首页 > 最新文献

Journal of Hydro-environment Research最新文献

英文 中文
Field monitoring and modelling of sediment transport, hydraulics and hydroabrasion at Sediment Bypass Tunnels 沉积物旁路隧道沉积物迁移、水力学和水力侵蚀的实地监测与建模
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2024-05-28 DOI: 10.1016/j.jher.2024.05.002
Ismail Albayrak , Romeo Arnold , Dila Demiral , Mohammadreza Maddahi , Robert M. Boes

Sediment Bypass Tunnels (SBTs) are proven to be an effective measure to reduce or even stop reservoir sedimentation by bypassing sediment laden flows around reservoir dams to the downstream river reach. They are mostly used in Switzerland, Japan, and Taiwan. However, hydraulic and sedimentological operating conditions and the resistance of the invert materials against hydroabrasive erosion affect their cost-effectiveness. Hydroabrasion is a pressing issue at SBTs, other hydraulic structures and steep bedrock rivers exposed to high sediment transport rates under supercritical flow conditions. The present study was therefore conducted to address this issue by aiming at improving knowledge on abrasion mechanics and calibrating a mechanistic saltation abrasion model enhanced by Demiral-Yüzügüllü (2021). To this end, the abrasion resistance of fourteen different invert materials installed at Solis, Pfaffensprung and Runcahez SBTs in Switzerland was quantified by annual 3D laser scanning and the hydraulic conditions and sediment transport rates were regularly monitored between 2017 and 2021. The analysis of invert scans and hydraulic conditions revealed that Prandtl’s first and second kinds of secondary currents occurring in the bends and straight sections of the SBTs, respectively, and the observed abrasion patterns were strongly interrelated. The tested potassium aluminate cement and steel fibre concretes, granite, cast basalt and steel plates had better abrasion resistance against impact of sediment-laden flows compared to other materials. Sediment mineralogical composition i.e., bulk hardness relative to the invert material properties significantly affected hydroabrasion. The enhanced abrasion prediction model was calibrated with the present data and a quasi-constant abrasion coefficient of kv = (4.8 ± 2.2) × 104 was obtained. The enhanced model is well-suited for both laboratory and field scales. The present findings will contribute to the sustainable utilization and operational safety of hydraulic structures, optimization of SBT and reservoir operations regarding bypassing efficiency and reservoir lifetime and modelling of bedrock river erosion.

沉积物旁路隧道(SBT)通过将水库大坝周围的沉积物水流旁路至下游河段,被证明是减少甚至阻止水库沉积的有效措施。它们主要用于瑞士、日本和台湾。然而,水力和沉积物的运行条件以及反向材料对水力侵蚀的抵抗力都会影响其成本效益。在超临界水流条件下,水力侵蚀是 SBT、其他水力结构和陡峭基岩河流面临的一个紧迫问题。因此,为了解决这一问题,我们开展了本项研究,旨在提高对磨损力学的认识,并校准一个由......和......增强的力学盐化磨损模型。为此,在 2017 年至 2021 年期间,通过每年的三维激光扫描,对安装在瑞士索利斯、普法芬斯普隆和伦卡赫斯地下水自动监测站的 14 种不同反向材料的耐磨性进行了量化,并对水力条件和沉积物迁移率进行了定期监测。对反向扫描和水力条件的分析表明,SBT 弯道和直道段分别出现的普朗特第一和第二种次生流与观测到的磨损模式密切相关。与其他材料相比,经测试的铝酸钾水泥和钢纤维混凝土、花岗岩、玄武岩铸件和钢板在含泥沙水流的冲击下具有更好的耐磨性。沉积物矿物成分(即相对于反向材料特性的体积硬度)对水力磨损有显著影响。根据目前的数据对增强型磨损预测模型进行了校准,得到的准恒定磨损系数为 = (4.8 ± 2.2) × 10。增强型模型非常适合实验室和现场规模。本研究结果将有助于水力结构的可持续利用和运行安全、SBT 和水库运行的旁路效率和水库寿命的优化以及基岩河流侵蚀的建模。
{"title":"Field monitoring and modelling of sediment transport, hydraulics and hydroabrasion at Sediment Bypass Tunnels","authors":"Ismail Albayrak ,&nbsp;Romeo Arnold ,&nbsp;Dila Demiral ,&nbsp;Mohammadreza Maddahi ,&nbsp;Robert M. Boes","doi":"10.1016/j.jher.2024.05.002","DOIUrl":"10.1016/j.jher.2024.05.002","url":null,"abstract":"<div><p>Sediment Bypass Tunnels (SBTs) are proven to be an effective measure to reduce or even stop reservoir sedimentation by bypassing sediment laden flows around reservoir dams to the downstream river reach. They are mostly used in Switzerland, Japan, and Taiwan. However, hydraulic and sedimentological operating conditions and the resistance of the invert materials against hydroabrasive erosion affect their cost-effectiveness. Hydroabrasion is a pressing issue at SBTs, other hydraulic structures and steep bedrock rivers exposed to high sediment transport rates under supercritical flow conditions. The present study was therefore conducted to address this issue by aiming at improving knowledge on abrasion mechanics and calibrating a mechanistic saltation abrasion model enhanced by <span>Demiral-Yüzügüllü (2021)</span>. To this end, the abrasion resistance of fourteen different invert materials installed at Solis, Pfaffensprung and Runcahez SBTs in Switzerland was quantified by annual 3D laser scanning and the hydraulic conditions and sediment transport rates were regularly monitored between 2017 and 2021. The analysis of invert scans and hydraulic conditions revealed that Prandtl’s first and second kinds of secondary currents occurring in the bends and straight sections of the SBTs, respectively, and the observed abrasion patterns were strongly interrelated. The tested potassium aluminate cement and steel fibre concretes, granite, cast basalt and steel plates had better abrasion resistance against impact of sediment-laden flows compared to other materials. Sediment mineralogical composition i.e., bulk hardness relative to the invert material properties significantly affected hydroabrasion. The enhanced abrasion prediction model was calibrated with the present data and a quasi-constant abrasion coefficient of <em>k</em><sub><em>v</em></sub> = (4.8 ± 2.2) × 10<sup>4</sup> was obtained. The enhanced model is well-suited for both laboratory and field scales. The present findings will contribute to the sustainable utilization and operational safety of hydraulic structures, optimization of SBT and reservoir operations regarding bypassing efficiency and reservoir lifetime and modelling of bedrock river erosion.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"55 ","pages":"Pages 1-19"},"PeriodicalIF":2.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570644324000224/pdfft?md5=55de5a9b0b5e8c91c60c272f35d22ab0&pid=1-s2.0-S1570644324000224-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring spatiotemporal changes in urban flood vulnerability of Peninsular Malaysia from satellite nighttime light data 从卫星夜间光照数据监测马来西亚半岛城市洪水脆弱性的时空变化
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2024-05-26 DOI: 10.1016/j.jher.2024.05.003
Ghaith Falah Ziarh , Eun-Sung Chung , Ashraf Dewan , Md Asaduzzaman , Mohammed Magdy Hamed , Zafar Iqbal , Shamsuddin Shahid

