Pub Date : 2024-08-01DOI: 10.1007/s11869-024-01618-y
Nancy Kaushik, A. K. Mishra, Rupesh M. Das
This study investigates benzene and toluene concentrations in Delhi and National Capital Region (NCR), India, assessing health risks and impacts on air quality, focusing on their role in ozone formation. Data from 56 monitoring stations identified 18 locations where benzene levels exceed the national safe limit, primarily due to traffic emissions and seasonal variations. Benzene concentrations peaked at 15.06 µg/m3 in Loni, Ghaziabad, during winter. Seasonal analysis indicated higher benzene levels during winter and post-monsoon periods due to lower planetary boundary layer heights (PBLHs) trapping pollutants near the ground. Health risk assessments revealed probable cancer risks for residents, with children facing higher risks than adults. Using the Ozone Formation Potential (OFP) metric and Maximum Incremental Reactivity (MIR) coefficients of 0.72 for benzene and 4.0 for toluene, the study predicted OFP values for various hotspots. Toluene's significant contribution to ozone formation was evident, with the highest concentration observed at Charkhi Dadri, Haryana (29.65 ± 2.26 µg/m3), surpassing the WHO’s air quality guidelines of 120 µg/m3, and the highest benzene concentration at Loni (7.3 ± 0.8 µg/m3). Toluene/benzene ratio and principal component analysis identified automobiles and industrial activities as significant pollution sources. The study underscores the urgent need for stricter emission controls, cleaner fuels, and improved urban planning to reduce these pollutant's negative impacts on the environment. Elevated VOC levels and associated health risks necessitate immediate action to protect public health and improve air quality in Delhi NCR. These results emphasize critical need for interventions to address benzene and toluene pollution comprehensively.
{"title":"Assessment of benzene and toluene emissions in National Capital Region (NCR): Implications for health risks and ozone formation","authors":"Nancy Kaushik, A. K. Mishra, Rupesh M. Das","doi":"10.1007/s11869-024-01618-y","DOIUrl":"10.1007/s11869-024-01618-y","url":null,"abstract":"<div><p>This study investigates benzene and toluene concentrations in Delhi and National Capital Region (NCR), India, assessing health risks and impacts on air quality, focusing on their role in ozone formation. Data from 56 monitoring stations identified 18 locations where benzene levels exceed the national safe limit, primarily due to traffic emissions and seasonal variations. Benzene concentrations peaked at 15.06 µg/m<sup>3</sup> in Loni, Ghaziabad, during winter. Seasonal analysis indicated higher benzene levels during winter and post-monsoon periods due to lower planetary boundary layer heights (PBLHs) trapping pollutants near the ground. Health risk assessments revealed probable cancer risks for residents, with children facing higher risks than adults. Using the Ozone Formation Potential (OFP) metric and Maximum Incremental Reactivity (MIR) coefficients of 0.72 for benzene and 4.0 for toluene, the study predicted OFP values for various hotspots. Toluene's significant contribution to ozone formation was evident, with the highest concentration observed at Charkhi Dadri, Haryana (29.65 ± 2.26 µg/m<sup>3</sup>), surpassing the WHO’s air quality guidelines of 120 µg/m<sup>3</sup>, and the highest benzene concentration at Loni (7.3 ± 0.8 µg/m<sup>3</sup>). Toluene/benzene ratio and principal component analysis identified automobiles and industrial activities as significant pollution sources. The study underscores the urgent need for stricter emission controls, cleaner fuels, and improved urban planning to reduce these pollutant's negative impacts on the environment. Elevated VOC levels and associated health risks necessitate immediate action to protect public health and improve air quality in Delhi NCR. These results emphasize critical need for interventions to address benzene and toluene pollution comprehensively.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 12","pages":"3015 - 3029"},"PeriodicalIF":2.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1007/s11869-024-01619-x
Tao Chen, Kexin Dai, Huihui Wu
In recent years, the incidence of respiratory diseases such as asthma and pneumonia has increased significantly. However, the effect of lead (Pb) pollution on the respiratory system remains unclear. The aim of this study was to evaluate the effects of exposure to environmental and occupational Pb on respiratory health. Articles published in PubMed and Web of Science before September 2023 were systematically searched. The overall adjusted odds ratio (OR) and 95% confidence intervals (CIs) for the association between Pb exposure and respiratory diseases were extracted from each relevant article. The random effects model was applied to analyze the overall pooled effect estimates. Among the 36,373 search results, 36 related articles were screened for meta-analysis. The results of the meta-analysis suggested that Pb exposure increased the risk of respiratory diseases: OR = 1.12 (95% CIs: 1.05, 1.18). The funnel plot, Egger’s and Begg’s tests showed no publication bias. Sensitivity analysis confirmed that the meta-analysis was statistically reliable and stable. Environmental and occupational Pb exposure is associated with an increased risk of respiratory diseases including asthma. The study highlights the importance of further research on the harmful effects of Pb and the urgency of mitigating air pollution.
