMSE: 0.29 kg.m−2). Additionally, uncertainty quantifications were proposed with this framework to assess the range of error in the predictions. In conclusion, this integration in a nonparametric approach achieved a useful predicting tool with the potential to optimize farmers’ management decisions.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"163 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thorough Understanding and 3D Super-Resolution Imaging for Forward-Looking Missile-Borne SAR via a Maneuvering Trajectory 通过机动轨迹对前视导弹载合成孔径雷达进行透彻理解和三维超分辨率成像
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.3390/rs16183378
Tong Gu, Yifan Guo, Chen Zhao, Jian Zhang, Tao Zhang, Guisheng Liao
For missile-borne platforms, traditional SAR technology consistently encounters two significant shortcomings: geometric distortion of 2D images and the inability to achieve forward-looking imaging. To address these issues, this paper explores the feasibility of using a maneuvering trajectory to enable forward-looking and three-dimensional imaging by analyzing the maneuvering characteristics of an actual missile-borne platform. Additionally, it derives the corresponding resolution characterization model, which lays a theoretical foundation for future applications. Building on this, the paper proposes a three-dimensional super-resolution imaging algorithm that combines axis rotation with compressed sensing. The axis rotation not only realizes the dimensionality reduction of data, but also can expand the observation scenario in the cross-track dimension. The proposed algorithm first focuses on the track-vertical plane to extract 2D position parameters. Then, a compressed sensing-based process is applied to extract reflection coefficients and super-resolution cross-track position parameters, thereby achieving precise 3D imaging reconstruction. Finally, numerical simulation results confirm the effectiveness and accuracy of the proposed algorithm.
对于导弹搭载平台而言,传统合成孔径雷达技术始终存在两个重大缺陷:二维图像的几何失真和无法实现前视成像。为了解决这些问题,本文通过分析实际导弹搭载平台的机动特性,探讨了利用机动轨迹实现前视和三维成像的可行性。此外,本文还推导出了相应的分辨率表征模型,为未来的应用奠定了理论基础。在此基础上,本文提出了一种结合轴旋转和压缩传感的三维超分辨率成像算法。轴旋转不仅实现了数据的降维,还能在跨轨迹维度上拓展观测场景。所提出的算法首先以轨道垂直面为重点,提取二维位置参数。然后,应用基于压缩传感的流程提取反射系数和超分辨率跨轨迹位置参数,从而实现精确的三维成像重建。最后,数值模拟结果证实了所提算法的有效性和准确性。
{"title":"Thorough Understanding and 3D Super-Resolution Imaging for Forward-Looking Missile-Borne SAR via a Maneuvering Trajectory","authors":"Tong Gu, Yifan Guo, Chen Zhao, Jian Zhang, Tao Zhang, Guisheng Liao","doi":"10.3390/rs16183378","DOIUrl":"https://doi.org/10.3390/rs16183378","url":null,"abstract":"For missile-borne platforms, traditional SAR technology consistently encounters two significant shortcomings: geometric distortion of 2D images and the inability to achieve forward-looking imaging. To address these issues, this paper explores the feasibility of using a maneuvering trajectory to enable forward-looking and three-dimensional imaging by analyzing the maneuvering characteristics of an actual missile-borne platform. Additionally, it derives the corresponding resolution characterization model, which lays a theoretical foundation for future applications. Building on this, the paper proposes a three-dimensional super-resolution imaging algorithm that combines axis rotation with compressed sensing. The axis rotation not only realizes the dimensionality reduction of data, but also can expand the observation scenario in the cross-track dimension. The proposed algorithm first focuses on the track-vertical plane to extract 2D position parameters. Then, a compressed sensing-based process is applied to extract reflection coefficients and super-resolution cross-track position parameters, thereby achieving precise 3D imaging reconstruction. Finally, numerical simulation results confirm the effectiveness and accuracy of the proposed algorithm.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"4 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationship between Vegetation and Soil Moisture Anomalies Based on Remote Sensing Data: A Semiarid Rangeland Case 基于遥感数据的植被与土壤水分异常之间的关系:半干旱牧场案例
