G. Palaia, D. Zanetti, K. Abu Salem, V. Cipolla, V. Binante
The aviation world is dealing with the development of new and greener aviation. The need for reducing greenhouse gas emission as well as the noise is a critical requirement for the aviation of the future. The aviation world is struggling with it, and a compelling alternative can be the electric propulsion. This work aims to present THEA-CODE, a tool for the conceptual design of hybrid-electric aircraft. The tool evaluates the potential benefits of the electric propulsion in terms of fuel burnt and direct and indirect CO2 emissions. THEA-CODE is suitable not only for conventional “wing-tube” configurations but also for unconventional ones, such as the box-wing. The results show a significant reduction of fuel burnt adopting batteries with energy density higher than the current state of the art. A procedure to find the potential best compromise configurations is presented as well.
{"title":"THEA-CODE: a design tool for the conceptual design of hybrid-electric aircraft with conventional or unconventional airframe configurations","authors":"G. Palaia, D. Zanetti, K. Abu Salem, V. Cipolla, V. Binante","doi":"10.1051/MECA/2021012","DOIUrl":"https://doi.org/10.1051/MECA/2021012","url":null,"abstract":"The aviation world is dealing with the development of new and greener aviation. The need for reducing greenhouse gas emission as well as the noise is a critical requirement for the aviation of the future. The aviation world is struggling with it, and a compelling alternative can be the electric propulsion. This work aims to present THEA-CODE, a tool for the conceptual design of hybrid-electric aircraft. The tool evaluates the potential benefits of the electric propulsion in terms of fuel burnt and direct and indirect CO2 emissions. THEA-CODE is suitable not only for conventional “wing-tube” configurations but also for unconventional ones, such as the box-wing. The results show a significant reduction of fuel burnt adopting batteries with energy density higher than the current state of the art. A procedure to find the potential best compromise configurations is presented as well.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"82 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75416265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposes a POI displacement estimation method based on the functional optical fiber sensor and the phase modulation principle to improve the POI displacement estimation accuracy. First, the relation between the object deformation and the optic fiber lightwave phase is explained; the measurement principle of functional optical fiber sensor based on the heterodyne interference principle and its layout optimization method is proposed, and a POI displacement estimation model is presented based on the data approach. Secondly, a beam is taken as the simulation object, the optimal position and length of the optical fiber sensor are determined based on its simulation data. Finally, the experimental device is designed to verify the effectiveness of the POI displacement estimation method based on the optic fiber sensors. The frequency-domain plot of the signals shows that the optical fiber sensors can express the flexible deformation of the analyzed object well. The POI displacement estimation model with the fiber optic sensor signals as one of the inputs is constructed. Through estimating the test data, the error using the optical fiber sensor-based POI displacement estimation method proposed in this paper reduces by more than 61% compared to the rigid body-based assumption estimation method.
{"title":"Research on the estimation method of the point-of-interest (POI) displacement for ultra-precision flexible motion system based on functional optical fiber sensor","authors":"Yujie Li, Ming Zhang, Yu Zhu","doi":"10.1051/meca/2021047","DOIUrl":"https://doi.org/10.1051/meca/2021047","url":null,"abstract":"This paper proposes a POI displacement estimation method based on the functional optical fiber sensor and the phase modulation principle to improve the POI displacement estimation accuracy. First, the relation between the object deformation and the optic fiber lightwave phase is explained; the measurement principle of functional optical fiber sensor based on the heterodyne interference principle and its layout optimization method is proposed, and a POI displacement estimation model is presented based on the data approach. Secondly, a beam is taken as the simulation object, the optimal position and length of the optical fiber sensor are determined based on its simulation data. Finally, the experimental device is designed to verify the effectiveness of the POI displacement estimation method based on the optic fiber sensors. The frequency-domain plot of the signals shows that the optical fiber sensors can express the flexible deformation of the analyzed object well. The POI displacement estimation model with the fiber optic sensor signals as one of the inputs is constructed. Through estimating the test data, the error using the optical fiber sensor-based POI displacement estimation method proposed in this paper reduces by more than 61% compared to the rigid body-based assumption estimation method.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"43 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76782800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High mechanical advantage as well as low and steady slide speed within the working stroke Sn are the fundamental requirements for the working mechanism of servo-mechanical press. Currently, the Crank-Triangular Linkage-Elbow (CTLE) mechanism has attracted more and more attention from researchers and manufacturers of servo presses. This paper presents a new analysis and design method of CTLE. The mechanism is decomposed into two sub-units: crank and triangular-linkage elbow, followed by the kinematic and force analysis of each sub-unit. The influences of each structural parameter on the working performance are obtained and can be used as the basis for preliminary design. Through the offset design, the mechanical advantage peaks of the two units, MA1max and MA2max, do not occur at the same time: MA1max is located near Sn, while MA2max is just at BDC (Bottom Dead Center). Because the mechanical advantage of the whole mechanism is the product of the two subunits, the designed mechanism can obtain high and steady mechanical advantage together with low and steady slide speed within Sn. After preliminary design, the scheme can be further modified by numerical simulation and optimization. Hence the design efficiency can be improved.
