首页 > 最新文献

Evodevo最新文献

英文 中文
Upregulation of Hox genes leading to caste-specific morphogenesis in a termite. Hox基因的上调导致白蚁的种姓特异性形态发生。
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-07-27 DOI: 10.1186/s13227-023-00216-w
Kohei Oguchi, Toru Miura

Background: In social insects, interactions among colony members trigger caste differentiation with morphological modifications. In termite caste differentiation, caste-specific morphologies (such as mandibles in soldiers, genital organs in reproductives or wings in alates) are well developed during post-embryonic development under endocrine controls (e.g., juvenile hormone and ecdysone). Since body part-specific morphogenesis in caste differentiation is hormonally regulated by global factors circulated throughout the body, positional information should be required for the caste-specific and also body part-specific morphogenesis. To identify factors providing the positional information, expression and functional analyses of eight Hox genes were carried out during the three types of caste differentiation (i.e., soldier, neotenic and alate differentiation) in a termite, Hodotermopsis sjostedti.

Results: Spatio-temporal patterns of Hox gene expression during caste differentiation were elucidated by real-time qPCR, showing the caste-specific upregulations of Hox genes during the differentiation processes. Among eight Hox genes, Deformed (Dfd) was upregulated specifically in mandibles in soldier differentiation, abdominal-A (abd-A) and Abdominal-B (Abd-B) were upregulated in the abdomen in neotenic differentiation, while Sex-comb reduced (Scr) and Antennapedia (Antp) were upregulated during alate differentiation. Furthermore, RNAi knockdown of Dfd in soldier differentiation and of abd-A and Abd-B in neotenic differentiation distorted the modifications of caste-specific morphologies.

Conclusions: Gene expression and functional analyses in this study revealed that, in the caste differentiation in termites, upregulation of Hox genes provide positional identities of body segments, resulting in the caste-specific morphogenesis. The acquisition of such developmental modifications would have enabled the evolution of sophisticated caste systems in termites.

背景:在群居昆虫中,群体成员之间的相互作用引发了形态变化的种姓分化。在白蚁等级分化中,等级特异性形态(如士兵的下颌骨,生殖器官或alates的翅膀)在胚胎后发育过程中在内分泌控制(如幼年激素和蜕皮激素)下发育良好。由于种姓分化中的身体部位特异性形态发生是由全身循环的全局因素激素调节的,因此种姓特异性和身体部位特异性形态发生应该需要位置信息。为了确定提供位置信息的因子,对白蚁(Hodotermopsis sjostedti) 3种等级分化类型(即士兵等级分化、新等级分化和高等级分化)中8个Hox基因的表达和功能进行了分析。结果:实时荧光定量pcr分析了Hox基因在种姓分化过程中的时空表达规律,揭示了Hox基因在种姓分化过程中的上调。在8个Hox基因中,下颌骨畸形基因(Dfd)在士兵分化中特异性上调,腹部a基因(abd-A)和腹部b基因(Abd-B)在新生儿分化中特异性上调,而性梳减少基因(Scr)和天线体基因(Antp)在腭形分化中特异性上调。此外,RNAi敲低士兵分化中的Dfd和新生分化中的abd-A和Abd-B,扭曲了种姓特异性形态的修饰。结论:本研究的基因表达和功能分析表明,在白蚁的种姓分化中,Hox基因的上调提供了身体部位的位置身份,从而导致了种姓特异性的形态发生。获得这样的发育变化将使白蚁进化出复杂的种姓制度。
{"title":"Upregulation of Hox genes leading to caste-specific morphogenesis in a termite.","authors":"Kohei Oguchi,&nbsp;Toru Miura","doi":"10.1186/s13227-023-00216-w","DOIUrl":"https://doi.org/10.1186/s13227-023-00216-w","url":null,"abstract":"<p><strong>Background: </strong>In social insects, interactions among colony members trigger caste differentiation with morphological modifications. In termite caste differentiation, caste-specific morphologies (such as mandibles in soldiers, genital organs in reproductives or wings in alates) are well developed during post-embryonic development under endocrine controls (e.g., juvenile hormone and ecdysone). Since body part-specific morphogenesis in caste differentiation is hormonally regulated by global factors circulated throughout the body, positional information should be required for the caste-specific and also body part-specific morphogenesis. To identify factors providing the positional information, expression and functional analyses of eight Hox genes were carried out during the three types of caste differentiation (i.e., soldier, neotenic and alate differentiation) in a termite, Hodotermopsis sjostedti.</p><p><strong>Results: </strong>Spatio-temporal patterns of Hox gene expression during caste differentiation were elucidated by real-time qPCR, showing the caste-specific upregulations of Hox genes during the differentiation processes. Among eight Hox genes, Deformed (Dfd) was upregulated specifically in mandibles in soldier differentiation, abdominal-A (abd-A) and Abdominal-B (Abd-B) were upregulated in the abdomen in neotenic differentiation, while Sex-comb reduced (Scr) and Antennapedia (Antp) were upregulated during alate differentiation. Furthermore, RNAi knockdown of Dfd in soldier differentiation and of abd-A and Abd-B in neotenic differentiation distorted the modifications of caste-specific morphologies.</p><p><strong>Conclusions: </strong>Gene expression and functional analyses in this study revealed that, in the caste differentiation in termites, upregulation of Hox genes provide positional identities of body segments, resulting in the caste-specific morphogenesis. The acquisition of such developmental modifications would have enabled the evolution of sophisticated caste systems in termites.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"14 1","pages":"12"},"PeriodicalIF":4.1,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375622/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10251491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Expression and possible functions of a horizontally transferred glycosyl hydrolase gene, GH6-1, in Ciona embryogenesis. 水平转移糖基水解酶基因GH6-1在琼脂草胚胎发生中的表达及其可能的功能。
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-07-11 DOI: 10.1186/s13227-023-00215-x
Kun-Lung Li, Keisuke Nakashima, Kanako Hisata, Noriyuki Satoh

Background: The Tunicata or Urochordata is the only animal group with the ability to synthesize cellulose directly and cellulose is a component of the tunic that covers the entire tunicate body. The genome of Ciona intestinalis type A contains a cellulose synthase gene, CesA, that it acquired via an ancient, horizontal gene transfer. CesA is expressed in embryonic epidermal cells and functions in cellulose production. Ciona CesA is composed of both a glycosyltransferase domain, GT2, and a glycosyl hydrolase domain, GH6, which shows a mutation at a key position and seems functionless. Interestingly, the Ciona genome contains a glycosyl hydrolase gene, GH6-1, in which the GH6 domain seems intact. This suggests expression and possible functions of GH6-1 during Ciona embryogenesis. Is GH6-1 expressed during embryogenesis? If so, in what tissues is the gene expressed? Does GH6-1 serve a function? If so, what is it? Answers to these questions may advance our understanding of evolution of this unique animal group.