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.3390/rs16183369
Juan José Martín-Sotoca, Ernesto Sanz, Antonio Saa-Requejo, Rubén Moratiel, Andrés F. Almeida-Ñauñay, Ana M. Tarquis
The dynamic of rangelands results from complex interactions between vegetation, soil, climate, and human activity. This scenario makes rangeland’s condition challenging to monitor, and degradation assessment should be carefully considered when studying grazing pressures. In the present work, we study the interaction of vegetation and soil moisture in semiarid rangelands using vegetation and soil moisture indices. We aim to study the feasibility of using soil moisture negative anomalies as a warning index for vegetation or agricultural drought. Two semiarid agricultural regions were selected in Spain for this study: Los Vélez (Almería) and Bajo Aragón (Teruel). MODIS images, with 250 m and 500 m spatial resolution, from 2002 to 2019, were acquired to calculate the Vegetation Condition Index (VCI) and the Water Condition Index (WCI) based on the Normalised Difference Vegetation Index (NDVI) and soil moisture component (W), respectively. The Optical Trapezoid Model (OPTRAM) estimated this latter W index. From them, the anomaly (Z-score) for each index was calculated, being ZVCI and ZWCI, respectively. The probability of coincidence of their negative anomalies was calculated every 10 days (10-day periods). The results show that for specific months, the ZWCI had a strong probability of informing in advance, where the negative ZVCI will decrease. Soil moisture content and vegetation indices show more similar dynamics in the months with lower temperatures (from autumn to spring). In these months, given the low temperatures, precipitation leads to vegetation growth. In the following months, water availability depends on evapotranspiration and vegetation type as the temperature rises and the precipitation falls. The stronger relationship between vegetation and precipitation from autumn to the beginning of spring is reflected in the feasibility of ZWCI to aid the prediction of ZVCI. During these months, using ZWCI as a warning index is possible for both areas studied. Notably, November to the beginning of February showed an average increase of 20–30% in the predictability of vegetation anomalies, knowing moisture soil anomalies four lags in advance. We found other periods of relevant increment in the predictability, such as March and April for Los Vélez, and from July to September for Bajo Aragón.
牧场的动态变化源于植被、土壤、气候和人类活动之间复杂的相互作用。在这种情况下,牧场状况的监测具有挑战性,在研究放牧压力时应仔细考虑退化评估。在本研究中,我们利用植被和土壤水分指数研究了半干旱牧场植被和土壤水分的相互作用。我们旨在研究利用土壤水分负异常作为植被或农业干旱预警指数的可行性。这项研究选择了西班牙的两个半干旱农业地区:Los Vélez(阿尔梅里亚)和 Bajo Aragón(特鲁埃尔)。采集了 2002 年至 2019 年空间分辨率分别为 250 米和 500 米的 MODIS 图像,分别根据归一化差异植被指数(NDVI)和土壤水分分量(W)计算植被状况指数(VCI)和水分状况指数(WCI)。光学梯形模型(OPTRAM)估算了后一种 W 指数。由此计算出每个指数的异常值(Z 值),分别为 ZVCI 和 ZWCI。每 10 天(10 天周期)计算一次它们的负异常重合概率。结果表明,在特定月份,ZWCI 很有可能提前预报 ZVCI 负值将下降的情况。在气温较低的月份(秋季至春季),土壤含水量和植被指数显示出更相似的动态。在这些月份,由于气温较低,降水导致植被生长。在接下来的月份里,随着气温的升高和降水量的减少,水分供应量取决于蒸散量和植被类型。从秋季到春季开始,植被与降水之间的关系更加密切,这反映在 ZWCI 预测 ZVCI 的可行性上。在这几个月中,将 ZWCI 作为预警指数在所研究的两个地区都是可行的。值得注意的是,从 11 月到 2 月初,植被异常的可预测性平均提高了 20%-30%,提前四个滞后期知道湿度土壤异常。我们还发现其他可预测性增加的时期,如洛斯韦莱兹的 3 月和 4 月,以及下阿拉贡的 7 月至 9 月。
{"title":"Relationship between Vegetation and Soil Moisture Anomalies Based on Remote Sensing Data: A Semiarid Rangeland Case","authors":"Juan José Martín-Sotoca, Ernesto Sanz, Antonio Saa-Requejo, Rubén Moratiel, Andrés F. Almeida-Ñauñay, Ana M. Tarquis","doi":"10.3390/rs16183369","DOIUrl":"https://doi.org/10.3390/rs16183369","url":null,"abstract":"The dynamic of rangelands results from complex interactions between vegetation, soil, climate, and human activity. This scenario makes rangeland’s condition challenging to monitor, and degradation assessment should be carefully considered when studying grazing pressures. In the