高的机械优势和在工作行程Sn内低而稳定的滑动速度是伺服机械压力机工作机构的基本要求。目前,曲柄-三角连杆-弯头(CTLE)机构越来越受到伺服压力机研究者和制造商的关注。本文提出了一种新的CTLE分析与设计方法。将机构分解为曲柄和三角连杆弯头两个子单元,并对每个子单元进行运动学和受力分析。得到了各结构参数对工作性能的影响,可作为初步设计的依据。通过偏置设计,MA1max和MA2max两个单元的机械优势峰值不会同时出现:MA1max位于Sn附近,而MA2max刚好位于BDC (Bottom Dead Center)。由于整个机构的机械优势是两个亚单元的乘积,因此设计的机构可以在Sn范围内获得高而稳定的机械优势和低而稳定的滑动速度。初步设计完成后,可通过数值模拟和优化对方案进行进一步修改。从而提高了设计效率。
{"title":"Decomposition analysis and peak stagger design for Crank-triangular linkage-elbow mechanism of mechanical servo presses","authors":"Y. Sun, J. Hu, Lian Wei, Yongqi Chen","doi":"10.1051/meca/2021042","DOIUrl":"https://doi.org/10.1051/meca/2021042","url":null,"abstract":"High mechanical advantage as well as low and steady slide speed within the working stroke Sn are the fundamental requirements for the working mechanism of servo-mechanical press. Currently, the Crank-Triangular Linkage-Elbow (CTLE) mechanism has attracted more and more attention from researchers and manufacturers of servo presses. This paper presents a new analysis and design method of CTLE. The mechanism is decomposed into two sub-units: crank and triangular-linkage elbow, followed by the kinematic and force analysis of each sub-unit. The influences of each structural parameter on the working performance are obtained and can be used as the basis for preliminary design. Through the offset design, the mechanical advantage peaks of the two units, MA1max and MA2max, do not occur at the same time: MA1max is located near Sn, while MA2max is just at BDC (Bottom Dead Center). Because the mechanical advantage of the whole mechanism is the product of the two subunits, the designed mechanism can obtain high and steady mechanical advantage together with low and steady slide speed within Sn. After preliminary design, the scheme can be further modified by numerical simulation and optimization. Hence the design efficiency can be improved.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"16 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73957069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Abu Salem, Palaia Giuseppe, Cipolla Vittorio, Binante Vincenzo, Zanetti Davide, Chiarelli Mario
A way to face the challenge of moving towards a new greener aviation is to exploit disruptive aircraft architectures; one of the most promising concept is the PrandtlPlane, a box-wing aircraft based on the Prandtl's studies on multiplane lifting systems. A box-wing designed accordingly the Prandtl “best wing system” minimizes the induced drag for given lift and span, and thus it has the potential to reduce fuel consumption and noxious emissions. For disruptive aerodynamic concepts, physic-based aerodynamic design is needed from the very early stages of the design process, because of the lack of available statistical data; this paper describes two different in-house developed aerodynamic design tools for the PrandtlPlane conceptual aerodynamic design: AEROSTATE, for the design of the box-wing lifting system in cruise condition, and THeLMA, aiming to define the layout of control surfaces and high lift devices. These two tools have been extensively used to explore the feasible space for the aerodynamic design of the box-wing architecture, aiming to define preliminary correlations between performance and design variables, and guidelines to properly initialize the design process. As a result, relevant correlations have been identified between the rear-front wing loading ratio and the performance in cruise condition, and for the rear-front flap deflections and the aeromechanic characteristics in low speed condition.
