首页 > 最新文献

Robotica最新文献

英文 中文
Multi-objective optimization approach for coverage path planning of mobile robot 移动机器人覆盖路径规划的多目标优化方法
IF 2.7 4区 计算机科学 Q1 Mathematics Pub Date : 2024-03-25 DOI: 10.1017/s0263574724000377
Monex Sharma, Hari Kumar Voruganti
Coverage path planning (CPP) is a subfield of path planning problems in which free areas of a given domain must be visited by a robot at least once while avoiding obstacles. In some situations, the path may be optimized for one or more criteria such as total distance traveled, number of turns, and total area covered by the robot. Accordingly, the CPP problem has been formulated as a multi-objective optimization (MOO) problem, which turns out to be a challenging discrete optimization problem, hence conventional MOO algorithms like Non-dominated Sorting Genetic Algorithm-2 (NSGA-II) do not work as it is. This study implements a modified NSGA-II to solve the MOO problem of CPP for a mobile robot. In this paper, the proposed method adopted two objective functions: (1) the total distance traveled by the robot and (2) the number of turns taken by the robot. The two objective functions are used to calculate energy consumption. The proposed method is compared to the hybrid genetic algorithm (HGA) and the traditional genetic algorithm (TGA) in a rectilinear environment containing obstacles of various complex shapes. In addition, the results of the proposed algorithm are compared to those generated by HGA, TGA, oriented rectilinear decomposition, and spatial cell diffusion and family of spanning tree coverage in existing research papers. The results of all comparisons indicate that the proposed algorithm outperformed the existing algorithms by reducing energy consumption by 5 to 60%. This paper provides the facility to operate the robot in different modes.
覆盖路径规划(CPP)是路径规划问题的一个子领域,在该问题中,机器人必须在避开障碍物的同时至少访问一次给定区域内的空闲区域。在某些情况下,可以根据一个或多个标准对路径进行优化,如总行程、转弯次数和机器人覆盖的总面积。因此,CPP 问题被表述为一个多目标优化(MOO)问题,它是一个具有挑战性的离散优化问题,因此传统的 MOO 算法,如非支配排序遗传算法-2(NSGA-II),并不适用。本研究采用改进的 NSGA-II 来解决移动机器人 CPP 的 MOO 问题。本文提出的方法采用了两个目标函数:(1) 机器人行进的总距离和 (2) 机器人转弯的次数。这两个目标函数用于计算能耗。在包含各种复杂形状障碍物的直线环境中,将所提出的方法与混合遗传算法(HGA)和传统遗传算法(TGA)进行了比较。此外,还将所提算法的结果与现有研究论文中的 HGA、TGA、定向直线分解以及空间单元扩散和生成树覆盖族生成的结果进行了比较。所有比较结果表明,拟议算法的性能优于现有算法,能耗降低了 5% 至 60%。本文提供了在不同模式下操作机器人的设施。
{"title":"Multi-objective optimization approach for coverage path planning of mobile robot","authors":"Monex Sharma, Hari Kumar Voruganti","doi":"10.1017/s0263574724000377","DOIUrl":"https://doi.org/10.1017/s0263574724000377","url":null,"abstract":"Coverage path planning (CPP) is a subfield of path planning problems in which free areas of a given domain must be visited by a robot at least once while avoiding obstacles. In some situations, the path may be optimized for one or more criteria such as total distance traveled, number of turns, and total area covered by the robot. Accordingly, the CPP problem has been formulated as a multi-objective optimization (MOO) problem, which turns out to be a challenging discrete optimization problem, hence conventional MOO algorithms like Non-dominated Sorting Genetic Algorithm-2 (NSGA-II) do not work as it is. This study implements a modified NSGA-II to solve the MOO problem of CPP for a mobile robot. In this paper, the proposed method adopted two objective functions: (1) the total distance traveled by the robot and (2) the number of turns taken by the robot. The two objective functions are used to calculate energy consumption. The proposed method is compared to the hybrid genetic algorithm (HGA) and the traditional genetic algorithm (TGA) in a rectilinear environment containing obstacles of various complex shapes. In addition, the results of the proposed algorithm are compared to those generated by HGA, TGA, oriented rectilinear decomposition, and spatial cell diffusion and family of spanning tree coverage in existing research papers. The results of all comparisons indicate that the proposed algorithm outperformed the existing algorithms by reducing energy consumption by 5 to 60%. This paper provides the facility to operate the robot in different modes.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure design and kinematic performance of the deployable translational parallel tape-spring manipulator 可展开平移平行带簧机械手的结构设计和运动学性能
IF 2.7 4区 计算机科学 Q1 Mathematics Pub Date : 2024-03-22 DOI: 10.1017/s0263574724000353
Hu Liu, Yawen Qin, Yi Yang