present work, we study the interaction of vegetation and soil moisture in semiarid rangelands using vegetation and soil moisture indices. We aim to study the feasibility of using soil moisture negative anomalies as a warning index for vegetation or agricultural drought. Two semiarid agricultural regions were selected in Spain for this study: Los Vélez (Almería) and Bajo Aragón (Teruel). MODIS images, with 250 m and 500 m spatial resolution, from 2002 to 2019, were acquired to calculate the Vegetation Condition Index (VCI) and the Water Condition Index (WCI) based on the Normalised Difference Vegetation Index (NDVI) and soil moisture component (W), respectively. The Optical Trapezoid Model (OPTRAM) estimated this latter W index. From them, the anomaly (Z-score) for each index was calculated, being ZVCI and ZWCI, respectively. The probability of coincidence of their negative anomalies was calculated every 10 days (10-day periods). The results show that for specific months, the ZWCI had a strong probability of informing in advance, where the negative ZVCI will decrease. Soil moisture content and vegetation indices show more similar dynamics in the months with lower temperatures (from autumn to spring). In these months, given the low temperatures, precipitation leads to vegetation growth. In the following months, water availability depends on evapotranspiration and vegetation type as the temperature rises and the precipitation falls. The stronger relationship between vegetation and precipitation from autumn to the beginning of spring is reflected in the feasibility of ZWCI to aid the prediction of ZVCI. During these months, using ZWCI as a warning index is possible for both areas studied. Notably, November to the beginning of February showed an average increase of 20–30% in the predictability of vegetation anomalies, knowing moisture soil anomalies four lags in advance. We found other periods of relevant increment in the predictability, such as March and April for Los Vélez, and from July to September for Bajo Aragón.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"17 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ICTH: Local-to-Global Spectral Reconstruction Network for Heterosource Hyperspectral Images ICTH:异源高光谱图像从局部到全局的光谱重建网络
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-11 DOI: 10.3390/rs16183377
Haozhe Zhou, Zhanhao Liu, Zhenpu Huang, Xuguang Wang, Wen Su, Yanchao Zhang
To address the high cost associated with acquiring hyperspectral data, spectral reconstruction (SR) has emerged as a prominent research area. However, contemporary SR techniques are more focused on image processing tasks in computer vision than on practical applications. Furthermore, the prevalent approach of employing single-dimensional features to guide reconstruction, aimed at reducing computational overhead, invariably compromises reconstruction accuracy, particularly in complex environments with intricate ground features and severe spectral mixing. Effectively utilizing both local and global information in spatial and spectral dimensions for spectral reconstruction remains a significant challenge. To tackle these challenges, this study proposes an integrated network of 3D CNN and U-shaped Transformer for heterogeneous spectral reconstruction, ICTH, which comprises a shallow feature extraction module (CSSM) and a deep feature extraction module (TDEM), implementing a coarse-to-fine spectral reconstruction scheme. To minimize information loss, we designed a novel spatial–spectral attention module (S2AM) as the foundation for constructing a U-transformer, enhancing the capture of long-range information across all dimensions. On three hyperspectral datasets, ICTH has exhibited remarkable strengths across quantitative, qualitative, and single-band detail assessments, while also revealing significant potential for subsequent applications, such as generalizability and vegetation index calculations) in two real-world datasets.