{"title":"Effect of lead exposure on respiratory health: a systematic review and meta-analysis","authors":"Tao Chen, Kexin Dai, Huihui Wu","doi":"10.1007/s11869-024-01619-x","DOIUrl":"10.1007/s11869-024-01619-x","url":null,"abstract":"<div><p>In recent years, the incidence of respiratory diseases such as asthma and pneumonia has increased significantly. However, the effect of lead (Pb) pollution on the respiratory system remains unclear. The aim of this study was to evaluate the effects of exposure to environmental and occupational Pb on respiratory health. Articles published in PubMed and Web of Science before September 2023 were systematically searched. The overall adjusted odds ratio (OR) and 95% confidence intervals (CIs) for the association between Pb exposure and respiratory diseases were extracted from each relevant article. The random effects model was applied to analyze the overall pooled effect estimates. Among the 36,373 search results, 36 related articles were screened for meta-analysis. The results of the meta-analysis suggested that Pb exposure increased the risk of respiratory diseases: OR = 1.12 (95% CIs: 1.05, 1.18). The funnel plot, Egger’s and Begg’s tests showed no publication bias. Sensitivity analysis confirmed that the meta-analysis was statistically reliable and stable. Environmental and occupational Pb exposure is associated with an increased risk of respiratory diseases including asthma. The study highlights the importance of further research on the harmful effects of Pb and the urgency of mitigating air pollution.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 12","pages":"3031 - 3044"},"PeriodicalIF":2.9,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-27DOI: 10.1007/s11869-024-01616-0
Muhammad Zeeshan, Khan Alam
In the atmosphere of Earth, aerosols are highly variable components that significantly affect Earth’s climate and human health. Due to their complex nature, these particles vary greatly in their form. Thus, in-depth analysis of aerosol classification is crucial for air quality and climate studies. Therefore, this study investigated the temporal distribution of atmospheric particles over two megacities of Pakistan (Lahore and Karachi). The study offers an aerosol-type classification based on the particle linear depolarization ratio (PLDR) and the single scattering albedo (SSA) at 1020 nm, retrieved from the Aerosol Robotic Network (AERONET) Version 3.0 Level 2.0 inversion products. The study also analyzed particulate matter (PM2.5) levels in Lahore and Karachi, which has recently experienced alarming air pollution. Temporal trends of PM2.5 in both cities were assessed using ground-based remote sensing. The dust ratio parameter (Rd) calculated from PLDR indicated that coarse-mode aerosols dominated, with occurrence rates of 86% in Lahore and 99% in Karachi. Pure dust (PD) and pollution-dominated mixture (PDM) plumes were more frequent in Lahore (43.16%) and Karachi (44.14%). Annually, dust-containing aerosols occur more frequently (28.47% in Lahore, 30.43% in Karachi) than dust-free types (25.62% in Lahore, 27.87% in Karachi). PM2.5 levels peak in autumn and winter, especially December 2021 (369.17 µg/m³). The highest seasonal (winter) PM2.5 averages were 284.99 µg/m³ (2022), 269.05 µg/m³ (2021), 264.99 µg/m³ (2023), and 222.34 µg/m³ (2020), contributing to smog and respiratory diseases in Lahore. Low PLDR values over Lahore are due to the large anthropogenic emissions, resulting in poor air quality as compared to Karachi.