Results: Quantitative reverse transcription PCR and in situ hybridization revealed that GH6-1 is expressed in epidermis of tailbud embryos and in early swimming larvae, a pattern similar to that of CesA. Expression is downregulated at later stages and becomes undetectable in metamorphosed juveniles. The GH6-1 expression level is higher in the anterior-trunk region and caudal-tip regions of late embryos. Single-cell RNA sequencing analysis of the late tailbud stage showed that cells of three clusters with epidermal identity express GH6-1, and that some of them co-express CesA. TALEN-mediated genome editing was used to generate GH6-1 knockout Ciona larvae. Around half of TALEN-electroporated larvae showed abnormal development of adhesive papillae and altered distribution of surface cellulose. In addition, three-fourths of TALEN-electroporated animals failed to complete larval metamorphosis.

Conclusions: This study showed that tunicate GH6-1, a gene that originated by horizontal gene transfer of a prokaryote gene, is recruited into the ascidian genome, and that it is expressed and functions in epidermal cells of ascidian embryos. Although further research is required, this observation demonstrates that both CesA and GH6-1 are involved in tunicate cellulose metabolism, impacting tunicate morphology and ecology.

背景:被囊动物或尾索动物是唯一能够直接合成纤维素的动物,纤维素是覆盖整个被囊体的被囊的一种成分。A型玉米的基因组包含一个纤维素合成酶基因CesA,这是通过一个古老的水平基因转移获得的。CesA在胚胎表皮细胞中表达,并在纤维素生产中起作用。Ciona CesA由糖基转移酶结构域GT2和糖基水解酶结构域GH6组成,GH6在关键位置发生突变,似乎没有功能。有趣的是,乔娜基因组包含一个糖基水解酶基因GH6-1,其中GH6结构域似乎是完整的。这提示GH6-1在琼脂草胚胎发生过程中的表达及其可能的功能。GH6-1是否在胚胎发生过程中表达?如果是这样,该基因在哪些组织中表达?GH6-1有什么功能吗?如果有,是什么?这些问题的答案可能会促进我们对这种独特动物群体进化的理解。结果:定量反转录PCR和原位杂交显示,GH6-1在尾芽胚表皮和早期游动幼虫中表达,表达模式与CesA相似。表达在后期阶段下调,在变态少年中变得不可检测。GH6-1在胚胎后期前干区和尾尖区表达量较高。尾芽后期单细胞RNA测序分析显示,3个具有表皮特征的细胞簇表达GH6-1,部分细胞簇共表达CesA。使用talen介导的基因组编辑技术产生GH6-1敲除的Ciona幼虫。约一半的talen电穿孔幼虫表现出粘连乳头发育异常和表面纤维素分布改变。此外,四分之三的talen电穿孔动物未能完成幼虫变态。结论:本研究表明,被囊动物GH6-1基因通过原核生物基因的水平基因转移而被募集到海鞘基因组中,并在海鞘胚胎表皮细胞中表达和发挥功能。虽然需要进一步的研究,但这一观察结果表明CesA和GH6-1都参与了被囊动物的纤维素代谢,影响了被囊动物的形态和生态。
{"title":"Expression and possible functions of a horizontally transferred glycosyl hydrolase gene, GH6-1, in Ciona embryogenesis.","authors":"Kun-Lung Li,&nbsp;Keisuke Nakashima,&nbsp;Kanako Hisata,&nbsp;Noriyuki Satoh","doi":"10.1186/s13227-023-00215-x","DOIUrl":"https://doi.org/10.1186/s13227-023-00215-x","url":null,"abstract":"<p><strong>Background: </strong>The Tunicata or Urochordata is the only animal group with the ability to synthesize cellulose directly and cellulose is a component of the tunic that covers the entire tunicate body. The genome of Ciona intestinalis type A contains a cellulose synthase gene, CesA, that it acquired via an ancient, horizontal gene transfer. CesA is expressed in embryonic epidermal cells and functions in cellulose production. Ciona CesA is composed of both a glycosyltransferase domain, GT2, and a glycosyl hydrolase domain, GH6, which shows a mutation at a key position and seems functionless. Interestingly, the Ciona genome contains a glycosyl hydrolase gene, GH6-1, in which the GH6 domain seems intact. This suggests expression and possible functions of GH6-1 during Ciona embryogenesis. Is GH6-1 expressed during embryogenesis? If so, in what tissues is the gene expressed? Does GH6-1 serve a function? If so, what is it? Answers to these questions may advance our understanding of evolution of this unique animal group.</p><p><strong>Results: </strong>Quantitative reverse transcription PCR and in situ hybridization revealed that GH6-1 is expressed in epidermis of tailbud embryos and in early swimming larvae, a pattern similar to that of CesA. Expression is downregulated at later stages and becomes undetectable in metamorphosed juveniles. The GH6-1 expression level is higher in the anterior-trunk region and caudal-tip regions of late embryos. Single-cell RNA sequencing analysis of the late tailbud stage showed that cells of three clusters with epidermal identity express GH6-1, and that some of them co-express CesA. TALEN-mediated genome editing was used to generate GH6-1 knockout Ciona larvae. Around half of TALEN-electroporated larvae showed abnormal development of adhesive papillae and altered distribution of surface cellulose. In addition, three-fourths of TALEN-electroporated animals failed to complete larval metamorphosis.</p><p><strong>Conclusions: </strong>This study showed that tunicate GH6-1, a gene that originated by horizontal gene transfer of a prokaryote gene, is recruited into the ascidian genome, and that it is expressed and functions in epidermal cells of ascidian embryos. Although further research is required, this observation demonstrates that both CesA and GH6-1 are involved in tunicate cellulose metabolism, impacting tunicate morphology and ecology.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"14 1","pages":"11"},"PeriodicalIF":4.1,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10190707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Feedback circuits are numerous in embryonic gene regulatory networks and offer a stabilizing influence on evolution of those networks. 反馈回路在胚胎基因调控网络中数量众多,并对这些网络的进化提供了稳定的影响。
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-06-16 DOI: 10.1186/s13227-023-00214-y
Abdull Jesus Massri, Brennan McDonald, Gregory A Wray, David R McClay

The developmental gene regulatory networks (dGRNs) of two sea urchin species, Lytechinus variegatus (Lv) and Strongylocentrotus purpuratus (Sp), have remained remarkably similar despite about 50 million years since a common ancestor. Hundreds of parallel experimental perturbations of transcription factors with similar outcomes support this conclusion. A recent scRNA-seq analysis suggested that the earliest expression of several genes within the dGRNs differs between Lv and Sp. Here, we present a careful reanalysis of the dGRNs in these two species, paying close attention to timing of first expression. We find that initial expression of genes critical for cell fate specification occurs during several compressed time periods in both species. Previously unrecognized feedback circuits are inferred from the temporally corrected dGRNs. Although many of these feedbacks differ in location within the respective GRNs, the overall number is similar between species. We identify several prominent differences in timing of first expression for key developmental regulatory genes; comparison with a third species indicates that these heterochronies likely originated in an unbiased manner with respect to embryonic cell lineage and evolutionary branch. Together, these results suggest that interactions can evolve even within highly conserved dGRNs and that feedback circuits may buffer the effects of heterochronies in the expression of key regulatory genes.