为了解决与获取高光谱数据相关的高成本问题,光谱重建(SR)已成为一个突出的研究领域。然而,当代的光谱重建技术更侧重于计算机视觉中的图像处理任务,而非实际应用。此外,为了减少计算开销,普遍采用单维度特征来指导重建,这无形中降低了重建精度,尤其是在地面特征错综复杂、光谱混合严重的复杂环境中。有效利用空间和光谱维度的局部和全局信息进行光谱重建仍然是一项重大挑战。为了应对这些挑战,本研究提出了一种用于异构光谱重建的三维 CNN 和 U 型变换器集成网络 ICTH,它由浅层特征提取模块(CSSM)和深层特征提取模块(TDEM)组成,实现了从粗到细的光谱重建方案。为了最大限度地减少信息损失,我们设计了一个新颖的空间-光谱关注模块(S2AM),作为构建 U 型变换器的基础,增强了对所有维度长距离信息的捕捉。在三个高光谱数据集上,ICTH 在定量、定性和单波段细节评估方面都表现出了显著的优势,同时在两个真实世界数据集上也显示出了后续应用的巨大潜力,如通用性和植被指数计算。
{"title":"ICTH: Local-to-Global Spectral Reconstruction Network for Heterosource Hyperspectral Images","authors":"Haozhe Zhou, Zhanhao Liu, Zhenpu Huang, Xuguang Wang, Wen Su, Yanchao Zhang","doi":"10.3390/rs16183377","DOIUrl":"https://doi.org/10.3390/rs16183377","url":null,"abstract":"To address the high cost associated with acquiring hyperspectral data, spectral reconstruction (SR) has emerged as a prominent research area. However, contemporary SR techniques are more focused on image processing tasks in computer vision than on practical applications. Furthermore, the prevalent approach of employing single-dimensional features to guide reconstruction, aimed at reducing computational overhead, invariably compromises reconstruction accuracy, particularly in complex environments with intricate ground features and severe spectral mixing. Effectively utilizing both local and global information in spatial and spectral dimensions for spectral reconstruction remains a significant challenge. To tackle these challenges, this study proposes an integrated network of 3D CNN and U-shaped Transformer for heterogeneous spectral reconstruction, ICTH, which comprises a shallow feature extraction module (CSSM) and a deep feature extraction module (TDEM), implementing a coarse-to-fine spectral reconstruction scheme. To minimize information loss, we designed a novel spatial–spectral attention module (S2AM) as the foundation for constructing a U-transformer, enhancing the capture of long-range information across all dimensions. On three hyperspectral datasets, ICTH has exhibited remarkable strengths across quantitative, qualitative, and single-band detail assessments, while also revealing significant potential for subsequent applications, such as generalizability and vegetation index calculations) in two real-world datasets.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"7 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a Near-Field Synthetic Aperture Radar Imaging System Based on Improved RMA 基于改进型 RMA 的近场合成孔径雷达成像系统设计
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-09 DOI: 10.3390/rs16173342
Yongcheng Li, Huaqiang Xu, Jiawei Xu, Hao Chen, Qiying An, Kangming Hou, Jingjing Wang
Traditional near-field synthetic aperture radar (SAR) imaging algorithms reveal target features by exploiting signal amplitude and phase information. However, electromagnetic wave propagation is constrained by short distance. Therefore, the spherical wave approximation needs to be considered. In addition, it is also limited by equipment ambient noise, azimuth-distance coupling, wave scattering, and transmission power. Both the amplitude and phase of the signal suffer from the interference of multiple clutter, so they cannot be effectively utilized. To address these issues, this paper introduces a covering penetration detection system based on an improved Range Migration Algorithm (IMRMA) imaging method. Firstly, the proposed method minimizes interferences from the front end of the system using an optimized window to balance denoising and information preservation. Next, interval non-uniform interpolation, instead of Stolt interpolation decoupling, is employed to reduce the computational overhead significantly. To minimize the effects due to wave scattering and propagation loss, distance information is enhanced using amplitude and phase compensation. This reduces scattering effects and enhances image quality. An experimental system is constructed based on a vector network analyzer (VNA) to image the target. The proposed method takes about half the time of traditional RMA. The PSNR in the chunky bowl experiment is higher than 14 dB, which is higher than all the compared methods in the paper. The test results show that the designed system and the reported method can effectively achieve high-resolution images by strengthening the target intensity and suppressing the environmental artifacts.