{"title":"Investigations of aerosol types classification and PM2.5 concentrations: A case study of two major cities in Pakistan","authors":"Muhammad Zeeshan, Khan Alam","doi":"10.1007/s11869-024-01616-0","DOIUrl":"10.1007/s11869-024-01616-0","url":null,"abstract":"<div><p>In the atmosphere of Earth, aerosols are highly variable components that significantly affect Earth’s climate and human health. Due to their complex nature, these particles vary greatly in their form. Thus, in-depth analysis of aerosol classification is crucial for air quality and climate studies. Therefore, this study investigated the temporal distribution of atmospheric particles over two megacities of Pakistan (Lahore and Karachi). The study offers an aerosol-type classification based on the particle linear depolarization ratio (PLDR) and the single scattering albedo (SSA) at 1020 nm, retrieved from the Aerosol Robotic Network (AERONET) Version 3.0 Level 2.0 inversion products. The study also analyzed particulate matter (PM<sub>2.5</sub>) levels in Lahore and Karachi, which has recently experienced alarming air pollution. Temporal trends of PM<sub>2.5</sub> in both cities were assessed using ground-based remote sensing. The dust ratio parameter (R<sub>d</sub>) calculated from PLDR indicated that coarse-mode aerosols dominated, with occurrence rates of 86% in Lahore and 99% in Karachi. Pure dust (PD) and pollution-dominated mixture (PDM) plumes were more frequent in Lahore (43.16%) and Karachi (44.14%). Annually, dust-containing aerosols occur more frequently (28.47% in Lahore, 30.43% in Karachi) than dust-free types (25.62% in Lahore, 27.87% in Karachi). PM<sub>2.5</sub> levels peak in autumn and winter, especially December 2021 (369.17 µg/m³). The highest seasonal (winter) PM<sub>2.5</sub> averages were 284.99 µg/m³ (2022), 269.05 µg/m³ (2021), 264.99 µg/m³ (2023), and 222.34 µg/m³ (2020), contributing to smog and respiratory diseases in Lahore. Low PLDR values over Lahore are due to the large anthropogenic emissions, resulting in poor air quality as compared to Karachi.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 12","pages":"2985 - 3002"},"PeriodicalIF":2.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-27DOI: 10.1007/s11869-024-01591-6
Saria Hoshino, Kazushi Noro, Miyu Moriya, Ayana Komatsu, Qi Wang, Yuichi Miyake, Takashi Amagai
Passive smoking poses a major hazard to the health of non-smokers. Cigarette combustion emits environmental tobacco smoke (ETS) that contains various pollutants, including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons, and particulate matter with particles < 2.5 μm in aerodynamic diameter (PM2.5). Therefore, to assess the risk of passive smoking, it is necessary to determine the exposure levels to ETS compounds caused by passive smoking. However, it is difficult to assess exposure to ETS compounds by excluding the effects of other sources of pollution. In this study, we assessed the individual exposure levels to ETS compounds using a nicotine passive sampler and PM2.5 sensor in 258 non-smokers. Median nicotine and PM2.5 concentrations were 0.065 and 7.5 µg m− 3, respectively. The median nicotine concentration was nearly identical to that found in non-smoking areas (0.05 µg m− 3). The median PM2.5 concentrations were below the standard value for indoor PM2.5 concentrations (12 µg m− 3). These results indicated that the effect of passive smoking was rather modest. Nicotine concentrations in individuals exposed to passive smoking indoors were significantly higher than in those not exposed to passive smoking. Nicotine exposure from domestic passive smoking was twice that from non-domestic passive smoking. There was no significant difference in PM2.5 exposure between passive smoking in domestic and non-domestic settings. Moreover, it was suggested that passive smoking was equivalent to the act of smoking 2.4 × 10− 3 cigarettes per day.