{"title":"Tools and methodologies for box-wing aircraft conceptual aerodynamic design and aeromechanic analysis","authors":"K. Abu Salem, Palaia Giuseppe, Cipolla Vittorio, Binante Vincenzo, Zanetti Davide, Chiarelli Mario","doi":"10.1051/meca/2021037","DOIUrl":"https://doi.org/10.1051/meca/2021037","url":null,"abstract":"A way to face the challenge of moving towards a new greener aviation is to exploit disruptive aircraft architectures; one of the most promising concept is the PrandtlPlane, a box-wing aircraft based on the Prandtl's studies on multiplane lifting systems. A box-wing designed accordingly the Prandtl “best wing system” minimizes the induced drag for given lift and span, and thus it has the potential to reduce fuel consumption and noxious emissions. For disruptive aerodynamic concepts, physic-based aerodynamic design is needed from the very early stages of the design process, because of the lack of available statistical data; this paper describes two different in-house developed aerodynamic design tools for the PrandtlPlane conceptual aerodynamic design: AEROSTATE, for the design of the box-wing lifting system in cruise condition, and THeLMA, aiming to define the layout of control surfaces and high lift devices. These two tools have been extensively used to explore the feasible space for the aerodynamic design of the box-wing architecture, aiming to define preliminary correlations between performance and design variables, and guidelines to properly initialize the design process. As a result, relevant correlations have been identified between the rear-front wing loading ratio and the performance in cruise condition, and for the rear-front flap deflections and the aeromechanic characteristics in low speed condition.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"28 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87330801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Off-Road Environment Simulator (ORES) is a Real-time Hardware-in-the-Loop (RT-HIL) platform to simulate the dynamic response of off-road vehicles. This paper primarily focuses on the vehicle model development and validation using both field and rig testing using the ORES platform. Off-road vehicles are capable of operating on bumpy terrains where they are subjected to different resistive wheel torques due to non-unique ground friction conditions and wheel loads. If the powertrain torque output is not distributed in accordance with the resistive wheel torques, it may lead to transmission windup resulting in premature failure of various driveline components. In this study, the vehicle is driven over discrete bumps both in rig simulation and field trial. Different terrain enveloping models were evaluated namely the single point, radial-spring contact model and two-point follower (using circular and sinusoidal basis). These models were evaluated against the measured wheel acceleration responses. The two-point follower with sinusoidal basis strongly correlates with the measured responses and the ground excitations so obtained were used as inputs to a seven degree-of-freedom vehicle ride model. Ride model calculates the wheel loads and is eventually integrated with longitudinal dynamics, tire, driveline and test-rig models. Vehicle axle acceleration, wheel speed and drive torque responses are measured for validating the simulation results against field and rig trials. The field responses matches fairly well which validates the suitability of the proposed modeling approach.