Urban flood vulnerability monitoring requires a large amount of socioeconomic and environmental data collected at regular time intervals. However, collecting such a large volume of data poses a significant constraint in assessing changes in flood vulnerability. This study proposed a novel method to monitor spatiotemporal changes in urban flood vulnerability from satellite nighttime light (NTL) data. Peninsular Malaysia was chosen as the research region as floods are the most devastating and recurrent phenomena in the region. The study developed a flood vulnerability index (FVI) based on socioeconomic and environmental data from a single year. This FVI was then linked to NTL data using an Adaptive neuro-fuzzy inference system (ANFIS) machine learning algorithm. The model was calibrated and validated with administrative unit scale data and subsequently used to predict FVI at a spatial resolution of 10 km for 2000–2018 using NTL data. Finally, changes in estimated FVI at different grid points were evaluated using the Mann-Kendall trend method to determine changes in flood vulnerability over time and space. Results showed a nonlinear relationship between NTL and flood vulnerability factors such as population density, Gini coefficient, and percentage of foreign nationals. The ANFIS technique performed well in estimating FVI from NTL data with a normalized root-mean-square error of 0.68 and Kling-Gupta Efficiency of 0.73. The FVI revealed a high vulnerability in the urbanized western coastal region (FVI ∼ 0.5 to 0.54), which matches well with major contributing regions to flood losses in Peninsular Malaysia. Trend assessment showed a significant increase in flood vulnerability in the study area from 2000 to 2018. The spatial distribution of the trend indicated an increase in FVI in the urbanized coastal plains, particularly in rapidly developing western and southern urban regions. The results indicate the potential of the technique in urban flood vulnerability assessment using freely available satellite NTL data.

城市洪水脆弱性监测需要定期收集大量的社会经济和环境数据。然而,收集如此大量的数据对评估洪水脆弱性的变化造成了很大的限制。本研究提出了一种新方法,利用卫星夜光(NTL)数据监测城市洪水脆弱性的时空变化。马来西亚半岛被选为研究地区,因为洪水是该地区最具破坏性且经常发生的现象。该研究根据单一年份的社会经济和环境数据制定了洪水脆弱性指数(FVI)。然后,利用自适应神经模糊推理系统(ANFIS)机器学习算法将该 FVI 与 NTL 数据联系起来。利用行政单位规模的数据对模型进行了校准和验证,随后利用 NTL 数据以 10 千米的空间分辨率预测了 2000-2018 年的森林植被覆盖率。最后,使用 Mann-Kendall 趋势法评估了不同网格点上估计的洪水脆弱性指数的变化,以确定洪水脆弱性在时间和空间上的变化。结果显示,NTL 与人口密度、基尼系数和外国公民比例等洪水脆弱性因素之间存在非线性关系。ANFIS 技术在根据 NTL 数据估算 FVI 方面表现出色,归一化均方根误差为 0.68,Kling-Gupta 效率为 0.73。洪水脆弱性指数显示,西部沿海城市化地区的洪水脆弱性较高(洪水脆弱性指数在 0.5 至 0.54 之间),这与马来西亚半岛洪水损失的主要成因地区非常吻合。趋势评估显示,从 2000 年到 2018 年,研究区域的洪水脆弱性显著增加。趋势的空间分布表明,城市化沿海平原的洪水脆弱性指数有所上升,尤其是在快速发展的西部和南部城市地区。结果表明,该技术在利用免费提供的卫星近地轨道数据进行城市洪水脆弱性评估方面具有潜力。
{"title":"Monitoring spatiotemporal changes in urban flood vulnerability of Peninsular Malaysia from satellite nighttime light data","authors":"Ghaith Falah Ziarh ,&nbsp;Eun-Sung Chung ,&nbsp;Ashraf Dewan ,&nbsp;Md Asaduzzaman ,&nbsp;Mohammed Magdy Hamed ,&nbsp;Zafar Iqbal ,&nbsp;Shamsuddin Shahid","doi":"10.1016/j.jher.2024.05.003","DOIUrl":"https://doi.org/10.1016/j.jher.2024.05.003","url":null,"abstract":"<div><p>Urban flood vulnerability monitoring requires a large amount of socioeconomic and environmental data collected at regular time intervals. However, collecting such a large volume of data poses a significant constraint in assessing changes in flood vulnerability. This study proposed a novel method to monitor spatiotemporal changes in urban flood vulnerability from satellite nighttime light (NTL) data. Peninsular Malaysia was chosen as the research region as floods are the most devastating and recurrent phenomena in the region. The study developed a flood vulnerability index (FVI) based on socioeconomic and environmental data from a single year. This FVI was then linked to NTL data using an Adaptive neuro-fuzzy inference system (ANFIS) machine learning algorithm. The model was calibrated and validated with administrative unit scale data and subsequently used to predict FVI at a spatial resolution of 10 km for 2000–2018 using NTL data. Finally, changes in estimated FVI at different grid points were evaluated using the Mann-Kendall trend method to determine changes in flood vulnerability over time and space. Results showed a nonlinear relationship between NTL and flood vulnerability factors such as population density, Gini coefficient, and percentage of foreign nationals. The ANFIS technique performed well in estimating FVI from NTL data with a normalized root-mean-square error of 0.68 and Kling-Gupta Efficiency of 0.73. The FVI revealed a high vulnerability in the urbanized western coastal region (FVI ∼ 0.5 to 0.54), which matches well with major contributing regions to flood losses in Peninsular Malaysia. Trend assessment showed a significant increase in flood vulnerability in the study area from 2000 to 2018. The spatial distribution of the trend indicated an increase in FVI in the urbanized coastal plains, particularly in rapidly developing western and southern urban regions. The results indicate the potential of the technique in urban flood vulnerability assessment using freely available satellite NTL data.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"55 ","pages":"Pages 20-29"},"PeriodicalIF":2.8,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation of the total flow resistance in emergent and submerged rigid canopy flows 新兴和沉没刚性冠层流中总流阻的实验研究
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2024-05-01 DOI: 10.1016/j.jher.2024.05.001
Emre Haspolat, Mete Koken