{"title":"Quantitative evaluation of nicotine and particulate matter exposure for passive- and non-smokers via a nicotine passive sampler and a particulate matter sensor","authors":"Saria Hoshino, Kazushi Noro, Miyu Moriya, Ayana Komatsu, Qi Wang, Yuichi Miyake, Takashi Amagai","doi":"10.1007/s11869-024-01591-6","DOIUrl":"10.1007/s11869-024-01591-6","url":null,"abstract":"<div><p>Passive smoking poses a major hazard to the health of non-smokers. Cigarette combustion emits environmental tobacco smoke (ETS) that contains various pollutants, including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons, and particulate matter with particles < 2.5 μm in aerodynamic diameter (PM<sub>2.5</sub>). Therefore, to assess the risk of passive smoking, it is necessary to determine the exposure levels to ETS compounds caused by passive smoking. However, it is difficult to assess exposure to ETS compounds by excluding the effects of other sources of pollution. In this study, we assessed the individual exposure levels to ETS compounds using a nicotine passive sampler and PM<sub>2.5</sub> sensor in 258 non-smokers. Median nicotine and PM<sub>2.5</sub> concentrations were 0.065 and 7.5 µg m<sup>− 3</sup>, respectively. The median nicotine concentration was nearly identical to that found in non-smoking areas (0.05 µg m<sup>− 3</sup>). The median PM<sub>2.5</sub> concentrations were below the standard value for indoor PM<sub>2.5</sub> concentrations (12 µg m<sup>− 3</sup>). These results indicated that the effect of passive smoking was rather modest. Nicotine concentrations in individuals exposed to passive smoking indoors were significantly higher than in those not exposed to passive smoking. Nicotine exposure from domestic passive smoking was twice that from non-domestic passive smoking. There was no significant difference in PM<sub>2.5</sub> exposure between passive smoking in domestic and non-domestic settings. Moreover, it was suggested that passive smoking was equivalent to the act of smoking 2.4 × 10<sup>− 3</sup> cigarettes per day.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 12","pages":"2767 - 2773"},"PeriodicalIF":2.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-024-01591-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents source apportionment and toxicity level of trace element concentration in total suspended particulate matter (TSPM) fraction of settled dust at different benches of opencast coal mine. In opencast coal mine, various mining associated activities are responsible for emission of TSPM. It is significant to study these airborne TSPM and associated trace elements as mineworkers and surrounding environment are directly exposed to it. The order of mean concentration of trace elements shows that Pb ranked fourth at bench-2 & 4 and Cr ranked fourth at bench-3 whereas, Fe, Mn and Zn are among the top three at all benches. Whereas trace element concentration in haul road dusts are found higher than other locations. In this study, Spearman correlation and principal component analysis (PCA) is performed to observe the percentage contribution of exhaust & non-exhaust emission due to heavy earthmoving machineries (HEMMs) operation. A source apportionment indicates that possible contributing sources to the trace elements are geogenic (46.68%) > exhaust & non-exhaust emission (28.37%) > coal dust (10.24%). The trace elements associated to the TSPM add to the menace. Therefore, variability in toxicity of the TSPM (< 62 μm) fraction of dust within opencast coal mines was observed using the pollution indicators such as contamination factor, pollution load index, modified degree of contamination, geo-accumulation index and ecological risk index. The TSPM (< 62 μm) fraction of haul road dust is found more toxic in comparison to other locations at different depth.