传统的近场合成孔径雷达(SAR)成像算法通过利用信号振幅和相位信息来揭示目标特征。然而,电磁波的传播受到短距离的限制。因此,需要考虑球面波近似。此外,它还受到设备环境噪声、方位-距离耦合、波散射和传输功率的限制。信号的振幅和相位都会受到多重杂波的干扰,因此无法有效利用。针对这些问题,本文介绍了一种基于改进范围迁移算法(IMRMA)成像方法的覆盖穿透探测系统。首先,所提出的方法利用优化窗口将来自系统前端的干扰降至最低,以平衡去噪和信息保存。其次,采用区间非均匀插值代替 Stolt 插值去耦,以显著降低计算开销。为了尽量减少波散射和传播损耗造成的影响,利用振幅和相位补偿增强了距离信息。这样可以减少散射效应,提高图像质量。基于矢量网络分析仪(VNA)构建了一个实验系统,对目标进行成像。提议的方法所需的时间约为传统 RMA 的一半。大块碗实验中的 PSNR 高于 14 dB,高于本文中所有比较过的方法。测试结果表明,所设计的系统和所报告的方法可以通过增强目标强度和抑制环境伪影来有效实现高分辨率图像。
{"title":"Design of a Near-Field Synthetic Aperture Radar Imaging System Based on Improved RMA","authors":"Yongcheng Li, Huaqiang Xu, Jiawei Xu, Hao Chen, Qiying An, Kangming Hou, Jingjing Wang","doi":"10.3390/rs16173342","DOIUrl":"https://doi.org/10.3390/rs16173342","url":null,"abstract":"Traditional near-field synthetic aperture radar (SAR) imaging algorithms reveal target features by exploiting signal amplitude and phase information. However, electromagnetic wave propagation is constrained by short distance. Therefore, the spherical wave approximation needs to be considered. In addition, it is also limited by equipment ambient noise, azimuth-distance coupling, wave scattering, and transmission power. Both the amplitude and phase of the signal suffer from the interference of multiple clutter, so they cannot be effectively utilized. To address these issues, this paper introduces a covering penetration detection system based on an improved Range Migration Algorithm (IMRMA) imaging method. Firstly, the proposed method minimizes interferences from the front end of the system using an optimized window to balance denoising and information preservation. Next, interval non-uniform interpolation, instead of Stolt interpolation decoupling, is employed to reduce the computational overhead significantly. To minimize the effects due to wave scattering and propagation loss, distance information is enhanced using amplitude and phase compensation. This reduces scattering effects and enhances image quality. An experimental system is constructed based on a vector network analyzer (VNA) to image the target. The proposed method takes about half the time of traditional RMA. The PSNR in the chunky bowl experiment is higher than 14 dB, which is higher than all the compared methods in the paper. The test results show that the designed system and the reported method can effectively achieve high-resolution images by strengthening the target intensity and suppressing the environmental artifacts.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"90 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on ELoran Demodulation Algorithm Based on Multiclass Support Vector Machine 基于多类支持向量机的 ELoran 解调算法研究
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-09 DOI: 10.3390/rs16173349
Shiyao Liu, Baorong Yan, Wei Guo, Yu Hua, Shougang Zhang, Jun Lu, Lu Xu, Dong Yang
Demodulation and decoding are pivotal for the eLoran system’s timing and information transmission capabilities. This paper proposes a novel demodulation algorithm leveraging a multiclass support vector machine (MSVM) for pulse position modulation (PPM) of eLoran signals. Firstly, the existing demodulation method based on envelope phase detection (EPD) technology is reviewed, highlighting its limitations. Secondly, a detailed exposition of the MSVM algorithm is presented, demonstrating its theoretical foundations and comparative advantages over the traditional method and several other methods proposed in this study. Subsequently, through comprehensive experiments, the algorithm parameters are optimized, and the parallel comparison of different demodulation methods is carried out in various complex environments. The test results show that the MSVM algorithm is significantly superior to traditional methods and other kinds of machine learning algorithms in demodulation accuracy and stability, particularly in high-noise and -interference scenarios. This innovative algorithm not only broadens the design approach for eLoran receivers but also fully meets the high-precision timing service requirements of the eLoran system.