两种海胆——Lytechinus variegatus (Lv)和Strongylocentrotus purpuratus (Sp)——的发育基因调控网络(dGRNs)尽管自共同祖先以来已有5000万年的历史,但仍保持着惊人的相似性。数以百计的转录因子的平行实验扰动与类似的结果支持这一结论。最近的一项scRNA-seq分析表明,Lv和Sp的dgrn中有几个基因的最早表达不同。在这里,我们对这两个物种的dgrn进行了仔细的重新分析,并密切关注首次表达的时间。我们发现,在两个物种中,对细胞命运规范至关重要的基因的初始表达发生在几个压缩的时间段内。以前未被识别的反馈电路是从暂时校正的dgrn中推断出来的。虽然这些反馈在各自grn中的位置不同,但物种之间的总体数量是相似的。我们发现了关键发育调控基因首次表达时间的几个显著差异;与第三种物种的比较表明,这些异时性可能是在胚胎细胞谱系和进化分支方面以公正的方式产生的。总之,这些结果表明,即使在高度保守的dgrn中,相互作用也可以进化,反馈回路可能缓冲关键调控基因表达中的异时性的影响。
{"title":"Feedback circuits are numerous in embryonic gene regulatory networks and offer a stabilizing influence on evolution of those networks.","authors":"Abdull Jesus Massri,&nbsp;Brennan McDonald,&nbsp;Gregory A Wray,&nbsp;David R McClay","doi":"10.1186/s13227-023-00214-y","DOIUrl":"https://doi.org/10.1186/s13227-023-00214-y","url":null,"abstract":"<p><p>The developmental gene regulatory networks (dGRNs) of two sea urchin species, Lytechinus variegatus (Lv) and Strongylocentrotus purpuratus (Sp), have remained remarkably similar despite about 50 million years since a common ancestor. Hundreds of parallel experimental perturbations of transcription factors with similar outcomes support this conclusion. A recent scRNA-seq analysis suggested that the earliest expression of several genes within the dGRNs differs between Lv and Sp. Here, we present a careful reanalysis of the dGRNs in these two species, paying close attention to timing of first expression. We find that initial expression of genes critical for cell fate specification occurs during several compressed time periods in both species. Previously unrecognized feedback circuits are inferred from the temporally corrected dGRNs. Although many of these feedbacks differ in location within the respective GRNs, the overall number is similar between species. We identify several prominent differences in timing of first expression for key developmental regulatory genes; comparison with a third species indicates that these heterochronies likely originated in an unbiased manner with respect to embryonic cell lineage and evolutionary branch. Together, these results suggest that interactions can evolve even within highly conserved dGRNs and that feedback circuits may buffer the effects of heterochronies in the expression of key regulatory genes.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"14 1","pages":"10"},"PeriodicalIF":4.1,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10273620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10034859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Transcriptomic analysis of cave, surface, and hybrid samples of the isopod Asellus aquaticus and identification of chromosomal location of candidate genes for cave phenotype evolution. 对等足类水生蛙的洞穴、地表和杂交样本进行转录组分析,并确定洞穴表型进化候选基因的染色体位置。
IF 4.1 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY Pub Date : 2023-05-06 DOI: 10.1186/s13227-023-00213-z
Haeli J Lomheim, Lizet Reyes Rodas, Lubna Mulla, Layla Freeborn, Dennis A Sun, Sheri A Sanders, Meredith E Protas

Background: Transcriptomic methods can be used to elucidate genes and pathways responsible for phenotypic differences between populations. Asellus aquaticus is a freshwater isopod crustacean with surface- and cave-dwelling ecomorphs that differ greatly in multiple phenotypes including pigmentation and eye size. Multiple genetic resources have been generated for this species, but the genes and pathways responsible for cave-specific characteristics have not yet been identified. Our goal was to generate transcriptomic resources in tandem with taking advantage of the species' ability to interbreed and generate hybrid individuals.

Results: We generated transcriptomes of the Rakov Škocjan surface population and the Rak Channel of Planina Cave population that combined Illumina short-read assemblies and PacBio Iso-seq long-read sequences. We investigated differential expression at two different embryonic time points as well as allele-specific expression of F1 hybrids between cave and surface individuals. RNAseq of F2 hybrids, as well as genotyping of a backcross, allowed for positional information of multiple candidate genes from the differential expression and allele-specific analyses.

Conclusions: As expected, genes involved in phototransduction and ommochrome synthesis were under-expressed in the cave samples as compared to the surface samples. Allele-specific expression analysis of F1 hybrids identified genes with cave-biased (cave allele has higher mRNA levels than the surface allele) and surface-biased expression (surface allele has higher mRNA levels than the cave allele). RNAseq of F2 hybrids allowed for multiple genes to be placed to previously mapped genomic regions responsible for eye and pigmentation phenotypes. In the future, these transcriptomic resources will guide prioritization of candidates for functional analysis.

