A large number of epidemics, including COVID-19 and SARS, quickly swept the world and claimed the precious lives of large numbers of people. Due to the concealment and rapid spread of the virus, it is difficult to track down individuals with mild or asymptomatic symptoms with limited human resources. Building a low-cost and real-time epidemic early warning system to identify individuals who have been in contact with infected individuals and determine whether they need to be quarantined is an effective means to mitigate the spread of the epidemic. In this paper, we propose a smartphone-based zero-effort epidemic warning method for mitigating epidemic propagation. Firstly, we recognize epidemic-related voice activity relevant to epidemics spread by hierarchical attention mechanism and temporal convolutional network. Subsequently, we estimate the social distance between users through sensors built-in smartphone. Furthermore, we combine Wi-Fi network logs and social distance to comprehensively judge whether there is spatiotemporal contact between users and determine the duration of contact. Finally, we estimate infection risk based on epidemic-related vocal activity, social distance, and contact time. We conduct a large number of well-designed experiments in typical scenarios to fully verify the proposed method. The proposed method does not rely on any additional infrastructure and historical training data, which is conducive to integration with epidemic prevention and control systems and large-scale applications.
The outbreak of coronavirus disease 2019 (COVID-19) is spreading rapidly around the world, resulting in a global pandemic. Imaging techniques such as computed tomography (CT) play an essential role in the diagnosis and treatment of the disease since lung infection or pneumonia is a common complication. However, training a deep network to learn how to diagnose COVID-19 rapidly and accurately in CT images and segment the infected regions like a radiologist is challenging. Since the infectious area is difficult to distinguish manually annotation, the segmentation results are time-consuming. To tackle these problems, we propose an efficient method based on a deep adversarial network to segment the infection regions automatically. Then, the predicted segment results can assist the diagnostic network in identifying the COVID-19 samples from the CT images. On the other hand, a radiologist-like segmentation network provides detailed information of the infectious regions by separating areas of ground-glass, consolidation, and pleural effusion, respectively. Our method can accurately predict the COVID-19 infectious probability and provide lesion regions in CT images with limited training data. Additionally, we have established a public dataset for multitask learning. Extensive experiments on diagnosis and segmentation show superior performance over state-of-the-art methods.