A deployable manipulator has the characteristics of a small installation space and a large workspace, which has great application prospects in small unmanned platforms. Most existing deployable manipulators are designed based on rigid links, whose complexity and mass inevitably increase sharply with increasing numbers of rigid links and joints. Inspired by the remarkable properties of tape springs, this paper proposes novel deployable parallel tape-spring manipulators with low mass, simple mechanics, and a high deployed-to-folded ratio. First, a double C-shaped tape spring is presented to improve the stability of the structure. The combined fixed drive component (CFDC) and combined mobile drive component (CMDC) are designed. Then, novel 2-DOF and 3-DOF deployable translational parallel manipulators are proposed based on the CFDC and CMDC, and their degrees-of-freedom (DOFs), kinematics, and stability are analyzed. The coiled tape spring is regarded as an Archimedean spiral, which can significantly improve the accuracy of kinematic analysis. The correction coefficient of the Euler formula is obtained by comparison with simulation results and experimental results. Furthermore, the stability spaces of the 2-DOF and 3-DOF deployable parallel manipulators are given. Finally, a prototype is fabricated, and experiments are conducted to validate the proposed design and analysis.
可展开机械手具有安装空间小、工作空间大的特点,在小型无人平台中具有广阔的应用前景。现有的可展开机械手大多基于刚性链接设计,随着刚性链接和关节数量的增加,其复杂性和质量不可避免地急剧增加。受胶带弹簧卓越特性的启发,本文提出了新型可展开平行胶带弹簧机械手,具有质量小、力学简单、展开与折叠比高等特点。首先,本文提出了一种双 C 形胶带弹簧,以提高结构的稳定性。设计了组合固定驱动组件(CFDC)和组合移动驱动组件(CMDC)。然后,在 CFDC 和 CMDC 的基础上提出了新型 2-DOF 和 3-DOF 可部署平移平行机械手,并分析了它们的自由度 (DOF)、运动学和稳定性。将卷带弹簧视为阿基米德螺旋,可显著提高运动学分析的精度。通过与模拟结果和实验结果的比较,得出了欧拉公式的修正系数。此外,还给出了 2-DOF 和 3-DOF 可部署平行机械手的稳定空间。最后,制作了一个原型,并进行了实验来验证所提出的设计和分析。
{"title":"Structure design and kinematic performance of the deployable translational parallel tape-spring manipulator","authors":"Hu Liu, Yawen Qin, Yi Yang","doi":"10.1017/s0263574724000353","DOIUrl":"https://doi.org/10.1017/s0263574724000353","url":null,"abstract":"A deployable manipulator has the characteristics of a small installation space and a large workspace, which has great application prospects in small unmanned platforms. Most existing deployable manipulators are designed based on rigid links, whose complexity and mass inevitably increase sharply with increasing numbers of rigid links and joints. Inspired by the remarkable properties of tape springs, this paper proposes novel deployable parallel tape-spring manipulators with low mass, simple mechanics, and a high deployed-to-folded ratio. First, a double <jats:italic>C</jats:italic>-shaped tape spring is presented to improve the stability of the structure. The combined fixed drive component (CFDC) and combined mobile drive component (CMDC) are designed. Then, novel 2-DOF and 3-DOF deployable translational parallel manipulators are proposed based on the CFDC and CMDC, and their degrees-of-freedom (DOFs), kinematics, and stability are analyzed. The coiled tape spring is regarded as an Archimedean spiral, which can significantly improve the accuracy of kinematic analysis. The correction coefficient of the Euler formula is obtained by comparison with simulation results and experimental results. Furthermore, the stability spaces of the 2-DOF and 3-DOF deployable parallel manipulators are given. Finally, a prototype is fabricated, and experiments are conducted to validate the proposed design and analysis.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robotics goes PRISMA 机器人技术进入 PRISMA
IF 2.7 4区 计算机科学 Q1 Mathematics Pub Date : 2024-03-20 DOI: 10.1017/s026357472400033x
Mario Selvaggio, Rocco Moccia, Pierluigi Arpenti, Riccardo Caccavale, Fabio Ruggiero, Jonathan Cacace, Fanny Ficuciello, Alberto Finzi, Vincenzo Lippiello, Luigi Villani, Bruno Siciliano

In this article, we review the main results achieved by the research activities carried out at PRISMA Lab of the University of Naples Federico II where, for 35 years, an interdisciplinary team of experts developed robots that are ultimately useful to humans. We summarize the key contributions made in the last decade in the six research areas of dynamic manipulation and locomotion, aerial robotics, human-robot interaction, artificial intelligence and cognitive robotics, industrial robotics, and medical robotics. After a brief overview of each research field, the most significant methodologies and results are reported and discussed, highlighting their cross-disciplinary and translational aspects. Finally, the potential future research directions identified are discussed.