背景:转录组方法可用于阐明造成种群间表型差异的基因和途径。Asellus aquaticus 是一种淡水等足类甲壳动物,有水面和洞穴两种生活形态,在色素和眼睛大小等多种表型上有很大差异。目前已为该物种生成了多种遗传资源,但尚未确定造成洞穴特异性的基因和途径。我们的目标是在利用该物种杂交和产生杂交个体的能力的同时,产生转录组资源:我们生成了拉科夫-什科茨扬(Rakov Škocjan)表面种群和普兰尼纳洞穴拉克海峡(Rak Channel of Planina Cave)种群的转录组,这些转录组结合了Illumina短读数组装和PacBio Iso-seq长读数序列。我们研究了两个不同胚胎时间点的差异表达,以及洞穴和地表个体之间 F1 杂交种的等位基因特异性表达。F2杂交种的RNAseq以及回交的基因分型使我们能够从差异表达和等位基因特异性分析中获得多个候选基因的位置信息:正如预期的那样,与地表样本相比,洞穴样本中涉及光传导和膜色素合成的基因表达量较低。对 F1 杂交种的等位基因特异性表达分析发现了具有洞穴偏向表达(洞穴等位基因的 mRNA 水平高于表面等位基因)和表面偏向表达(表面等位基因的 mRNA 水平高于洞穴等位基因)的基因。通过对 F2 杂交种进行 RNAseq 分析,可将多个基因归入先前绘制的负责眼睛和色素表型的基因组区域。未来,这些转录组资源将指导对候选基因进行优先排序,以便进行功能分析。
{"title":"Transcriptomic analysis of cave, surface, and hybrid samples of the isopod Asellus aquaticus and identification of chromosomal location of candidate genes for cave phenotype evolution.","authors":"Haeli J Lomheim, Lizet Reyes Rodas, Lubna Mulla, Layla Freeborn, Dennis A Sun, Sheri A Sanders, Meredith E Protas","doi":"10.1186/s13227-023-00213-z","DOIUrl":"10.1186/s13227-023-00213-z","url":null,"abstract":"<p><strong>Background: </strong>Transcriptomic methods can be used to elucidate genes and pathways responsible for phenotypic differences between populations. Asellus aquaticus is a freshwater isopod crustacean with surface- and cave-dwelling ecomorphs that differ greatly in multiple phenotypes including pigmentation and eye size. Multiple genetic resources have been generated for this species, but the genes and pathways responsible for cave-specific characteristics have not yet been identified. Our goal was to generate transcriptomic resources in tandem with taking advantage of the species' ability to interbreed and generate hybrid individuals.</p><p><strong>Results: </strong>We generated transcriptomes of the Rakov Škocjan surface population and the Rak Channel of Planina Cave population that combined Illumina short-read assemblies and PacBio Iso-seq long-read sequences. We investigated differential expression at two different embryonic time points as well as allele-specific expression of F<sub>1</sub> hybrids between cave and surface individuals. RNAseq of F<sub>2</sub> hybrids, as well as genotyping of a backcross, allowed for positional information of multiple candidate genes from the differential expression and allele-specific analyses.</p><p><strong>Conclusions: </strong>As expected, genes involved in phototransduction and ommochrome synthesis were under-expressed in the cave samples as compared to the surface samples. Allele-specific expression analysis of F<sub>1</sub> hybrids identified genes with cave-biased (cave allele has higher mRNA levels than the surface allele) and surface-biased expression (surface allele has higher mRNA levels than the cave allele). RNAseq of F<sub>2</sub> hybrids allowed for multiple genes to be placed to previously mapped genomic regions responsible for eye and pigmentation phenotypes. In the future, these transcriptomic resources will guide prioritization of candidates for functional analysis.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"14 1","pages":"9"},"PeriodicalIF":4.1,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9605535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cartilage diversification and modularity drove the evolution of the ancestral vertebrate head skeleton. 软骨的多样化和模块化推动了脊椎动物祖先头部骨骼的进化。
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-05-05 DOI: 10.1186/s13227-023-00211-1
Zachary D Root, David Jandzik, Claire Gould, Cara Allen, Margaux Brewer, Daniel M Medeiros

The vertebrate head skeleton has evolved a myriad of forms since their divergence from invertebrate chordates. The connection between novel gene expression and cell types is therefore of importance in this process. The transformation of the jawed vertebrate (gnathostome) head skeleton from oral cirri to jointed jaw elements required a diversity of cartilages as well as changes in the patterning of these tissues. Although lampreys are a sister clade to gnathostomes, they display skeletal diversity with distinct gene expression and histologies, a useful model for addressing joint evolution. Specifically, the lamprey tissue known as mucocartilage has noted similarities with the jointed elements of the mandibular arch in jawed vertebrates. We thus asked whether the cells in lamprey mucocartilage and gnathostome joint tissue could be considered homologous. To do this, we characterized new genes that are involved in gnathostome joint formation and characterized the histochemical properties of lamprey skeletal types. We find that most of these genes are minimally found in mucocartilage and are likely later innovations, but we do identify new activity for gdf5/6/7b in both hyaline and mucocartilage, supporting its role as a chondrogenic regulator. Contrary to previous works, our histological assays do not find any perichondrial fibroblasts surrounding mucocartilage, suggesting that mucocartilage is non-skeletogenic tissue that is partially chondrified. Interestingly, we also identify new histochemical features of the lamprey otic capsule that diverge from normal hyaline. Paired with our new insights into lamprey mucocartilage, we propose a broader framework for skeletal evolution in which an ancestral soxD/E and gdf5/6/7 network directs mesenchyme along a spectrum of cartilage-like features.

脊椎动物的头部骨骼从无脊椎动物脊索动物分化而来,进化出了无数种形态。因此,新基因表达与细胞类型之间的联系在这一过程中非常重要。有颌脊椎动物(团头鲂)的头部骨骼从口腔骨圈转变为有关节的颌骨,需要软骨的多样性以及这些组织形态的变化。虽然灯鱼是团头鲂的姊妹支系,但它们的骨骼具有多样性,基因表达和组织结构各不相同,是研究关节进化的有用模型。特别是,被称为粘软骨的灯笼鱼组织与有颌脊椎动物下颌弓的关节相似。因此,我们提出了这样一个问题:鳗鱼粘软骨中的细胞与钩端目关节组织中的细胞是否可以被认为是同源的。为此,我们鉴定了参与团尾目关节形成的新基因,并鉴定了灯鳗骨骼类型的组织化学性质。我们发现,这些基因中的大多数在粘液软骨中很少发现,很可能是后来的创新,但我们确实在透明软骨和粘液软骨中发现了 gdf5/6/7b 的新活性,支持其作为软骨形成调节因子的作用。与之前的研究相反,我们的组织学实验没有发现粘液软骨周围有任何软骨周围成纤维细胞,这表明粘液软骨是部分软骨化的非骨骼生成组织。有趣的是,我们还发现了鳗鱼耳廓不同于正常透明耳廓的新组织化学特征。结合我们对鳗鱼粘软骨的新认识,我们提出了一个更广泛的骨骼进化框架,在这个框架中,祖先的soxD/E和gdf5/6/7网络引导间充质形成一系列软骨样特征。
{"title":"Cartilage diversification and modularity drove the evolution of the ancestral vertebrate head skeleton.","authors":"Zachary D Root, David Jandzik, Claire Gould, Cara Allen, Margaux Brewer, Daniel M Medeiros","doi":"10.1186/s13227-023-00211-1","DOIUrl":"10.1186/s13227-023-00211-1","url":null,"abstract":"<p><p>The vertebrate head skeleton has evolved a myriad of forms since their divergence from invertebrate chordates. The connection between novel gene expression and cell types is therefore of importance in this process. The transformation of the jawed vertebrate (gnathostome) head skeleton from oral cirri to jointed jaw elements required a diversity of cartilages as well as changes in the patterning of these tissues. Although lampreys are a sister clade to gnathostomes, they display skeletal diversity with distinct gene expression and histologies, a useful model for addressing joint evolution. Specifically, the lamprey tissue known as mucocartilage has noted similarities with the jointed elements of the mandibular arch in jawed vertebrates. We thus asked whether the cells in lamprey mucocartilage and gnathostome joint tissue could be considered homologous. To do this, we characterized new genes that are involved in gnathostome joint formation and characterized the histochemical properties of lamprey skeletal types. We find that most of these genes are minimally found in mucocartilage and are likely later innovations, but we do identify new activity for gdf5/6/7b in both hyaline and mucocartilage, supporting its role as a chondrogenic regulator. Contrary to previous works, our histological assays do not find any perichondrial fibroblasts surrounding mucocartilage, suggesting that mucocartilage is non-skeletogenic tissue that is partially chondrified. Interestingly, we also identify new histochemical features of the lamprey otic capsule that diverge from normal hyaline. Paired with our new insights into lamprey mucocartilage, we propose a broader framework for skeletal evolution in which an ancestral soxD/E and gdf5/6/7 network directs mesenchyme along a spectrum of cartilage-like features.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"14 1","pages":"8"},"PeriodicalIF":4.1,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9424662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early expression onset of tissue-specific effector genes during the specification process in sea urchin embryos. 海胆胚胎发育过程中组织特异性效应基因的早期表达。
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-04-26 DOI: 10.1186/s13227-023-00210-2
Shumpei Yamakawa, Atsuko Yamazaki, Yoshiaki Morino, Hiroshi Wada