{"title":"Trace element profile of TSPM with depth within opencast coal mines for risk assessment and their source apportionment","authors":"Ambasht Kumar, Anil Kumar, Pratichi Singh, Suresh Pandian Elumalai","doi":"10.1007/s11869-024-01613-3","DOIUrl":"10.1007/s11869-024-01613-3","url":null,"abstract":"<div><p>This study presents source apportionment and toxicity level of trace element concentration in total suspended particulate matter (TSPM) fraction of settled dust at different benches of opencast coal mine. In opencast coal mine, various mining associated activities are responsible for emission of TSPM. It is significant to study these airborne TSPM and associated trace elements as mineworkers and surrounding environment are directly exposed to it. The order of mean concentration of trace elements shows that Pb ranked fourth at bench-2 & 4 and Cr ranked fourth at bench-3 whereas, Fe, Mn and Zn are among the top three at all benches. Whereas trace element concentration in haul road dusts are found higher than other locations. In this study, Spearman correlation and principal component analysis (PCA) is performed to observe the percentage contribution of exhaust & non-exhaust emission due to heavy earthmoving machineries (HEMMs) operation. A source apportionment indicates that possible contributing sources to the trace elements are geogenic (46.68%) > exhaust & non-exhaust emission (28.37%) > coal dust (10.24%). The trace elements associated to the TSPM add to the menace. Therefore, variability in toxicity of the TSPM (< 62 μm) fraction of dust within opencast coal mines was observed using the pollution indicators such as contamination factor, pollution load index, modified degree of contamination, geo-accumulation index and ecological risk index. The TSPM (< 62 μm) fraction of haul road dust is found more toxic in comparison to other locations at different depth.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 12","pages":"2949 - 2965"},"PeriodicalIF":2.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1007/s11869-024-01609-z
Lin Liu, Guodong He, Zhiqiang Nie, Yingqing Feng, Yuqing Huang
The impact of improving atmospheric ozone on the state of hypertension on changes in cognitive function has not received much attention. Using data from the China Health and Retirement Longitudinal Study (CHARLS), which included 8,700 people who were first assessed in 2011 and followed through 2018, this study aimed to investigate this association. The cognitive function examination measured three dimensions: memory, executive function, and orientation, from which a global cognitive function score was calculated. The study defined atmospheric ozone improvement as the decrease in average ozone concentration between the three-year periods preceding and succeeding 2011. Linear mixed models were used to investigate the effect of atmospheric ozone and hypertension status on cognitive function changes. Subsequent subgroup and interaction analyses were performed to evaluate potential effect changes on the aforementioned connection. Using non-hypertensive participants with improved atmospheric ozone as a reference, and after adjusting for potential variables, the multivariable-adjusted beta values for global function from those with hypertension and improved atmospheric ozone, non-hypertensive and unimproved atmospheric ozone, and hypertensive and unimproved atmospheric ozone were − 0.012 (95% CI: -0.021, -0.002), -0.014 (95% CI: -0.022, -0.006), and − 0.027 (95% CI: -0.036, -0.018), respectively (P for trend < 0.001).Subgroup analysis revealed that the combined effects of hypertension and atmospheric ozone exposure status on cognition were more significant in older patients, females, non-exercisers, and people without depressive symptoms at baseline. Notably, none of the interactions between the subgroups were significant (all P-interaction > 0.05). In conclusion, our findings revealed a substantial joint influence of atmospheric ozone improvement and hypertension status on cognitive function change, implying that both health behaviors and environmental policies were crucial in the prevention of function impairment.
{"title":"Association of hypertension status and exposure to atmospheric ozone improvement with cognitive decline in China","authors":"Lin Liu, Guodong He, Zhiqiang Nie, Yingqing Feng, Yuqing Huang","doi":"10.1007/s11869-024-01609-z","DOIUrl":"10.1007/s11869-024-01609-z","url":null,"abstract":"<div><p>The impact of improving atmospheric ozone on the state of hypertension on changes in cognitive function has not received much attention. Using data from the China Health and Retirement Longitudinal Study (CHARLS), which included 8,700 people who were first assessed in 2011 and followed through 2018, this study aimed to investigate this association. The cognitive function examination measured three dimensions: memory, executive function, and orientation, from which a global cognitive function score was calculated. The study defined atmospheric ozone improvement as the decrease in average ozone concentration between the three-year periods preceding and succeeding 2011. Linear mixed models were used to investigate the effect of atmospheric ozone and hypertension status on cognitive function changes. Subsequent subgroup and interaction analyses were performed to evaluate potential