{"title":"ORES: a chassis dynamometer for off-road vehicles","authors":"Husain Kanchwala","doi":"10.1051/MECA/2021004","DOIUrl":"https://doi.org/10.1051/MECA/2021004","url":null,"abstract":"Off-Road Environment Simulator (ORES) is a Real-time Hardware-in-the-Loop (RT-HIL) platform to simulate the dynamic response of off-road vehicles. This paper primarily focuses on the vehicle model development and validation using both field and rig testing using the ORES platform. Off-road vehicles are capable of operating on bumpy terrains where they are subjected to different resistive wheel torques due to non-unique ground friction conditions and wheel loads. If the powertrain torque output is not distributed in accordance with the resistive wheel torques, it may lead to transmission windup resulting in premature failure of various driveline components. In this study, the vehicle is driven over discrete bumps both in rig simulation and field trial. Different terrain enveloping models were evaluated namely the single point, radial-spring contact model and two-point follower (using circular and sinusoidal basis). These models were evaluated against the measured wheel acceleration responses. The two-point follower with sinusoidal basis strongly correlates with the measured responses and the ground excitations so obtained were used as inputs to a seven degree-of-freedom vehicle ride model. Ride model calculates the wheel loads and is eventually integrated with longitudinal dynamics, tire, driveline and test-rig models. Vehicle axle acceleration, wheel speed and drive torque responses are measured for validating the simulation results against field and rig trials. The field responses matches fairly well which validates the suitability of the proposed modeling approach.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"17 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81969526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new mixer for a diesel engine after-treatment system is developed to meet the requirements of China VI emission regulation. As for the structure of the mixer, it is surrounded by spiral blades, and the center is staggered with small blades, which is conducive to the crushing of urea droplets and can make the droplets fully mixed with air, improve the conversion efficiency of nitrogen oxides (NOx) and reduce ammonia leakage. The numerical analysis, engine bench test, and vehicle road test were carried out on the after-treatment system equipped with the new mixer. The numerical calculation results show that the velocity uniformity index of the selective catalytic reduction (SCR) carrier can reach 0.98, as well as the ammonia uniformity can reach 0.95, meanwhile, the low wall film height shows excellent anti-crystallization properties. engine bench test results are consistent with numerical results. The crystallization status of the mixer after the vehicle durability test is acceptable and well performed.
{"title":"A study on the high-efficiency mixer of the SCR system","authors":"K. Lu, Dewen Liu, Yan Wu, Shusen Liu, Shuzhan Bai","doi":"10.1051/MECA/2020101","DOIUrl":"https://doi.org/10.1051/MECA/2020101","url":null,"abstract":"A new mixer for a diesel engine after-treatment system is developed to meet the requirements of China VI emission regulation. As for the structure of the mixer, it is surrounded by spiral blades, and the center is staggered with small blades, which is conducive to the crushing of urea droplets and can make the droplets fully mixed with air, improve the conversion efficiency of nitrogen oxides (NOx) and reduce ammonia leakage. The numerical analysis, engine bench test, and vehicle road test were carried out on the after-treatment system equipped with the new mixer. The numerical calculation results show that the velocity uniformity index of the selective catalytic reduction (SCR) carrier can reach 0.98, as well as the ammonia uniformity can reach 0.95, meanwhile, the low wall film height shows excellent anti-crystallization properties. engine bench test results are consistent with numerical results. The crystallization status of the mixer after the vehicle durability test is acceptable and well performed.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"438 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83676876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Briend, E. Châtelet, R. Dufour, Marie-Ange Andrianoely, F. Legrand, S. Baudin
On-board rotating machinery subject to multi-axial excitations is encountered in a wide variety of high-technology applications. Such excitations combined with mass unbalance forces play a considerable role in their integrity because they can cause parametric instability and rotor–stator interactions. Consequently, predicting the rotordynamics of such machines is crucial to avoid triggering undesirable phenomena or at least limiting their impacts. In this context, the present paper proposes an experimental validation of a numerical model of a rotor-shaft-hydrodynamic bearings system mounted on a moving base. The model is based on a finite element approach with Timoshenko beam elements having six degrees of freedom (DOF) per node to account for the bending, torsion and axial motions. Classical 2D rectangular finite elements are also employed to obtain the pressure field acting inside the hydrodynamic bearing. The finite element formulation is based on a variational inequality approach leading to the Reynolds boundary conditions. The experimental validation of the model is carried out with a rotor test rig, designed, built, instrumented and mounted on a 6-DOF hydraulic shaker. The rotor’s dynamic behavior in bending, torsion and axial motions is assessed with base motions consisting of mono- and multi-axial translations and rotations with harmonic, random and chirp sine profiles. The comparison of the predicted and measured results achieved in terms of shaft orbits, full spectrums, transient history responses and power spectral densities is very satisfactory, permitting the experimental validation of the model proposed.