解调和解码对 eLoran 系统的定时和信息传输能力至关重要。本文针对 eLoran 信号的脉冲位置调制(PPM),提出了一种利用多类支持向量机(MSVM)的新型解调算法。首先,回顾了基于包络相位检测(EPD)技术的现有解调方法,强调了其局限性。其次,详细阐述了 MSVM 算法,展示了其理论基础以及与传统方法和本研究提出的其他几种方法相比的优势。随后,通过综合实验,对算法参数进行了优化,并在各种复杂环境下对不同的解调方法进行了并行比较。测试结果表明,MSVM 算法在解调精度和稳定性方面明显优于传统方法和其他类型的机器学习算法,尤其是在高噪声和高干扰场景下。这一创新算法不仅拓宽了 eLoran 接收机的设计思路,而且完全满足了 eLoran 系统对高精度授时服务的要求。
{"title":"Research on ELoran Demodulation Algorithm Based on Multiclass Support Vector Machine","authors":"Shiyao Liu, Baorong Yan, Wei Guo, Yu Hua, Shougang Zhang, Jun Lu, Lu Xu, Dong Yang","doi":"10.3390/rs16173349","DOIUrl":"https://doi.org/10.3390/rs16173349","url":null,"abstract":"Demodulation and decoding are pivotal for the eLoran system’s timing and information transmission capabilities. This paper proposes a novel demodulation algorithm leveraging a multiclass support vector machine (MSVM) for pulse position modulation (PPM) of eLoran signals. Firstly, the existing demodulation method based on envelope phase detection (EPD) technology is reviewed, highlighting its limitations. Secondly, a detailed exposition of the MSVM algorithm is presented, demonstrating its theoretical foundations and comparative advantages over the traditional method and several other methods proposed in this study. Subsequently, through comprehensive experiments, the algorithm parameters are optimized, and the parallel comparison of different demodulation methods is carried out in various complex environments. The test results show that the MSVM algorithm is significantly superior to traditional methods and other kinds of machine learning algorithms in demodulation accuracy and stability, particularly in high-noise and -interference scenarios. This innovative algorithm not only broadens the design approach for eLoran receivers but also fully meets the high-precision timing service requirements of the eLoran system.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"28 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying Qiyi Glacier Surface Dirtiness Using UAV and Sentinel-2 Imagery 利用无人机和哨兵-2 图像量化祁连冰川表面的污浊程度
IF 5 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2024-09-09 DOI: 10.3390/rs16173351
Jiangtao Chen, Ninglian Wang, Yuwei Wu, Anan Chen, Chenlie Shi, Mingjie Zhao, Longjiang Xie
The glacier surface is composed not only of ice or snow but also of a heterogeneous mixture of various materials. The presence of light-absorbing impurities darkens the glacier surface, reducing local reflectance and thereby accelerating the glacier melting process. However, our understanding of the spatial distribution of these impurities remains limited, and there is a lack of studies on quantifying the dirty degree of glacier surfaces. During the Sentinel satellite overpass on 21 August 2023, we used an ASD FieldSpec3 spectrometer to measure the reflectance spectra of glacier surfaces with varying degrees of dirtiness on the Qiyi glacier, Qinghai–Tibet Plateau. Using Multiple Endmember Spectral Mixture Analysis (MESMA), the Sentinel imagery was decomposed to generate fraction images of five primary ice surface materials as follows: coarse-grained snow, slightly dirty ice, moderately dirty ice, extremely dirty ice, and debris. Using unmanned aerial vehicle (UAV) imagery with a 0.05 m resolution, the primary ice surface was delineated and utilized as reference data to validate the fraction images. The findings revealed a strong correlation between the fraction images and the reference data (R2 ≥ 0.66, RMSE ≤ 0.21). Based on pixel-based classification from the UAV imagery, approximately 80% of the glacier surface is covered by slightly dirty ice (19.2%), moderately dirty ice (33.3%), extremely dirty ice (26.3%), and debris (1.2%), which significantly contributes to its darkening. Our study demonstrates the effectiveness of using Sentinel imagery in conjunction with MESMA to map the degree of glacier surface dirtiness accurately.