In canopy flows, flow resistance mainly originates from vegetation drag and depends on vegetation characteristics and flow conditions. In the present study, a series of experiments were performed in various hydraulic scenarios with high stem Reynolds numbers (2641 Red 17333) using relatively sparse rigid canopies, represented with four different dimensionless vegetation densities (0.0044, 0.0098, 0.0174 and 0.0392), on a smooth bed. A novel drag plate mechanism was developed to measure the total flow resistance due to the emergent and submerged vegetation arrays in a staggered pattern under subcritical flow conditions. Manning’s roughness coefficient and Darcy–Weisbach friction factor were adopted to represent the total flow resistance in the analyses. Simple empirical relationships based on roughness concentration and submergence ratio were derived to determine the total flow resistance parameters within a broad range of stem Reynolds numbers. Although relationships were proposed in a simple form to be used for direct practical applications, they show similar or better performance in the prediction of total flow resistance parameters than the existing equations in the literature, which require considerable computational effort. Additionally, analyses demonstrated that the results of the present study and those of similar studies regarding canopy flow resistance are in good agreement. Accordingly, the novel drag plate looks promising for measuring flow resistance due to vegetation and bed conditions similar to those in nature.

在冠层流中,流动阻力主要来自植被阻力,并取决于植被特性和流动条件。在本研究中,使用相对稀疏的刚性树冠,在光滑河床上以四种不同的无量纲植被密度(0.0044、0.0098、0.0174 和 0.0392)表示,在高茎杆雷诺数(2641 ≤ Red ≤ 17333)的各种水力情况下进行了一系列实验。开发了一种新型阻力板机制,用于测量在次临界流条件下交错排列的出水和沉水植被阵列造成的总流阻。分析中采用了曼宁粗糙度系数和达西-韦斯巴赫摩擦因数来表示总流阻。根据粗糙度集中度和淹没率推导出简单的经验关系,以确定在广泛的干流雷诺数范围内的总流阻参数。虽然这些关系以简单的形式提出,可直接用于实际应用,但在预测总流阻参数方面,它们与文献中需要大量计算工作的现有方程相比,表现出相似或更好的性能。此外,分析表明,本研究和类似研究在冠层流动阻力方面的结果非常一致。因此,新型阻力板在测量植被和类似于自然界的床面条件引起的流动阻力方面很有前景。
{"title":"Experimental investigation of the total flow resistance in emergent and submerged rigid canopy flows","authors":"Emre Haspolat,&nbsp;Mete Koken","doi":"10.1016/j.jher.2024.05.001","DOIUrl":"10.1016/j.jher.2024.05.001","url":null,"abstract":"<div><p>In canopy flows, flow resistance mainly originates from vegetation drag and depends on vegetation characteristics and flow conditions. In the present study, a series of experiments were performed in various hydraulic scenarios with high stem Reynolds numbers (2641 <span><math><mo>≤</mo></math></span> Re<sub>d</sub> <span><math><mo>≤</mo></math></span> 17333) using relatively sparse rigid canopies, represented with four different dimensionless vegetation densities (0.0044, 0.0098, 0.0174 and 0.0392), on a smooth bed. A novel drag plate mechanism was developed to measure the total flow resistance due to the emergent and submerged vegetation arrays in a staggered pattern under subcritical flow conditions. Manning’s roughness coefficient and Darcy–Weisbach friction factor were adopted to represent the total flow resistance in the analyses. Simple empirical relationships based on roughness concentration and submergence ratio were derived to determine the total flow resistance parameters within a broad range of stem Reynolds numbers. Although relationships were proposed in a simple form to be used for direct practical applications, they show similar or better performance in the prediction of total flow resistance parameters than the existing equations in the literature, which require considerable computational effort. Additionally, analyses demonstrated that the results of the present study and those of similar studies regarding canopy flow resistance are in good agreement. Accordingly, the novel drag plate looks promising for measuring flow resistance due to vegetation and bed conditions similar to those in nature.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"54 ","pages":"Pages 37-52"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141024403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-aeration on large dam spillways during major floods 大洪水期间大型水坝溢洪道的自曝气功能
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2024-03-16 DOI: 10.1016/j.jher.2024.03.002
Hubert Chanson