{"title":"Dynamics of on-board rotors on finite-length journal bearings subject to multi-axial and multi-frequency excitations: numerical and experimental investigations","authors":"Y. Briend, E. Châtelet, R. Dufour, Marie-Ange Andrianoely, F. Legrand, S. Baudin","doi":"10.1051/MECA/2021034","DOIUrl":"https://doi.org/10.1051/MECA/2021034","url":null,"abstract":"On-board rotating machinery subject to multi-axial excitations is encountered in a wide variety of high-technology applications. Such excitations combined with mass unbalance forces play a considerable role in their integrity because they can cause parametric instability and rotor–stator interactions. Consequently, predicting the rotordynamics of such machines is crucial to avoid triggering undesirable phenomena or at least limiting their impacts. In this context, the present paper proposes an experimental validation of a numerical model of a rotor-shaft-hydrodynamic bearings system mounted on a moving base. The model is based on a finite element approach with Timoshenko beam elements having six degrees of freedom (DOF) per node to account for the bending, torsion and axial motions. Classical 2D rectangular finite elements are also employed to obtain the pressure field acting inside the hydrodynamic bearing. The finite element formulation is based on a variational inequality approach leading to the Reynolds boundary conditions. The experimental validation of the model is carried out with a rotor test rig, designed, built, instrumented and mounted on a 6-DOF hydraulic shaker. The rotor’s dynamic behavior in bending, torsion and axial motions is assessed with base motions consisting of mono- and multi-axial translations and rotations with harmonic, random and chirp sine profiles. The comparison of the predicted and measured results achieved in terms of shaft orbits, full spectrums, transient history responses and power spectral densities is very satisfactory, permitting the experimental validation of the model proposed.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"20 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85229149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The wear of the piston ring-cylinder system is inevitable in the operation of the internal combustion engines (ICEs). If wear exceeds the maximum, the piston ring-cylinder system will be failure. A novel wear assessment model is proposed based on the support vector regression, and the fuzzy uncertainty is modeled to describe the random behavior under small sample. To verify the proposed model, the sample data of cylinder liner wear is applied. For best results, the particle swarm optimization (PSO) algorithm is used to optimize the model parameters. A back propagation neural network (BPNN) is employed to verify the effectiveness of the proposed model. The results show that the novel support vector regression has better prediction accuracy than other methods for cylinder wear in this paper, the proposed model can evaluate the cylinder liner wear of the ICEs effectively. The work provides a technical support for evaluating the service performance of the piston ring-cylinder liner and a reference for regular maintenance of the ships.
{"title":"Wear assessment model for cylinder liner of internal combustion engine under fuzzy uncertainty","authors":"Jianxiong Kang, Yanjun Lu, Hongbo Luo, Jie Li, Yutao Hou, Yongfang Zhang","doi":"10.1051/MECA/2021028","DOIUrl":"https://doi.org/10.1051/MECA/2021028","url":null,"abstract":"The wear of the piston ring-cylinder system is inevitable in the operation of the internal combustion engines (ICEs). If wear exceeds the maximum, the piston ring-cylinder system will be failure. A novel wear assessment model is proposed based on the support vector regression, and the fuzzy uncertainty is modeled to describe the random behavior under small sample. To verify the proposed model, the sample data of cylinder liner wear is applied. For best results, the particle swarm optimization (PSO) algorithm is used to optimize the model parameters. A back propagation neural network (BPNN) is employed to verify the effectiveness of the proposed model. The results show that the novel support vector regression has better prediction accuracy than other methods for cylinder wear in this paper, the proposed model can evaluate the cylinder liner wear of the ICEs effectively. The work provides a technical support for evaluating the service performance of the piston ring-cylinder liner and a reference for regular maintenance of the ships.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"44 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85485969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Jin, Huanyu Huo, Chuanli Wang, Shun Wang, Huwei Xu
To meet the requirement of the braking response of the coal mine hoist, a new electromechanical braking technology for mine hoists is proposed, the principle of electromechanical braking of mine hoists is demonstrated, and the detailed parameters and braking performance of electromechanical brakes are given. Index, an electromechanical brake test platform with large load and high response is developed. Experiments show that the maximum positive pressure of the designed electromechanical brake reaches 33 KN, which meets the requirement of positive pressure of mine hoist. The braking error is less than 10 %, and the braking gap elimination time is less than 0.1 s. There is a linear relationship between motor current input and brake positive pressure output, with a slope of 4.17 and an intercept of 0.62. The screw displacement output and the brake pressure output have a cubic relationship, and the zero error is small. Through research, a new idea is provided for the development of electromechanical brakes for coal mine hoist.