在这篇文章中,我们回顾了那不勒斯费德里科第二大学 PRISMA 实验室开展的研究活动所取得的主要成果,35 年来,该实验室的跨学科专家团队开发出了最终对人类有用的机器人。我们总结了过去十年中在动态操纵和运动、空中机器人学、人机交互、人工智能和认知机器人学、工业机器人学和医疗机器人学这六个研究领域做出的主要贡献。在对每个研究领域进行简要概述后,报告和讨论了最重要的方法和成果,强调了它们的跨学科和转化方面。最后,还讨论了已确定的未来潜在研究方向。
{"title":"Robotics goes PRISMA","authors":"Mario Selvaggio, Rocco Moccia, Pierluigi Arpenti, Riccardo Caccavale, Fabio Ruggiero, Jonathan Cacace, Fanny Ficuciello, Alberto Finzi, Vincenzo Lippiello, Luigi Villani, Bruno Siciliano","doi":"10.1017/s026357472400033x","DOIUrl":"https://doi.org/10.1017/s026357472400033x","url":null,"abstract":"<p>In this article, we review the main results achieved by the research activities carried out at PRISMA Lab of the University of Naples Federico II where, for 35 years, an interdisciplinary team of experts developed robots that are ultimately useful to humans. We summarize the key contributions made in the last decade in the six research areas of dynamic manipulation and locomotion, aerial robotics, human-robot interaction, artificial intelligence and cognitive robotics, industrial robotics, and medical robotics. After a brief overview of each research field, the most significant methodologies and results are reported and discussed, highlighting their cross-disciplinary and translational aspects. Finally, the potential future research directions identified are discussed.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140168361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved iterative approach with a comprehensive friction model for identifying dynamic parameters of collaborative robots 使用综合摩擦模型的改进迭代法确定协作机器人的动态参数
IF 2.7 4区 计算机科学 Q1 Mathematics Pub Date : 2024-03-20 DOI: 10.1017/s0263574724000341
Zeyu Li, Hongxing Wei, Chengguo Liu, Ye He, Gang Liu, Haochen Zhang, Weiming Li

Collaborative robots are becoming intelligent assistants of human in industrial settings and daily lives. Dynamic model identification is an active topic for collaborative robots because it can provide effective ways to achieve precise control, fast collision detection and smooth lead-through programming. In this research, an improved iterative approach with a comprehensive friction model for dynamic model identification is proposed for collaborative robots when the joint velocity, temperature and load torque effects are considered. Experiments are conducted on the AUBO I5 collaborative robots. Two other existing identification algorithms are adopted to make comparison with the proposed approach. It is verified that the average error of the proposed I-IRLS algorithm is reduced by over 14% than that of the classical IRLS algorithm. The proposed I-IRLS method can be widely used in various application scenarios of collaborative robots.