In a spillway chute flow, the upstream flow is typically non-aerated and the flow becomes self-aerated when the turbulent stresses acting next to the water surface exceeds the combined resistance of gravity and surface tension. The inception region of air entrainment is a rapidly-varied region characterised by the transition from a monophase water to two-phase air–water flow. In this contribution, field observations were conducted at large dam spillways during major flood events, with a focus on prototype data for discharges between 100 m3/s and 6,000 m3/s and Reynolds numbers between 2.6 × 106 to 1.1 × 108. The onset of self-aeration was a complicated three-dimensional transient process, and the dimensionless location of the inception region was a function of the Reynolds number. Surface velocities obtained with an optical technique showed that the streamwise surface velocities were close to theoretical estimates, and the streamwise surface turbulent intensities in excess of 100 %, consistent with self-aerated measurements in laboratory. The current findings yield a couple of seminal questions: (a) what do we know about prototype spillway operation during major floods? (b) how large the Reynolds number of a prototype flow needs to be truly representative of large dam spillway self-aerated flows during major flood events?

在溢流槽水流中,上游水流通常是非气流,当作用在水面附近的湍流应力超过重力和表面张力的综合阻力时,水流就会自发气流。空气夹带的起始区域是一个快速变化的区域,其特点是从单相水流过渡到气水两相流。在本文中,我们在大洪水期间对大型水坝溢洪道进行了实地观测,重点是流量在 100 立方米/秒至 6,000 立方米/秒之间、雷诺数在 2.6 × 106 至 1.1 × 108 之间的原型数据。自曝气的起始是一个复杂的三维瞬态过程,起始区域的无量纲位置是雷诺数的函数。利用光学技术获得的表面速度显示,流向表面速度接近理论估计值,流向表面湍流强度超过 100%,与实验室自曝气测量结果一致。目前的研究结果提出了几个重要问题:(a) 我们对大洪水期间原型溢洪道的运行了解多少?(b) 原型水流的雷诺数需要多大才能真正代表大洪水期间大型水坝溢洪道的自曝流?
{"title":"Self-aeration on large dam spillways during major floods","authors":"Hubert Chanson","doi":"10.1016/j.jher.2024.03.002","DOIUrl":"https://doi.org/10.1016/j.jher.2024.03.002","url":null,"abstract":"<div><p>In a spillway chute flow, the upstream flow is typically non-aerated and the flow becomes self-aerated when the turbulent stresses acting next to the water surface exceeds the combined resistance of gravity and surface tension. The inception region of air entrainment is a rapidly-varied region characterised by the transition from a monophase water to two-phase air–water flow. In this contribution, field observations were conducted at large dam spillways during major flood events, with a focus on prototype data for discharges between 100 m<sup>3</sup>/s and 6,000 m<sup>3</sup>/s and Reynolds numbers between 2.6 × 10<sup>6</sup> to 1.1 × 10<sup>8</sup>. The onset of self-aeration was a complicated three-dimensional transient process, and the dimensionless location of the inception region was a function of the Reynolds number. Surface velocities obtained with an optical technique showed that the streamwise surface velocities were close to theoretical estimates, and the streamwise surface turbulent intensities in excess of 100 %, consistent with self-aerated measurements in laboratory. The current findings yield a couple of seminal questions: (a) what do we know about prototype spillway operation during major floods? (b) how large the Reynolds number of a prototype flow needs to be truly representative of large dam spillway self-aerated flows during major flood events?</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"54 ","pages":"Pages 26-36"},"PeriodicalIF":2.8,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140191987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of turbulent flow induced by particle sedimentation using RIM-PIV 利用 RIM-PIV 研究颗粒沉积引起的湍流
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2024-03-16 DOI: 10.1016/j.jher.2024.03.001
Eiji Harada, Takumi Tazaki, Hitoshi Gotoh

The spatiotemporal structure of the flow field during particle–cloud sedimentation has not been sufficiently investigated. In this study, experiments on the sedimentation process of particle clouds in water are conducted using hydrogel particles with a refractive index similar to that of water as the settling particles. The flow field during the sedimentation process of particle clouds in water is measured using particle image velocimetry (PIV). Although the measurement conditions in this study are restricted to one condition owing to the limitations of the measurable area by our PIV system and the available hydrogel particles, the measurement target is novel because it has not been measured so far. The spatiotemporal structure of the turbulent flows is investigated by analyzing the turbulent flows induced by the sedimentation particles using the PIV system. Furthermore, the turbulent structure of the vortex formed by particle sedimentation is examined.