{"title":"Design and experimental study of electrical and mechanical brake for mine hoist","authors":"H. Jin, Huanyu Huo, Chuanli Wang, Shun Wang, Huwei Xu","doi":"10.1051/MECA/2021033","DOIUrl":"https://doi.org/10.1051/MECA/2021033","url":null,"abstract":"To meet the requirement of the braking response of the coal mine hoist, a new electromechanical braking technology for mine hoists is proposed, the principle of electromechanical braking of mine hoists is demonstrated, and the detailed parameters and braking performance of electromechanical brakes are given. Index, an electromechanical brake test platform with large load and high response is developed. Experiments show that the maximum positive pressure of the designed electromechanical brake reaches 33 KN, which meets the requirement of positive pressure of mine hoist. The braking error is less than 10 %, and the braking gap elimination time is less than 0.1 s. There is a linear relationship between motor current input and brake positive pressure output, with a slope of 4.17 and an intercept of 0.62. The screw displacement output and the brake pressure output have a cubic relationship, and the zero error is small. Through research, a new idea is provided for the development of electromechanical brakes for coal mine hoist.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"16 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91286713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents an iterative method for calculating the effective contact ratio and the bending tooth stress for a pair of plastic/plastic and plastic/steel spur gears with an involute profile. In this method, the pinion and the gear are modeled, at each moment of the mesh cycle, as equivalent springs in parallel undergoing the same displacement along the line of action. This leads to the calculation of the bending stress by taking into account the number of teeth initially in contact and those which enter in contact prematurely. We also investigate the influence of certain gear parameters, such as, the number of teeth, the pressure angle, and the module on the behavior of a pair of meshed gears. In addition, the variation of the bending stress at the tooth fillet is investigated for a pair of plastic/plastic and a pair of plastic/steel spur gears, in order to determine the critical configurations for which the bending stress is maximum. In general, the results obtained from the present method also show that the stress variation in plastic/plastic gears differs markedly from that in plastic/steel gears.
{"title":"Real contact ratio and tooth bending stress calculation for plastic/plastic and plastic/steel spur gears","authors":"T. Jabbour, Ghazi Asmar, M. Abdulwahab, J. Nasr","doi":"10.1051/MECA/2021029","DOIUrl":"https://doi.org/10.1051/MECA/2021029","url":null,"abstract":"This paper presents an iterative method for calculating the effective contact ratio and the bending tooth stress for a pair of plastic/plastic and plastic/steel spur gears with an involute profile. In this method, the pinion and the gear are modeled, at each moment of the mesh cycle, as equivalent springs in parallel undergoing the same displacement along the line of action. This leads to the calculation of the bending stress by taking into account the number of teeth initially in contact and those which enter in contact prematurely. We also investigate the influence of certain gear parameters, such as, the number of teeth, the pressure angle, and the module on the behavior of a pair of meshed gears. In addition, the variation of the bending stress at the tooth fillet is investigated for a pair of plastic/plastic and a pair of plastic/steel spur gears, in order to determine the critical configurations for which the bending stress is maximum. In general, the results obtained from the present method also show that the stress variation in plastic/plastic gears differs markedly from that in plastic/steel gears.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"62 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82195851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}