Background: In the course of animal developmental processes, various tissues are differentiated through complex interactions within the gene regulatory network. As a general concept, differentiation has been considered to be the endpoint of specification processes. Previous works followed this view and provided a genetic control scheme of differentiation in sea urchin embryos: early specification genes generate distinct regulatory territories in an embryo to express a small set of differentiation driver genes; these genes eventually stimulate the expression of tissue-specific effector genes, which provide biological identity to differentiated cells, in each region. However, some tissue-specific effector genes begin to be expressed in parallel with the expression onset of early specification genes, raising questions about the simplistic regulatory scheme of tissue-specific effector gene expression and the current concept of differentiation itself.

Results: Here, we examined the dynamics of effector gene expression patterns during sea urchin embryogenesis. Our transcriptome-based analysis indicated that many tissue-specific effector genes begin to be expressed and accumulated along with the advancing specification GRN in the distinct cell lineages of embryos. Moreover, we found that the expression of some of the tissue-specific effector genes commences before cell lineage segregation occurs.

Conclusions: Based on this finding, we propose that the expression onset of tissue-specific effector genes is controlled more dynamically than suggested in the previously proposed simplistic regulation scheme. Thus, we suggest that differentiation should be conceptualized as a seamless process of accumulation of effector expression along with the advancing specification GRN. This pattern of effector gene expression may have interesting implications for the evolution of novel cell types.

背景:在动物的发育过程中,各种组织的分化是通过基因调控网络内部复杂的相互作用进行的。作为一个一般的概念,差异化被认为是规范过程的终点。先前的研究遵循了这一观点,并提供了海胆胚胎分化的遗传控制方案:早期规范基因在胚胎中产生不同的调控区域,以表达一小部分分化驱动基因;这些基因最终刺激组织特异性效应基因的表达,这些基因在每个区域为分化的细胞提供生物学特性。然而,一些组织特异性效应基因的表达开始与早期规范基因的表达开始平行,这对组织特异性效应基因表达的简单调控方案和目前的分化概念本身提出了质疑。结果:研究了海胆胚胎发生过程中效应基因的表达模式。我们基于转录组的分析表明,在胚胎的不同细胞系中,许多组织特异性效应基因随着GRN的发展而开始表达和积累。此外,我们发现一些组织特异性效应基因的表达在细胞系分离发生之前就开始了。结论:基于这一发现,我们提出组织特异性效应基因的表达比先前提出的简单调控方案更动态地控制。因此,我们建议分化应该被概念化为效应表达的无缝积累过程,以及先进的规范GRN。这种效应基因表达的模式可能对新细胞类型的进化有有趣的影响。
{"title":"Early expression onset of tissue-specific effector genes during the specification process in sea urchin embryos.","authors":"Shumpei Yamakawa,&nbsp;Atsuko Yamazaki,&nbsp;Yoshiaki Morino,&nbsp;Hiroshi Wada","doi":"10.1186/s13227-023-00210-2","DOIUrl":"https://doi.org/10.1186/s13227-023-00210-2","url":null,"abstract":"<p><strong>Background: </strong>In the course of animal developmental processes, various tissues are differentiated through complex interactions within the gene regulatory network. As a general concept, differentiation has been considered to be the endpoint of specification processes. Previous works followed this view and provided a genetic control scheme of differentiation in sea urchin embryos: early specification genes generate distinct regulatory territories in an embryo to express a small set of differentiation driver genes; these genes eventually stimulate the expression of tissue-specific effector genes, which provide biological identity to differentiated cells, in each region. However, some tissue-specific effector genes begin to be expressed in parallel with the expression onset of early specification genes, raising questions about the simplistic regulatory scheme of tissue-specific effector gene expression and the current concept of differentiation itself.</p><p><strong>Results: </strong>Here, we examined the dynamics of effector gene expression patterns during sea urchin embryogenesis. Our transcriptome-based analysis indicated that many tissue-specific effector genes begin to be expressed and accumulated along with the advancing specification GRN in the distinct cell lineages of embryos. Moreover, we found that the expression of some of the tissue-specific effector genes commences before cell lineage segregation occurs.</p><p><strong>Conclusions: </strong>Based on this finding, we propose that the expression onset of tissue-specific effector genes is controlled more dynamically than suggested in the previously proposed simplistic regulation scheme. Thus, we suggest that differentiation should be conceptualized as a seamless process of accumulation of effector expression along with the advancing specification GRN. This pattern of effector gene expression may have interesting implications for the evolution of novel cell types.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"14 1","pages":"7"},"PeriodicalIF":4.1,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9359686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The embryology, metamorphosis, and muscle development of Schizocardium karankawa sp. nov. (Enteropneusta) from the Gulf of Mexico. 墨西哥湾Schizocardium karankawa sp. 11 . (Enteropneusta)的胚胎学、变态和肌肉发育。
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-04-19 DOI: 10.1186/s13227-023-00212-0
Noura Jabr, Paul Gonzalez, Kevin M Kocot, Christopher B Cameron

Schizocardium karankawa sp. nov. has been collected from subtidal muds of the Laguna Madre, Texas, and the Mississippi coast, Gulf of Mexico. The Texas population is reproductive from early February to mid-April. Gametes are liberated by a small incision in a gonad. Oocyte germinal vesicle breakdown is increased in the presence of sperm, and the highest fertilization success was in the artificial seawater Jamarin U. Manually dechorionated embryos develop normally. Development was asynchronous via a tornaria larva, metamorphosis and maintained to the juvenile worm 6 gill-pore stage. Phalloidin-labeled late-stage tornaria revealed retractor muscles that connect the pericardial sac with the apical tuft anteriorly, the oesophagus ventrally, and muscle cells of the early mesocoels. The muscle development of early juvenile worms began with dorso-lateral trunk muscles, lateral trunk bands, and sphincters around the gill pores and anus. Adult worms are characterized by a stomochord that bifurcates anteriorly into paired vermiform processes, gill bars that extend almost the entire dorsal to ventral branchial region resulting in a narrow ventral hypobranchial ridge, and an elaborate epibranchial organ with six zones of discrete cell types. The trunk has up to three rows of liver sacs, and lateral gonads. The acorn worm evo-devo model species Saccoglossus kowalevskii, Ptychodera flava, and Schizocardium californicum are phylogenetically distant with disparate life histories. S. karnakawa from S. californicum are phylogenetically close, and differences between them that become apparent as adult worms include the number of gill pores and hepatic sacs, and elaborations of the heart-kidney-stomochord complex. An important challenge for evolutionary developmental biology is to form links from phylogenetically distant and large-scale differences to phylogenetically close and small-scale differences. This description of the embryology, development, and adult morphology of S. karankawa permits investigations into how acorn worm development evolves at fine scales.