目前对粒子云沉降过程中流场的时空结构研究还不够充分。本研究使用折射率与水相似的水凝胶颗粒作为沉降颗粒,对颗粒云在水中的沉降过程进行了实验。使用粒子图像测速仪(PIV)测量了粒子云在水中沉降过程中的流场。虽然由于我们的 PIV 系统的可测量区域和可用的水凝胶颗粒的限制,本研究的测量条件仅限于一种条件,但测量目标是新颖的,因为迄今为止还没有测量过。通过使用 PIV 系统分析沉积颗粒引起的湍流,研究了湍流的时空结构。此外,还研究了颗粒沉积形成的漩涡的湍流结构。
{"title":"Investigation of turbulent flow induced by particle sedimentation using RIM-PIV","authors":"Eiji Harada,&nbsp;Takumi Tazaki,&nbsp;Hitoshi Gotoh","doi":"10.1016/j.jher.2024.03.001","DOIUrl":"https://doi.org/10.1016/j.jher.2024.03.001","url":null,"abstract":"<div><p>The spatiotemporal structure of the flow field during particle–cloud sedimentation has not been sufficiently investigated. In this study, experiments on the sedimentation process of particle clouds in water are conducted using hydrogel particles with a refractive index similar to that of water as the settling particles. The flow field during the sedimentation process of particle clouds in water is measured using particle image velocimetry (PIV). Although the measurement conditions in this study are restricted to one condition owing to the limitations of the measurable area by our PIV system and the available hydrogel particles, the measurement target is novel because it has not been measured so far. The spatiotemporal structure of the turbulent flows is investigated by analyzing the turbulent flows induced by the sedimentation particles using the PIV system. Furthermore, the turbulent structure of the vortex formed by particle sedimentation is examined.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"54 ","pages":"Pages 13-25"},"PeriodicalIF":2.8,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140163505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the effect of variation in slope on flow characteristics in a vertical slot fishway 解读坡度变化对垂直缝隙鱼道水流特性的影响
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2024-03-01 DOI: 10.1016/j.jher.2024.02.005
Hao Yuan , Boyu Chen , Qian Sun , Chunhang Xie , Xiaolong He

The effects of a vertical slot fishway slope (with slope values from 1.5% to 6%) on a flow field are numerically investigated, using a re-normalization group kε model. The distribution of the velocity, turbulence kinetic energy (TKE), average energy dissipation rate per unit volume (E), and vorticity for different slopes are systemically explored. The results indicate that, with an increase in slope, the appearance of downward flow in conjunction with an increase in vertical velocity results in three-dimensional flow characteristics. The recirculation region in Hs, at a 6.0% slope, was 20.9% less than that at a 1.5% slope. Meanwhile, the flow velocity in the vertical slot region grew with increasing slope, which would limit the passage of fish with burst speed lower than the velocity in the vertical slot region. The TKE and E may locally exceed the threshold at larger slopes. Furthermore, vorticity distribution shows little variability with increasing slope, but may interfere with the equilibrium of the fish in the vertical slot region. In addition, the change in water level has little effect on the flow field, which is changed by the increase in slope. These findings can aid vertical slot fishway designs especially in terms of the efficiency of fish passage.

采用重归一化组 k - ε 模型对垂直缝隙鱼道坡度(坡度值从 1.5% 到 6%)对流场的影响进行了数值研究。系统地探讨了不同坡度下的速度分布、湍流动能(TKE)、单位体积平均能量耗散率(E)和涡度。结果表明,随着坡度的增加,向下流动的出现与垂直速度的增加共同形成了三维流动特征。坡度为 6.0% 时,Hs 的再循环区域比坡度为 1.5% 时减少了 20.9%。同时,垂直槽区的流速随着坡度的增加而增加,这将限制爆发速度低于垂直槽区流速的鱼类通过。在坡度较大时,TKE 和 E 可能会局部超过临界值。此外,涡度分布随坡度增加而变化不大,但可能会干扰鱼类在垂直槽区的平衡。此外,水位的变化对流场的影响很小,而流场会随着坡度的增加而改变。这些发现有助于垂直缝隙鱼道的设计,特别是在鱼类通过效率方面。
{"title":"Deciphering the effect of variation in slope on flow characteristics in a vertical slot fishway","authors":"Hao Yuan ,&nbsp;Boyu Chen ,&nbsp;Qian Sun ,&nbsp;Chunhang Xie ,&nbsp;Xiaolong He","doi":"10.1016/j.jher.2024.02.005","DOIUrl":"https://doi.org/10.1016/j.jher.2024.02.005","url":null,"abstract":"<div><p>The effects of a vertical slot fishway slope (with slope values from 1.5% to 6%) on a flow field are numerically investigated, using a re-normalization group <em>k</em> – <em>ε</em> model. The distribution of the velocity, turbulence kinetic energy (<em>TKE</em>), average energy dissipation rate per unit volume (<em>E</em>), and vorticity for different slopes are systemically explored. The results indicate that, with an increase in slope, the appearance of downward flow in conjunction with an increase in vertical velocity results in three-dimensional flow characteristics. The recirculation region in <em>H</em><sub>s</sub>, at a 6.0% slope, was 20.9% less than that at a 1.5% slope. Meanwhile, the flow velocity in the vertical slot region grew with increasing slope, which would limit the passage of fish with burst speed lower than the velocity in the vertical slot region. The <em>TKE</em> and <em>E</em> may locally exceed the threshold at larger slopes. Furthermore, vorticity distribution shows little variability with increasing slope, but may interfere with the equilibrium of the fish in the vertical slot region. In addition, the change in water level has little effect on the flow field, which is changed by the increase in slope. These findings can aid vertical slot fishway designs especially in terms of the efficiency of fish passage.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"54 ","pages":"Pages 1-12"},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spur dike layouts impact on upstream flow conditions during flood wave movement 支堤布局对洪波运动时上游水流状况的影响
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2024-03-01 DOI: 10.1016/j.jher.2024.02.004
Shabnam Moghispour , Salah Kouchakzadeh

Despite the widespread application of spur dikes in river training projects, the performance of the structure during flood events and its impacts on unsteady flow conditions have rarely been studied. In this experimental investigation, the influences of twelve unsubmerged unilateral and bilateral spur dike layouts on upstream flow conditions during flood movements were examined. Three hydrographs with varying unsteadiness intensities were generated and applied to all layout tests, including the no-spur condition for comparison purposes. The results revealed that discharge directly affected changes in flow depth upstream of the spur dike, while the flow rate trend exerted inverse influences. The Keulegan-Carpenter number was modified to assess the impact of unsteadiness intensity on the rating curve loop. Stage hysteresis analysis demonstrated an increase of more than thirty times compared to the no-spur scenario, highlighting the elevated risk of flooding in the upstream reach while delaying peak flood arrival time. This has implications for flood risk management and warning programs. The results underscore the significance of considering not only peak discharge but also unsteadiness intensity in spur dike design.