effect changes on the aforementioned connection. Using non-hypertensive participants with improved atmospheric ozone as a reference, and after adjusting for potential variables, the multivariable-adjusted beta values for global function from those with hypertension and improved atmospheric ozone, non-hypertensive and unimproved atmospheric ozone, and hypertensive and unimproved atmospheric ozone were − 0.012 (95% CI: -0.021, -0.002), -0.014 (95% CI: -0.022, -0.006), and − 0.027 (95% CI: -0.036, -0.018), respectively (P for trend < 0.001).Subgroup analysis revealed that the combined effects of hypertension and atmospheric ozone exposure status on cognition were more significant in older patients, females, non-exercisers, and people without depressive symptoms at baseline. Notably, none of the interactions between the subgroups were significant (all P-interaction > 0.05). In conclusion, our findings revealed a substantial joint influence of atmospheric ozone improvement and hypertension status on cognitive function change, implying that both health behaviors and environmental policies were crucial in the prevention of function impairment.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 12","pages":"2867 - 2878"},"PeriodicalIF":2.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1007/s11869-024-01612-4
Ana Santurtún, Pablo Fdez-Arroyabe, Maria José Sedano, Manuel Delgado-Alvarado, Ricardo Almendra, Javier Riancho
Air pollution is an environmental factor involved in neuroinflammation, which leads to the progressive neuronal damage that appears in various neurodegenerative diseases. This article reviews the impact on Amyotrophic Lateral Sclerosis (ALS), the most common degenerative motor neuron disease, of exposure to BTEX (benzene, toluene, ethylbenzene, and xylene), aromatic hydrocarbons capable of crossing the blood-brain barrier, with documented neurotoxic effects. Results show that occupational exposure to BTEX has been linked to the incidence of ALS, while the relationship with the exposure in residential environments with high levels of these toxins in outdoor air is not conclusive; sources of BTEX emissions often lead to mixed toxic exposure, making it challenging to assess the specific impact of this group of pollutants. Under the commonly accepted hypothesis that ALS is a disease triggered by the accumulation of multiple steps, BTEX could be the step causing toxic insult, or alternatively, BTEX might play a role in the disease’s progression. However new studies are necessary to determine its involvement in the disease.
{"title":"Are BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) involved in the development of amyotrophic lateral sclerosis?","authors":"Ana Santurtún, Pablo Fdez-Arroyabe, Maria José Sedano, Manuel Delgado-Alvarado, Ricardo Almendra, Javier Riancho","doi":"10.1007/s11869-024-01612-4","DOIUrl":"10.1007/s11869-024-01612-4","url":null,"abstract":"<div><p>Air pollution is an environmental factor involved in neuroinflammation, which leads to the progressive neuronal damage that appears in various neurodegenerative diseases. This article reviews the impact on Amyotrophic Lateral Sclerosis (ALS), the most common degenerative motor neuron disease, of exposure to BTEX (benzene, toluene, ethylbenzene, and xylene), aromatic hydrocarbons capable of crossing the blood-brain barrier, with documented neurotoxic effects. Results show that occupational exposure to BTEX has been linked to the incidence of ALS, while the relationship with the exposure in residential environments with high levels of these toxins in outdoor air is not conclusive; sources of BTEX emissions often lead to mixed toxic exposure, making it challenging to assess the specific impact of this group of pollutants. Under the commonly accepted hypothesis that ALS is a disease triggered by the accumulation of multiple steps, BTEX could be the step causing toxic insult, or alternatively, BTEX might play a role in the disease’s progression. However new studies are necessary to determine its involvement in the disease.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 12","pages":"2899 - 2908"},"PeriodicalIF":2.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-024-01612-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1007/s11869-024-01611-5
Maria P. Georgopoulou, Juan Camilo Macias Rodriguez, Céline-Hivda Yegen, Christos Kaltsonoudis, Mathieu Cazaunau, Christina N. Vasilakopoulou, Angeliki Matrali, Katerina Seitanidi, Andreas Aktypis, Athanasios Nenes, Clément Buissot, Aline Gratien, Antonin Berge, Edouard Pangui, Elie Al Marj, Lucy Gerard, Bénédicte Picquet Varrault, Sophie Lanone, Patrice Coll, Spyros N. Pandis