卡拉卡瓦Schizocardium karankawa sp. 11 .是从德克萨斯州拉古纳马德雷和墨西哥湾密西西比海岸的潮下泥中收集到的。德克萨斯州的人口从2月初到4月中旬是繁殖期。配子通过在性腺上的一个小切口释放出来。精子存在时卵母细胞生发囊泡破裂增加,在人工海水中受精成功率最高。人工去角质的胚胎发育正常。发育过程为非同步的,经过虫幼虫、变态和维持到幼虫6鳃孔期。经phalloidin标记的晚期结节显示牵开肌连接心包囊前部与根茎丛、食道腹侧,以及早期肠系膜的肌肉细胞。早期幼虫的肌肉发育始于躯干背外侧肌、躯干外侧带和鳃孔和肛门周围的括约肌。成虫的特征是:胃弓在前面分叉成成对的蚓状突起,鳃杆几乎延伸到整个鳃腹区,形成一个狭窄的鳃腹下脊,以及一个精致的鳃外器官,有六个独立的细胞类型区。躯干有三排肝囊和侧性腺。橡子蠕虫进化模式种Saccoglossus kowalevskii, Ptychodera flava和Schizocardium californicum在系统发育上是遥远的,具有不同的生活史。美国从美国californicum karnakawa系统关闭,以及它们之间的差异变得明显,成虫包括鳃孔的数量和肝囊,和论述的heart-kidney-stomochord复杂。进化发育生物学的一个重要挑战是形成从系统发育上远距离和大规模差异到系统发育上近距离和小规模差异的联系。对S. karankawa的胚胎学、发育和成虫形态的描述允许研究橡子虫是如何在精细尺度上发育进化的。
{"title":"The embryology, metamorphosis, and muscle development of Schizocardium karankawa sp. nov. (Enteropneusta) from the Gulf of Mexico.","authors":"Noura Jabr,&nbsp;Paul Gonzalez,&nbsp;Kevin M Kocot,&nbsp;Christopher B Cameron","doi":"10.1186/s13227-023-00212-0","DOIUrl":"https://doi.org/10.1186/s13227-023-00212-0","url":null,"abstract":"<p><p>Schizocardium karankawa sp. nov. has been collected from subtidal muds of the Laguna Madre, Texas, and the Mississippi coast, Gulf of Mexico. The Texas population is reproductive from early February to mid-April. Gametes are liberated by a small incision in a gonad. Oocyte germinal vesicle breakdown is increased in the presence of sperm, and the highest fertilization success was in the artificial seawater Jamarin U. Manually dechorionated embryos develop normally. Development was asynchronous via a tornaria larva, metamorphosis and maintained to the juvenile worm 6 gill-pore stage. Phalloidin-labeled late-stage tornaria revealed retractor muscles that connect the pericardial sac with the apical tuft anteriorly, the oesophagus ventrally, and muscle cells of the early mesocoels. The muscle development of early juvenile worms began with dorso-lateral trunk muscles, lateral trunk bands, and sphincters around the gill pores and anus. Adult worms are characterized by a stomochord that bifurcates anteriorly into paired vermiform processes, gill bars that extend almost the entire dorsal to ventral branchial region resulting in a narrow ventral hypobranchial ridge, and an elaborate epibranchial organ with six zones of discrete cell types. The trunk has up to three rows of liver sacs, and lateral gonads. The acorn worm evo-devo model species Saccoglossus kowalevskii, Ptychodera flava, and Schizocardium californicum are phylogenetically distant with disparate life histories. S. karnakawa from S. californicum are phylogenetically close, and differences between them that become apparent as adult worms include the number of gill pores and hepatic sacs, and elaborations of the heart-kidney-stomochord complex. An important challenge for evolutionary developmental biology is to form links from phylogenetically distant and large-scale differences to phylogenetically close and small-scale differences. This description of the embryology, development, and adult morphology of S. karankawa permits investigations into how acorn worm development evolves at fine scales.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"14 1","pages":"6"},"PeriodicalIF":4.1,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10114407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9773349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shell field morphogenesis in the polyplacophoran mollusk Acanthochitona rubrolineata. 多盘目软体动物棘壳壳的壳场形态发生。
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-04-06 DOI: 10.1186/s13227-023-00209-9
Yuxiu Xia, Pin Huan, Baozhong Liu

Background: The polyplacophoran mollusks (chitons) possess serially arranged shell plates. This feature is unique among mollusks and believed to be essential to explore the evolution of mollusks as well as their shells. Previous studies revealed several cell populations in the dorsal epithelium (shell field) of polyplacophoran larvae and their roles in the formation of shell plates. Nevertheless, they provide limited molecular information, and shell field morphogenesis remains largely uninvestigated.

Results: In the present study, we investigated shell field development in the chiton Acanthochitona rubrolineata based on morphological characteristics and molecular patterns. A total of four types of tissue could be recognized from the shell field of A. rubrolineata. The shell field comprised not only the centrally located, alternatively arranged plate fields and ridges, but also the tissues surrounding them, which were the precursors of the girdle and we termed as the girdle field. The girdle field exhibited a concentric organization composed of two circularly arranged tissues, and spicules were only developed in the outer circle. Dynamic engrailed expression and F-actin (filamentous actin) distributions revealed relatively complicated morphogenesis of the shell field. The repeated units (plate fields and ridges) were gradually established in the shell field, seemingly different from the manners used in the segmentation of Drosophila or vertebrates. The seven repeated ridges also experienced different modes of ontogenesis from each other. In the girdle field, the presumptive spicule-formation cells exhibited different patterns of F-actin aggregations as they differentiate.

Conclusions: These results reveal the details concerning the structure of polyplacophoran shell field as well as its morphogenesis. They would contribute to exploring the mechanisms of polyplacophoran shell development and molluscan shell evolution.