尽管支堤在河道治理工程中应用广泛,但很少有人研究过这种结构在洪水过程中的性能及其对不稳定流条件的影响。在这项实验调查中,研究了 12 个未下沉的单侧和双边支堤布局对洪水运动时上游水流条件的影响。生成了三种具有不同不稳定强度的水文图,并将其应用于所有布局试验,包括用于比较的无支流条件。结果表明,排水量直接影响支堤上游水流深度的变化,而流速趋势则产生反向影响。对 Keulegan-Carpenter 数字进行了修改,以评估不稳定强度对额定曲线环的影响。阶段滞后分析表明,与无冲刺情况相比,洪峰滞后增加了 30 多倍,这凸显了上游河段洪水风险的增加,同时也推迟了洪峰到达时间。这对洪水风险管理和预警计划产生了影响。这些结果突出表明,在设计支流堤坝时,不仅要考虑洪峰流量,还要考虑不稳定强度。
{"title":"Spur dike layouts impact on upstream flow conditions during flood wave movement","authors":"Shabnam Moghispour ,&nbsp;Salah Kouchakzadeh","doi":"10.1016/j.jher.2024.02.004","DOIUrl":"https://doi.org/10.1016/j.jher.2024.02.004","url":null,"abstract":"<div><p>Despite the widespread application of spur dikes in river training projects, the performance of the structure during flood events and its impacts on unsteady flow conditions have rarely been studied. In this experimental investigation, the influences of twelve unsubmerged unilateral and bilateral spur dike layouts on upstream flow conditions during flood movements were examined. Three hydrographs with varying unsteadiness intensities were generated and applied to all layout tests, including the no-spur condition for comparison purposes. The results revealed that discharge directly affected changes in flow depth upstream of the spur dike, while the flow rate trend exerted inverse influences. The Keulegan-Carpenter number was modified to assess the impact of unsteadiness intensity on the rating curve loop. Stage hysteresis analysis demonstrated an increase of more than thirty times compared to the no-spur scenario, highlighting the elevated risk of flooding in the upstream reach while delaying peak flood arrival time. This has implications for flood risk management and warning programs. The results underscore the significance of considering not only peak discharge but also unsteadiness intensity in spur dike design.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"53 ","pages":"Pages 44-57"},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on surface wave interaction with submerged tensioned barriers using IoT image processing 利用物联网图像处理技术对表面波与水下张力屏障相互作用的实验研究
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2024-02-20 DOI: 10.1016/j.jher.2024.02.003
Cheng Bi , Yong Jia Toh , Adrian Wing-Keung Law , Mao See Wu

The present study investigated experimentally the dynamic interactions between surface waves and submerged vertical tensioned barriers with full and partial penetrations. The range of tension for the barrier was set within the flexible membrane regime in the experiments which measurements have not been reported in the literature so far. In addition, an extensive Internet of Things (IoT) system with five GoPro cameras was developed for the measurements to quantify both the surface wave transformation as well as dynamic response of the barrier. The cameras were synchronized through the IoT system to cover the entire wave flume, and the recorded videos were converted to spatial and temporal data using image processing techniques. The experimental results were found to agree with the analytical predictions based on the linear wave theory reasonably well. In particular, the measured reduction in the tensioning effect on the wave transmission and reflection with decreased barrier length was in close argument with the predictions. Similar good agreement was also observed for the dynamic response of the tensioned barrier during the wave interaction. However, additional energy loss was noted in the experiments possibly due to energy dissipation at the boundary ends of the experimental barrier and wave-induced flow separation with partial penetration which are not considered in the analytical analysis.

本研究通过实验研究了表面波与全部和部分穿透的水下垂直张力屏障之间的动态相互作用。在实验中,屏障的张力范围被设定在柔性膜体制内,迄今为止,文献中尚未报道过这种测量方法。此外,还开发了一套广泛的物联网(IoT)系统,配备了五台 GoPro 摄像机,用于测量屏障的表面波转换和动态响应。摄像机通过物联网系统同步覆盖整个波浪水槽,并利用图像处理技术将录制的视频转换为空间和时间数据。实验结果与基于线性波理论的分析预测结果相当吻合。特别是,随着屏障长度的减小,测得的张力效应对波浪传播和反射的影响减小,这与预测结果非常吻合。在波浪相互作用过程中,拉伸屏障的动态响应也观察到了类似的良好一致性。然而,在实验中还发现了额外的能量损失,这可能是由于实验屏障边界两端的能量耗散以及部分穿透时波引起的流体分离造成的,而在分析中并没有考虑到这一点。
{"title":"Experimental study on surface wave interaction with submerged tensioned barriers using IoT image processing","authors":"Cheng Bi ,&nbsp;Yong Jia Toh ,&nbsp;Adrian Wing-Keung Law ,&nbsp;Mao See Wu","doi":"10.1016/j.jher.2024.02.003","DOIUrl":"10.1016/j.jher.2024.02.003","url":null,"abstract":"<div><p>The present study investigated experimentally the dynamic interactions between surface waves and submerged vertical tensioned barriers with full and partial penetrations. The range of tension for the barrier was set within the flexible membrane regime in the experiments which measurements have not been reported in the literature so far. In addition, an extensive Internet of Things (IoT) system with five GoPro cameras was developed for the measurements to quantify both the surface wave transformation as well as dynamic response of the barrier. The cameras were synchronized through the IoT system to cover the entire wave flume, and the recorded videos were converted to spatial and temporal data using image processing techniques. The experimental results were found to agree with the analytical predictions based on the linear wave theory reasonably well. In particular, the measured reduction in the tensioning effect on the wave transmission and reflection with decreased barrier length was in close argument with the predictions. Similar good agreement was also observed for the dynamic response of the tensioned barrier during the wave interaction. However, additional energy loss was noted in the experiments possibly due to energy dissipation at the boundary ends of the experimental barrier and wave-induced flow separation with partial penetration which are not considered in the analytical analysis.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"53 ","pages":"Pages 28-43"},"PeriodicalIF":2.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refined analysis of flood-regional composition under changing environment in the middle reach of Hanjiang River 汉江中游环境变化下洪水区域组成的精细分析
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2024-02-19 DOI: 10.1016/j.jher.2024.02.002
Pengxin Deng , Changjiang Xu , Jianping Bing , Leizhi Wang , Lingjie Li