Atmospheric simulation chambers can become valuable tools for studying the impact of different air pollutants and sources on preclinical models. We developed a novel experimental approach for the generation of realistic polluted atmospheres, by coupling, for the first time, two advanced chambers, the FORTH (Foundation for Research & Technology—Hellas) mobile simulation chamber and the CESAM (Chamber for Experimental Multiphase Atmospheric Simulation) chamber, to continuously generate air pollution levels that represent a variety of urban atmospheric conditions heavily influenced by biomass burning (BB). The combination of the two chambers enables the production of stable and representative aerosols, allowing for long-term exposure studies on preclinical models (i.e., healthy, and wild type mice) under controlled conditions. This work describes the coupling methodology, the operational conditions of the FORTH and CESAM chambers and the integration of the animal exposure devices to this dual chamber set-up. The protocols applied for the continuous production (here up to 72 h) of both fresh and aged BB emissions and several other pollutants are described. The range of aerosol concentrations, compositions, and properties achieved in these experiments are summarized. The aged BB aerosol had up to twice the oxidative potential (OP) of the fresh BB emissions. The study revealed significant changes in aerosol composition during the photochemical processing of the BB emissions, with the oxygen to carbon (O:C) ratio of aged BB increasing by 33% compared to the fresh. Notable volatile organic compounds (VOC) emissions, such as formaldehyde and acetonitrile, and their levels were also highlighted. The main objective of this work is to provide useful insights for the future development of robust protocols for effective long-term exposure (several days or weeks) of preclinical models under controlled and stable conditions.
{"title":"A coupled atmospheric simulation chamber system for the production of realistic aerosols and preclinical model exposure","authors":"Maria P. Georgopoulou, Juan Camilo Macias Rodriguez, Céline-Hivda Yegen, Christos Kaltsonoudis, Mathieu Cazaunau, Christina N. Vasilakopoulou, Angeliki Matrali, Katerina Seitanidi, Andreas Aktypis, Athanasios Nenes, Clément Buissot, Aline Gratien, Antonin Berge, Edouard Pangui, Elie Al Marj, Lucy Gerard, Bénédicte Picquet Varrault, Sophie Lanone, Patrice Coll, Spyros N. Pandis","doi":"10.1007/s11869-024-01611-5","DOIUrl":"10.1007/s11869-024-01611-5","url":null,"abstract":"<div><p>Atmospheric simulation chambers can become valuable tools for studying the impact of different air pollutants and sources on preclinical models. We developed a novel experimental approach for the generation of realistic polluted atmospheres, by coupling, for the first time, two advanced chambers, the FORTH (Foundation for Research & Technology—Hellas) mobile simulation chamber and the CESAM (Chamber for Experimental Multiphase Atmospheric Simulation) chamber, to continuously generate air pollution levels that represent a variety of urban atmospheric conditions heavily influenced by biomass burning (BB). The combination of the two chambers enables the production of stable and representative aerosols, allowing for long-term exposure studies on preclinical models (i.e., healthy, and wild type mice) under controlled conditions. This work describes the coupling methodology, the operational conditions of the FORTH and CESAM chambers and the integration of the animal exposure devices to this dual chamber set-up. The protocols applied for the continuous production (here up to 72 h) of both fresh and aged BB emissions and several other pollutants are described. The range of aerosol concentrations, compositions, and properties achieved in these experiments are summarized. The aged BB aerosol had up to twice the oxidative potential (OP) of the fresh BB emissions. The study revealed significant changes in aerosol composition during the photochemical processing of the BB emissions, with the oxygen to carbon (O:C) ratio of aged BB increasing by 33% compared to the fresh. Notable volatile organic compounds (VOC) emissions, such as formaldehyde and acetonitrile, and their levels were also highlighted. The main objective of this work is to provide useful insights for the future development of robust protocols for effective long-term exposure (several days or weeks) of preclinical models under controlled and stable conditions.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 12","pages":"2909 - 2930"},"PeriodicalIF":2.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141825032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The toxic impact of relatively low ammonia exposure on animal lungs lacks attention. Therefore, we employed pigs as an animal model to explore the effects and potential mechanisms of low (LA) and medium (MA) levels of ammonia exposure on lungs. The results demonstrated that the alterations of Th17 and chemokine expression worked through the NF-κB and JAK-STAT pathway to accelerate the imbalance of Th1/Th2 and the process of antigen processing and presentation, resulting in lung injury, inflammation and apoptosis. The cell proliferation was stimulated by increasing the expression of key cell cycle-related genes and enhancing cell cycle processes. Accordingly, ammonia exposure affected the cytochromes P450 system and ammonia metabolism within the pulmonary system accompanied by oxidative stress activation to exacerbate the inflammatory response. Furthermore, ammonia exposure inhibited the expression of BMAL1 by activating PER1/CRY1 with increased NFIL expression in MA pigs and activating PER1/2 with increased Rev-Erb or DBP expression in LA pigs, ultimately disrupting the circadian rhythm in pig lungs. Overall, oxidative stress-mediated inflammation and cell apoptosis caused by ammonia exposure were identified as the primary factors contributing to lung injury, which were associated with circadian clock disturbance.