背景:多placophoran软体动物(石鳖)具有连续排列的壳板。这种特征在软体动物中是独一无二的,被认为是探索软体动物及其外壳进化的必要条件。先前的研究揭示了多placophoran幼虫背上皮(壳场)的几个细胞群及其在壳板形成中的作用。然而,它们提供了有限的分子信息,而且壳场形态发生在很大程度上仍未被研究。结果:基于形态特征和分子模式,对红纹棘壳子的壳区发育进行了研究。从芦笋壳区可识别出四种不同类型的组织。壳场不仅包括位于中心的交替排列的板块场和脊,还包括其周围的组织,这些组织是带的前体,我们称之为带场。束带区呈两个圆形组织组成的同心圆组织,针状体仅在外圈发育。动态嵌合表达和F-actin(丝状肌动蛋白)分布揭示了壳场相对复杂的形态发生。重复单元(板场和脊)在壳场逐渐建立,似乎不同于果蝇或脊椎动物的分割方式。7个重复脊也经历了不同的个体发生模式。在束区,假设的针状形成细胞在分化过程中表现出不同的f -肌动蛋白聚集模式。结论:这些结果揭示了多placophoran壳场的结构及其形态发生的细节。这将有助于探索多placophoran壳的发育机制和软体动物壳的进化。
{"title":"Shell field morphogenesis in the polyplacophoran mollusk Acanthochitona rubrolineata.","authors":"Yuxiu Xia,&nbsp;Pin Huan,&nbsp;Baozhong Liu","doi":"10.1186/s13227-023-00209-9","DOIUrl":"https://doi.org/10.1186/s13227-023-00209-9","url":null,"abstract":"<p><strong>Background: </strong>The polyplacophoran mollusks (chitons) possess serially arranged shell plates. This feature is unique among mollusks and believed to be essential to explore the evolution of mollusks as well as their shells. Previous studies revealed several cell populations in the dorsal epithelium (shell field) of polyplacophoran larvae and their roles in the formation of shell plates. Nevertheless, they provide limited molecular information, and shell field morphogenesis remains largely uninvestigated.</p><p><strong>Results: </strong>In the present study, we investigated shell field development in the chiton Acanthochitona rubrolineata based on morphological characteristics and molecular patterns. A total of four types of tissue could be recognized from the shell field of A. rubrolineata. The shell field comprised not only the centrally located, alternatively arranged plate fields and ridges, but also the tissues surrounding them, which were the precursors of the girdle and we termed as the girdle field. The girdle field exhibited a concentric organization composed of two circularly arranged tissues, and spicules were only developed in the outer circle. Dynamic engrailed expression and F-actin (filamentous actin) distributions revealed relatively complicated morphogenesis of the shell field. The repeated units (plate fields and ridges) were gradually established in the shell field, seemingly different from the manners used in the segmentation of Drosophila or vertebrates. The seven repeated ridges also experienced different modes of ontogenesis from each other. In the girdle field, the presumptive spicule-formation cells exhibited different patterns of F-actin aggregations as they differentiate.</p><p><strong>Conclusions: </strong>These results reveal the details concerning the structure of polyplacophoran shell field as well as its morphogenesis. They would contribute to exploring the mechanisms of polyplacophoran shell development and molluscan shell evolution.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"14 1","pages":"5"},"PeriodicalIF":4.1,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10080879/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9651486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability in gene expression and body-plan development leads to evolutionary conservation. 基因表达和体型发育的稳定性导致了进化守恒。
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-03-14 DOI: 10.1186/s13227-023-00208-w
Yui Uchida, Hiroyuki Takeda, Chikara Furusawa, Naoki Irie

Background: Phenotypic evolution is mainly explained by selection for phenotypic variation arising from factors including mutation and environmental noise. Recent theoretical and experimental studies have suggested that phenotypes with greater developmental stability tend to have a constant phenotype and gene expression level within a particular genetic and environmental condition, and this positively correlates with stronger evolutionary conservation, even after the accumulation of genetic changes. This could reflect a novel mechanism that contributes to evolutionary conservation; however, it remains unclear whether developmental stability is the cause, or whether at least it contributes to their evolutionary conservation. Here, using Japanese medaka lines, we tested experimentally whether developmental stages and gene expression levels with greater stability led to their evolutionary conservation.

Results: We first measured the stability of each gene expression level and developmental stage (defined here as the whole embryonic transcriptome) in the inbred F0 medaka population. We then measured their evolutionary conservation in the F3 generation by crossing the F0 line with the distantly related Japanese medaka line (Teradomori), followed by two rounds of intra-generational crossings. The results indicated that the genes and developmental stages that had smaller variations in the F0 generation showed lower diversity in the hybrid F3 generation, which implies a causal relationship between stability and evolutionary conservation.

Conclusions: These findings suggest that the stability in phenotypes, including the developmental stages and gene expression levels, leads to their evolutionary conservation; this most likely occurs due to their low potential to generate phenotypic variation. In addition, since the highly stable developmental stages match with the body-plan-establishment stage, it also implies that the developmental stability potentially contributed to the strict conservation of animal body plan.

背景:表型进化主要通过突变和环境噪声等因素对表型变异的选择来解释。最近的理论和实验研究表明,具有更大发育稳定性的表型在特定的遗传和环境条件下往往具有恒定的表型和基因表达水平,这与更强的进化保守性呈正相关,即使在遗传变化积累之后也是如此。这可能反映了一种有助于进化保护的新机制;然而,尚不清楚发育稳定性是否是原因,或者至少它有助于它们的进化保护。在这里,我们使用日本medaka系,实验测试了是否发育阶段和更稳定的基因表达水平导致了它们的进化保护。结果:我们首先测量了近交系F0 medaka群体中每个基因表达水平和发育阶段(这里定义为整个胚胎转录组)的稳定性。然后,我们通过将F0系与远亲日本medaka系(Teradomori)杂交,在F3代中测量了它们的进化保守性,随后进行了两轮代内杂交。结果表明,在F0代中变异较小的基因和发育阶段在F3代中多样性较低,表明稳定性与进化保守之间存在因果关系。结论:这些发现表明,包括发育阶段和基因表达水平在内的表型的稳定性导致了它们的进化保守;这很可能是由于它们产生表型变异的可能性较低。此外,由于高度稳定的发育阶段与身体计划建立阶段相匹配,这也意味着发育稳定性可能导致动物对身体计划的严格保护。
{"title":"Stability in gene expression and body-plan development leads to evolutionary conservation.","authors":"Yui Uchida,&nbsp;Hiroyuki Takeda,&nbsp;Chikara Furusawa,&nbsp;Naoki Irie","doi":"10.1186/s13227-023-00208-w","DOIUrl":"https://doi.org/10.1186/s13227-023-00208-w","url":null,"abstract":"<p><strong>Background: </strong>Phenotypic evolution is mainly explained by selection for phenotypic variation arising from factors including mutation and environmental noise. Recent theoretical and experimental studies have suggested that phenotypes with greater developmental stability tend to have a constant phenotype and gene expression level within a particular genetic and environmental condition, and this positively correlates with stronger evolutionary conservation, even after the accumulation of genetic changes. This could reflect a novel mechanism that contributes to evolutionary conservation; however, it remains unclear whether developmental stability is the cause, or whether at least it contributes to their evolutionary conservation. Here, using Japanese medaka lines, we tested experimentally whether developmental stages and gene expression levels with greater stability led to their evolutionary conservation.</p><p><strong>Results: </strong>We first measured the stability of each gene expression level and developmental stage (defined here as the whole embryonic transcriptome) in the inbred F0 medaka population. We then measured their evolutionary conservation in the F3 generation by crossing the F0 line with the distantly related Japanese medaka line (Teradomori), followed by two rounds of intra-generational crossings. The results indicated that the genes and developmental stages that had smaller variations in the F0 generation showed lower diversity in the hybrid F3 generation, which implies a causal relationship between stability and evolutionary conservation.</p><p><strong>Conclusions: </strong>These findings suggest that the stability in phenotypes, including the developmental stages and gene expression levels, leads to their evolutionary conservation; this most likely occurs due to their low potential to generate phenotypic variation. In addition, since the highly stable developmental stages match with the body-plan-establishment stage, it also implies that the developmental stability potentially contributed to the strict conservation of animal body plan.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"14 1","pages":"4"},"PeriodicalIF":4.1,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9121472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The role of non-additive gene action on gene expression variation in plant domestication. 植物驯化过程中非加性基因作用对基因表达变异的影响。
IF 4.1 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-02-10 DOI: 10.1186/s13227-022-00206-4
Erik Díaz-Valenzuela, Daniel Hernández-Ríos, Angélica Cibrián-Jaramillo