To investigate the flood-regional composition under changing environmental conditions in the middle reach of Hanjiang River (MHR), a data-driven hydrological simulation model and its related quantitative methods were developed. The flood-regional composition of Huangzhuang(HZ) in the MHR was quantitatively analyzed, and the influence of environmental changes on river flood routing was discussed. The primary research findings are as follows: ① A hydrological simulation model based on support vector regression machine (SVRM) is constructed to simulate the daily average flow process of HZ from 1965 to 2021. The Nash-Sutcliffe Efficiency (NSE) coefficient achieved values above 0.95, and the overall relative error (RE) was within ± 1 %, indicating excellent simulation performance. ② A quantitative analysis method has been proposed to identify the composition of flood areas. The results indicate that the upper reach of Hanjiang River (UHR) is the primary contributor to floods in the MHR, accounting for 60.62 % to 78.05 % of the total. The Tangbai River (TR) contributed between 14.1 % and 27.4 %, whereas the Nan River had a smaller contribution of only 6.83 % to 8.85 %. ③ Trend analysis indicates that the proportion of floods originating from the UHR increases in the summer flood season and decreases in the autumn flood season, while those changes of TR and Nanhe River (NR) are coincidental, especially in the autumn flood season, the proportion of floods in the TR increases significantly. The impact of floods from the UHR and TR cannot be ignored when implementing flood control measures. ④ A comprehensive analysis method has been proposed to quantify the integrated impacts of environmental changes. The results show that environmental changes had a relatively minor impact on flood routing and its flood-regional composition. However, they did affect the flood propagation process, resulting in earlier occurrences in peak flow, increased in peak discharge, and rapid rise and fall of floodwaters for floods exceeding 12,000 m3/s. These research findings provide strong foundational support for designing flood-regional, as well as flood control and disaster reduction systems in the MHR.

为研究汉江中游(MHR)环境变化条件下的洪水区域组成,建立了数据驱动的水文模拟模型及其相关定量方法。定量分析了汉江中游黄庄(HZ)洪水区域组成,探讨了环境变化对河道行洪的影响。主要研究成果如下:建立了基于支持向量回归机(SVRM)的水文模拟模型,模拟了 1965~2021 年 HZ 的日均流量过程。结果表明: ① 建立了基于支持向量回归机(SVRM)的水文模拟模型,模拟了 1965~2021 年港珠澳大桥日均流量过程,纳什-萨特克利夫效率(NSE)系数达到 0.95 以上,总体相对误差(RE)在±1%以内,模拟效果良好。② 提出了确定洪泛区组成的定量分析方法。结果表明,汉江上游(UHR)是造成马家河流域洪水的主要因素,占洪水总量的 60.62 % 至 78.05 %。唐白河(TR)占 14.1 % 至 27.4 %,而南河的贡献较小,仅占 6.83 % 至 8.85 %。趋势分析表明,来自乌江流域的洪水比例在夏汛期增大,秋汛期减小,而唐白河和南河的变化是重合的,特别是在秋汛期,唐白河的洪水比例明显增大。在采取防洪措施时,不能忽视 UHR 和 TR 的洪水影响。提出了量化环境变化综合影响的综合分析方法。结果表明,环境变化对洪水路径及其洪区组成的影响相对较小。但是,环境变化确实影响了洪水的传播过程,导致洪峰流量提前出现,洪峰流量增加,超过 12000 立方米/秒的洪水涨落迅速。这些研究成果为设计马弗拉山洪水区域以及洪水控制和减灾系统提供了有力的基础支持。
{"title":"Refined analysis of flood-regional composition under changing environment in the middle reach of Hanjiang River","authors":"Pengxin Deng ,&nbsp;Changjiang Xu ,&nbsp;Jianping Bing ,&nbsp;Leizhi Wang ,&nbsp;Lingjie Li","doi":"10.1016/j.jher.2024.02.002","DOIUrl":"10.1016/j.jher.2024.02.002","url":null,"abstract":"<div><p>To investigate the flood-regional composition under changing environmental conditions in the middle reach of Hanjiang River (MHR), a data-driven hydrological simulation model and its related quantitative methods were developed. The flood-regional composition of Huangzhuang(HZ) in the MHR was quantitatively analyzed, and the influence of environmental changes on river flood routing was discussed. The primary research findings are as follows: ① A hydrological simulation model based on support vector regression machine (SVRM) is constructed to simulate the daily average flow process of HZ from 1965 to 2021. The Nash-Sutcliffe Efficiency (NSE) coefficient achieved values above 0.95, and the overall relative error (RE) was within ± 1 %, indicating excellent simulation performance. ② A quantitative analysis method has been proposed to identify the composition of flood areas. The results indicate that the upper reach of Hanjiang River (UHR) is the primary contributor to floods in the MHR, accounting for 60.62 % to 78.05 % of the total. The Tangbai River (TR) contributed between 14.1 % and 27.4 %, whereas the Nan River had a smaller contribution of only 6.83 % to 8.85 %. ③ Trend analysis indicates that the proportion of floods originating from the UHR increases in the summer flood season and decreases in the autumn flood season, while those changes of TR and Nanhe River (NR) are coincidental, especially in the autumn flood season, the proportion of floods in the TR increases significantly. The impact of floods from the UHR and TR cannot be ignored when implementing flood control measures. ④ A comprehensive analysis method has been proposed to quantify the integrated impacts of environmental changes. The results show that environmental changes had a relatively minor impact on flood routing and its flood-regional composition. However, they did affect the flood propagation process, resulting in earlier occurrences in peak flow, increased in peak discharge, and rapid rise and fall of floodwaters for floods exceeding 12,000 m<sup>3</sup>/s. These research findings provide strong foundational support for designing flood-regional, as well as flood control and disaster reduction systems in the MHR.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"53 ","pages":"Pages 15-27"},"PeriodicalIF":2.8,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulation of the critical hydraulic gradient of granular soils at seepage failure by discrete element method and computational fluid dynamics 利用离散元法和计算流体力学对渗流破坏时颗粒土的临界水力梯度进行数值模拟
IF 2.8 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Pub Date : 2024-02-04 DOI: 10.1016/j.jher.2024.02.001
Yuqi Li , Liangchen Xu , Zhuyin Ma , Bingbing Ma , Junhao Zhang