{"title":"Ammonia exposure-triggered redox imbalance with the occurrence of inflammatory response, cell apoptosis, and the circadian clock disturbance leads to lung injury in growing pigs","authors":"Shanlong Tang, Zhengqun Liu, Fuli Deng, Ye Xu, Ruqing Zhong, Liang Chen, Hongfu Zhang","doi":"10.1007/s11869-024-01607-1","DOIUrl":"10.1007/s11869-024-01607-1","url":null,"abstract":"<div><p>The toxic impact of relatively low ammonia exposure on animal lungs lacks attention. Therefore, we employed pigs as an animal model to explore the effects and potential mechanisms of low (LA) and medium (MA) levels of ammonia exposure on lungs. The results demonstrated that the alterations of Th17 and chemokine expression worked through the NF-κB and JAK-STAT pathway to accelerate the imbalance of Th1/Th2 and the process of antigen processing and presentation, resulting in lung injury, inflammation and apoptosis. The cell proliferation was stimulated by increasing the expression of key cell cycle-related genes and enhancing cell cycle processes. Accordingly, ammonia exposure affected the cytochromes P450 system and ammonia metabolism within the pulmonary system accompanied by oxidative stress activation to exacerbate the inflammatory response. Furthermore, ammonia exposure inhibited the expression of <i>BMAL1</i> by activating <i>PER1/CRY1</i> with increased <i>NFIL</i> expression in MA pigs and activating <i>PER1/2</i> with increased <i>Rev-Erb</i> or <i>DBP</i> expression in LA pigs, ultimately disrupting the circadian rhythm in pig lungs. Overall, oxidative stress-mediated inflammation and cell apoptosis caused by ammonia exposure were identified as the primary factors contributing to lung injury, which were associated with circadian clock disturbance.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 12","pages":"2839 - 2857"},"PeriodicalIF":2.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-13DOI: 10.1007/s11869-024-01602-6
Gülşah Çobanoğlu, Tuğçe Kaan
Exposure to air pollutants negatively affects human health as well as the ecosystem. The target study area, Salda Lake, which is a special environmental protection area with Turkey's and the world's geoheritage and unique natural values, has become one of the tourist attraction areas in recent years. However, quantitative data on airborne trace metals in the region remain poorly described. This study focuses on the spatial distribution of atmospheric heavy metals through lichen monitoring for the first time around Salda Lake. The concentration of airborne metals accumulated in Xanthoria parietina lichen thalli samples collected from 14 sites were evaluated by multi-element analysis with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The spatial distribution of toxic metals in the region was presented as separate pollution maps. Analysis data showed that Ni, Fe, Al, Cu and Zn accumulation levels in lichen thalli were significantly higher than reference. Visitor entrance, camping areas and the road line in the west and south of the lake were among the sample areas where metal contamination was evident. Due to the prevalence of chromium mineral deposits in the region, the high level of Cr content is also quite remarkable. It was concluded that Al, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the air are high enough to threaten human health and their levels vary depending on wind direction, human activities and traffic density. This study is important in terms of determining the level of air quality in this natural area and future perspectives.