Background: Plant domestication is a remarkable example of rapid phenotypic transformation of polygenic traits, such as organ size. Evidence from a handful of study cases suggests this transformation is due to gene regulatory changes that result in non-additive phenotypes. Employing data from published genetic crosses, we estimated the role of non-additive gene action in the modulation of transcriptional landscapes in three domesticated plants: maize, sunflower, and chili pepper. Using A. thaliana, we assessed the correlation between gene regulatory network (GRN) connectivity properties, transcript abundance variation, and gene action. Finally, we investigated the propagation of non-additive gene action in GRNs.

Results: We compared crosses between domesticated plants and their wild relatives to a set of control crosses that included a pair of subspecies evolving under natural selection and a set of inbred lines evolving under domestication. We found abundance differences on a higher portion of transcripts in crosses between domesticated-wild plants relative to the control crosses. These transcripts showed non-additive gene action more often in crosses of domesticated-wild plants than in our control crosses. This pattern was strong for genes associated with cell cycle and cell fate determination, which control organ size. We found weak but significant negative correlations between the number of targets of trans-acting genes (Out-degree) and both the magnitude of transcript abundance difference a well as the absolute degree of dominance. Likewise, we found that the number of regulators that control a gene's expression (In-degree) is weakly but negatively correlated with the magnitude of transcript abundance differences. We observed that dominant-recessive gene action is highly propagable through GRNs. Finally, we found that transgressive gene action is driven by trans-acting regulators showing additive gene action.

Conclusions: Our study highlights the role of non-additive gene action on modulating domestication-related traits, such as organ size via regulatory divergence. We propose that GRNs are shaped by regulatory changes at genes with modest connectivity, which reduces the effects of antagonistic pleiotropy. Finally, we provide empirical evidence of the propagation of non-additive gene action in GRNs, which suggests a transcriptional epistatic model for the control of polygenic traits, such as organ size.

背景:植物驯化是多基因性状(如器官大小)快速表型转化的一个显著例子。来自少数研究案例的证据表明,这种转变是由于基因调控变化导致非加性表型。利用已发表的遗传杂交数据,我们估计了三种驯化植物(玉米、向日葵和辣椒)中非加性基因作用在转录景观调节中的作用。以拟南芥为研究对象,研究了基因调控网络(GRN)连通性、转录物丰度变异和基因作用之间的相关性。最后,我们研究了非加性基因作用在grn中的繁殖。结果:我们将驯化植物与其野生近缘的杂交与一组对照杂交进行了比较,其中包括一对在自然选择下进化的亚种和一组在驯化下进化的自交系。结果表明,驯化野生植物与对照植物在较高比例的转录本上存在丰度差异。这些转录本在驯化野生植物杂交中比在对照杂交中更多地表现出非加性基因作用。这种模式对于控制器官大小的细胞周期和细胞命运决定相关的基因是很强的。我们发现反式作用基因的靶数(out度)与转录物丰度差异的大小以及绝对优势度之间存在微弱但显著的负相关。同样,我们发现控制基因表达的调控因子数量(In-degree)与转录物丰度差异的大小呈弱但负相关。我们观察到显性-隐性基因作用通过grn高度可传播。最后,我们发现越界的基因作用是由反式作用的调控因子驱动的,这些调控因子表现出加性的基因作用。结论:我们的研究强调了非加性基因作用在调节驯化相关性状中的作用,如通过调节差异调节器官大小。我们认为grn是由适度连接基因的调控变化形成的,这减少了拮抗多效性的影响。最后,我们提供了非加性基因作用在grn中传播的经验证据,这表明转录上位模型可以控制多基因性状,如器官大小。
{"title":"The role of non-additive gene action on gene expression variation in plant domestication.","authors":"Erik Díaz-Valenzuela,&nbsp;Daniel Hernández-Ríos,&nbsp;Angélica Cibrián-Jaramillo","doi":"10.1186/s13227-022-00206-4","DOIUrl":"https://doi.org/10.1186/s13227-022-00206-4","url":null,"abstract":"<p><strong>Background: </strong>Plant domestication is a remarkable example of rapid phenotypic transformation of polygenic traits, such as organ size. Evidence from a handful of study cases suggests this transformation is due to gene regulatory changes that result in non-additive phenotypes. Employing data from published genetic crosses, we estimated the role of non-additive gene action in the modulation of transcriptional landscapes in three domesticated plants: maize, sunflower, and chili pepper. Using A. thaliana, we assessed the correlation between gene regulatory network (GRN) connectivity properties, transcript abundance variation, and gene action. Finally, we investigated the propagation of non-additive gene action in GRNs.</p><p><strong>Results: </strong>We compared crosses between domesticated plants and their wild relatives to a set of control crosses that included a pair of subspecies evolving under natural selection and a set of inbred lines evolving under domestication. We found abundance differences on a higher portion of transcripts in crosses between domesticated-wild plants relative to the control crosses. These transcripts showed non-additive gene action more often in crosses of domesticated-wild plants than in our control crosses. This pattern was strong for genes associated with cell cycle and cell fate determination, which control organ size. We found weak but significant negative correlations between the number of targets of trans-acting genes (Out-degree) and both the magnitude of transcript abundance difference a well as the absolute degree of dominance. Likewise, we found that the number of regulators that control a gene's expression (In-degree) is weakly but negatively correlated with the magnitude of transcript abundance differences. We observed that dominant-recessive gene action is highly propagable through GRNs. Finally, we found that transgressive gene action is driven by trans-acting regulators showing additive gene action.</p><p><strong>Conclusions: </strong>Our study highlights the role of non-additive gene action on modulating domestication-related traits, such as organ size via regulatory divergence. We propose that GRNs are shaped by regulatory changes at genes with modest connectivity, which reduces the effects of antagonistic pleiotropy. Finally, we provide empirical evidence of the propagation of non-additive gene action in GRNs, which suggests a transcriptional epistatic model for the control of polygenic traits, such as organ size.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"14 1","pages":"3"},"PeriodicalIF":4.1,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912502/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10683414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Evodevo
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1