协作机器人正在成为工业和日常生活中人类的智能助手。动态模型识别为协作机器人实现精确控制、快速碰撞检测和流畅的前导编程提供了有效途径,因此是一个活跃的课题。本研究提出了一种改进的迭代方法,在考虑关节速度、温度和负载扭矩影响的情况下,利用综合摩擦模型进行协作机器人的动态模型识别。实验在 AUBO I5 协作机器人上进行。采用其他两种现有的识别算法与所提出的方法进行比较。实验证明,与经典的 IRLS 算法相比,所提出的 I-IRLS 算法的平均误差减少了 14% 以上。提出的 I-IRLS 方法可广泛应用于协作机器人的各种应用场景。
{"title":"An improved iterative approach with a comprehensive friction model for identifying dynamic parameters of collaborative robots","authors":"Zeyu Li, Hongxing Wei, Chengguo Liu, Ye He, Gang Liu, Haochen Zhang, Weiming Li","doi":"10.1017/s0263574724000341","DOIUrl":"https://doi.org/10.1017/s0263574724000341","url":null,"abstract":"<p>Collaborative robots are becoming intelligent assistants of human in industrial settings and daily lives. Dynamic model identification is an active topic for collaborative robots because it can provide effective ways to achieve precise control, fast collision detection and smooth lead-through programming. In this research, an improved iterative approach with a comprehensive friction model for dynamic model identification is proposed for collaborative robots when the joint velocity, temperature and load torque effects are considered. Experiments are conducted on the AUBO I5 collaborative robots. Two other existing identification algorithms are adopted to make comparison with the proposed approach. It is verified that the average error of the proposed I-IRLS algorithm is reduced by over 14% than that of the classical IRLS algorithm. The proposed I-IRLS method can be widely used in various application scenarios of collaborative robots.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140168272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wireless vision-based digital media fixed-point DSP processor depending robots for natural calamities 基于无线视觉的数字媒体定点 DSP 处理器,取决于自然灾害机器人
IF 2.7 4区 计算机科学 Q1 Mathematics Pub Date : 2024-03-15 DOI: 10.1017/s0263574724000225
S. Mary Joans, N. Gomathi, P. Ponsudha
Natural calamities are affecting many parts of the world. Natural disasters, terrorist attacks, earthquakes, wildfires, floods and all unpredicted phenomena. Disasters cause emergency conditions, so imperative to coordinate the prompt delivery of essential services to the sufferers. Often, disasters lead many people to perish by becoming trapped inside, but many more also perish as a result of individuals receiving rescue either too late or not at all. The implementation and design of a Receiver module utilizing Davinci code processor DVM6437, Wireless camera receiver, Zigbee Transceiver and Global Positioning System (GPS) is proposed in this manuscript for Wireless Vision-based Semi-Autonomous rescue robots that are employed in rough terrain. The receiver side’s Zigbee transceiver module eliminates the limitations of tele-operating rescue robots by enabling the control station to receive GPS data signals and aids in robot management by sending control signals wirelessly. Half and full-duplex communication are supported by the Davinci processor DVM6437, a digital media fixed-point DSP processor that relies on Very Long Instruction Words. It includes an extensive instruction set that is ideal for real-time salvage operations. DVM processor is coded utilizing MATLAB Simulink. MATLAB codes and Simulink blocks are employed under Embedded IDE link.
自然灾害正在影响世界许多地区。自然灾害、恐怖袭击、地震、野火、洪水和所有不可预知的现象。灾害会造成紧急状况,因此必须进行协调,迅速为灾民提供必要的服务。灾害往往导致许多人被困在屋内而丧生,但也有更多的人因接受救援太晚或根本没有得到救援而丧生。本手稿提出了利用 Davinci 代码处理器 DVM6437、无线摄像头接收器、Zigbee 收发器和全球定位系统 (GPS) 的接收器模块的实现和设计,用于在崎岖地形中使用的基于无线视觉的半自主救援机器人。接收端的 Zigbee 收发器模块使控制站能够接收 GPS 数据信号,从而消除了远程操作救援机器人的局限性,并通过无线方式发送控制信号来协助机器人管理。Davinci 处理器 DVM6437 支持半双工和全双工通信,它是一种数字媒体定点 DSP 处理器,依赖于超长指令字。它包含丰富的指令集,非常适合实时抢救操作。DVM 处理器利用 MATLAB Simulink 进行编码。MATLAB 代码和 Simulink 块是在嵌入式集成开发环境链接下使用的。
{"title":"Wireless vision-based digital media fixed-point DSP processor depending robots for natural calamities","authors":"S. Mary Joans, N. Gomathi, P. Ponsudha","doi":"10.1017/s0263574724000225","DOIUrl":"https://doi.org/10.1017/s0263574724000225","url":null,"abstract":"Natural calamities are affecting many parts of the world. Natural disasters, terrorist attacks, earthquakes, wildfires, floods and all unpredicted phenomena. Disasters cause emergency conditions, so imperative to coordinate the prompt delivery of essential services to the sufferers. Often, disasters lead many people to perish by becoming trapped inside, but many more also perish as a result of individuals receiving rescue either too late or not at all. The implementation and design of a Receiver module utilizing Davinci code processor