Seepage failure is a common problem in engineering, and the calculation and analysis of critical hydraulic gradient are of great significance for the safety and protection of engineering. Based on the principle of discrete element method and computational fluid dynamics, the fluid–solid coupled models were established to study the critical hydraulic gradient and particle loss rate of granular soils at seepage failure. The evolution of seepage failure was divided into four stages: seepage development stage, local damage stage, volume expansion stage and overall damage stage. The validity of numerical simulation was demonstrated by comparing the critical hydraulic gradient obtained by numerical simulation and by Terzaghi’s formula. According to the fabric damage and flow velocity variation of the models at seepage failure, the influences of model size and particle size on the critical hydraulic gradient and particle loss rate were analyzed. The results indicate that critical hydraulic gradient and particle loss rate were not sensitive to changes in model size. A wide particle size distribution range resulted in large critical hydraulic gradient and small particle loss rate at seepage failure. The discrete element numerical simulation can not only be used to determine the critical hydraulic gradient of geotechnical and hydraulic engineering, but also offer a visual portrayal of the evolution of seepage failure, serving as an important complement to comprehend the intricate microscopic mechanisms underlying soil seepage failure.

渗流破坏是工程中的常见问题,临界水力梯度的计算与分析对工程的安全防护具有重要意义。基于离散元法和计算流体力学原理,建立了流固耦合模型,研究了颗粒土在渗流破坏时的临界水力梯度和颗粒损失率。渗流破坏的演变过程分为四个阶段:渗流发展阶段、局部破坏阶段、体积膨胀阶段和整体破坏阶段。通过比较数值模拟和 Terzaghi 公式得出的临界水力梯度,证明了数值模拟的有效性。根据渗流破坏时模型的织物破坏和流速变化,分析了模型尺寸和颗粒大小对临界水力梯度和颗粒损失率的影响。结果表明,临界水力坡度和颗粒损失率对模型尺寸的变化并不敏感。粒径分布范围大,则渗流破坏时临界水力梯度大,颗粒损失率小。离散元数值模拟不仅可用于确定岩土工程和水利工程的临界水力梯度,还能直观地描述渗流破坏的演变过程,是理解土壤渗流破坏的复杂微观机理的重要补充。
{"title":"Numerical simulation of the critical hydraulic gradient of granular soils at seepage failure by discrete element method and computational fluid dynamics","authors":"Yuqi Li ,&nbsp;Liangchen Xu ,&nbsp;Zhuyin Ma ,&nbsp;Bingbing Ma ,&nbsp;Junhao Zhang","doi":"10.1016/j.jher.2024.02.001","DOIUrl":"https://doi.org/10.1016/j.jher.2024.02.001","url":null,"abstract":"<div><p>Seepage failure is a common problem in engineering, and the calculation and analysis of critical hydraulic gradient are of great significance for the safety and protection of engineering. Based on the principle of discrete element method and computational fluid dynamics, the fluid–solid coupled models were established to study the critical hydraulic gradient and particle loss rate of granular soils at seepage failure. The evolution of seepage failure was divided into four stages: seepage development stage, local damage stage, volume expansion stage and overall damage stage. The validity of numerical simulation was demonstrated by comparing the critical hydraulic gradient obtained by numerical simulation and by Terzaghi’s formula. According to the fabric damage and flow velocity variation of the models at seepage failure, the influences of model size and particle size on the critical hydraulic gradient and particle loss rate were analyzed. The results indicate that critical hydraulic gradient and particle loss rate were not sensitive to changes in model size. A wide particle size distribution range resulted in large critical hydraulic gradient and small particle loss rate at seepage failure. The discrete element numerical simulation can not only be used to determine the critical hydraulic gradient of geotechnical and hydraulic engineering, but also offer a visual portrayal of the evolution of seepage failure, serving as an important complement to comprehend the intricate microscopic mechanisms underlying soil seepage failure.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"53 ","pages":"Pages 1-14"},"PeriodicalIF":2.8,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139699706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Hydro-environment Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1