冰川表面不仅由冰或雪构成,还由各种材料的异质混合物构成。吸光杂质的存在会使冰川表面变暗,降低局部反射率,从而加速冰川融化过程。然而,我们对这些杂质空间分布的了解仍然有限,也缺乏对冰川表面脏污程度的量化研究。在2023年8月21日 "哨兵 "卫星飞越青藏高原期间,我们使用ASD FieldSpec3光谱仪测量了青藏高原七一冰川不同脏污程度冰川表面的反射光谱。利用多端成员光谱混合分析法(MESMA),对哨兵图像进行分解,生成以下五种主要冰面材料的分量图像:粗粒雪、轻微脏冰、中度脏冰、极度脏冰和碎屑。利用分辨率为 0.05 米的无人飞行器 (UAV) 图像,对主冰面进行了划定,并将其作为验证碎屑图像的参考数据。研究结果表明,馏分图像与参考数据之间具有很强的相关性(R2 ≥ 0.66,RMSE ≤ 0.21)。根据无人机图像的像素分类,约 80% 的冰川表面被轻度脏冰(19.2%)、中度脏冰(33.3%)、极度脏冰(26.3%)和碎屑(1.2%)覆盖,这在很大程度上导致了冰川变暗。我们的研究表明,将哨兵成像与 MESMA 结合使用,可有效准确地测绘冰川表面的脏污程度。
{"title":"Quantifying Qiyi Glacier Surface Dirtiness Using UAV and Sentinel-2 Imagery","authors":"Jiangtao Chen, Ninglian Wang, Yuwei Wu, Anan Chen, Chenlie Shi, Mingjie Zhao, Longjiang Xie","doi":"10.3390/rs16173351","DOIUrl":"https://doi.org/10.3390/rs16173351","url":null,"abstract":"The glacier surface is composed not only of ice or snow but also of a heterogeneous mixture of various materials. The presence of light-absorbing impurities darkens the glacier surface, reducing local reflectance and thereby accelerating the glacier melting process. However, our understanding of the spatial distribution of these impurities remains limited, and there is a lack of studies on quantifying the dirty degree of glacier surfaces. During the Sentinel satellite overpass on 21 August 2023, we used an ASD FieldSpec3 spectrometer to measure the reflectance spectra of glacier surfaces with varying degrees of dirtiness on the Qiyi glacier, Qinghai–Tibet Plateau. Using Multiple Endmember Spectral Mixture Analysis (MESMA), the Sentinel imagery was decomposed to generate fraction images of five primary ice surface materials as follows: coarse-grained snow, slightly dirty ice, moderately dirty ice, extremely dirty ice, and debris. Using unmanned aerial vehicle (UAV) imagery with a 0.05 m resolution, the primary ice surface was delineated and utilized as reference data to validate the fraction images. The findings revealed a strong correlation between the fraction images and the reference data (R2 ≥ 0.66, RMSE ≤ 0.21). Based on pixel-based classification from the UAV imagery, approximately 80% of the glacier surface is covered by slightly dirty ice (19.2%), moderately dirty ice (33.3%), extremely dirty ice (26.3%), and debris (1.2%), which significantly contributes to its darkening. Our study demonstrates the effectiveness of using Sentinel imagery in conjunction with MESMA to map the degree of glacier surface dirtiness accurately.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"14 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Remote Sensing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1