DVM6437, Wireless camera receiver, Zigbee Transceiver and Global Positioning System (GPS) is proposed in this manuscript for Wireless Vision-based Semi-Autonomous rescue robots that are employed in rough terrain. The receiver side’s Zigbee transceiver module eliminates the limitations of tele-operating rescue robots by enabling the control station to receive GPS data signals and aids in robot management by sending control signals wirelessly. Half and full-duplex communication are supported by the Davinci processor DVM6437, a digital media fixed-point DSP processor that relies on Very Long Instruction Words. It includes an extensive instruction set that is ideal for real-time salvage operations. DVM processor is coded utilizing MATLAB Simulink. MATLAB codes and Simulink blocks are employed under Embedded IDE link.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heavy-duty hexapod robot sideline tipping judgment and recovery 重型六足机器人边线倾翻判断和恢复
IF 2.7 4区 计算机科学 Q1 Mathematics Pub Date : 2024-03-15 DOI: 10.1017/s0263574724000274
Lianzhao Zhang, Fusheng Zha, Wei Guo, Chen Chen, Lining Sun, Pengfei Wang
Heavy-duty hexapod robots are well-suited for physical transportation, disaster relief, and resource exploration. The immense locomotion capabilities conferred by the six appendages of these systems enable traversal over unstructured and challenging terrain. However, tipping can be a serious concern when moving with a tripod gait in these challenging environments, which may cause irreversible consequences such as compromised movement control and potential damage. In this paper, we focus on heavy-duty hexapod robot sideline tipping judgment and recovery during tripod gait motion, and a novel sideline tipping judgment and recovery method is proposed by adjusting an optimal swinging leg to the stance state. Considering the locomotion environments, motion mode, and tipping analysis, the robot’s stability margin is quantified, and the tipping event is evaluated by the Force Angle Stability Measure (FASM). The recovery method is initiated upon detecting that the robot is tipping, which involves the selection of an adjustment leg and the determination of an optimal foothold. Since the FASM is based on the foot force and robot center of gravity (CoG), the stability margin quantification expression is reformulated to the constraint form of quadratic programming (QP). Furthermore, a foot force distribution method, integrating stability margin considerations into the QP model, has been devised to ensure post-adjustment stability of the landing leg. Experiments on tipping judgment and recovery demonstrate the effectiveness of the proposed approaches on tipping judgment and recovery.
重型六足机器人非常适合实际运输、救灾和资源勘探。这些系统的六个附肢赋予其巨大的运动能力,使其能够穿越无结构和具有挑战性的地形。然而,在这些具有挑战性的环境中以三脚架步态移动时,倾翻可能是一个严重的问题,可能会造成不可逆转的后果,如运动控制能力下降和潜在的损坏。本文重点研究了重型六足机器人在三脚架步态运动过程中的侧线倾翻判断和恢复,并通过调整最佳摆动腿到姿态状态,提出了一种新颖的侧线倾翻判断和恢复方法。考虑到运动环境、运动模式和倾倒分析,量化了机器人的稳定裕度,并通过力角稳定性测量(FASM)评估了倾倒事件。一旦检测到机器人正在倾倒,就会启动恢复方法,包括选择调整腿和确定最佳支点。由于 FASM 基于脚力和机器人重心(CoG),因此稳定裕度量化表达式被重新表述为二次编程(QP)的约束形式。此外,还设计了一种脚力分配方法,将稳定裕度因素纳入 QP 模型,以确保着地腿调整后的稳定性。倾覆判断和恢复实验证明了所提方法在倾覆判断和恢复方面的有效性。
{"title":"Heavy-duty hexapod robot sideline tipping judgment and recovery","authors":"Lianzhao Zhang, Fusheng Zha, Wei Guo, Chen Chen, Lining Sun, Pengfei Wang","doi":"10.1017/s0263574724000274","DOIUrl":"https://doi.org/10.1017/s0263574724000274","url":null,"abstract":"Heavy-duty hexapod robots are well-suited for physical transportation, disaster relief, and resource exploration. The immense locomotion capabilities conferred by the six appendages of these systems enable traversal over unstructured and challenging terrain. However, tipping can be a serious concern when moving with a tripod gait in these challenging environments, which may cause irreversible consequences such as compromised movement control and potential damage. In this paper, we focus on heavy-duty hexapod robot sideline tipping judgment and recovery during tripod gait motion, and a novel sideline tipping judgment and recovery method is proposed by adjusting an optimal swinging leg to the stance state. Considering the locomotion environments, motion mode, and tipping analysis, the robot’s stability margin is quantified, and the tipping event is evaluated by the Force Angle Stability Measure (FASM). The recovery method is initiated upon detecting that the robot is tipping, which involves the selection of an adjustment leg and the determination of an optimal foothold. Since the FASM is based on the foot force and robot center of gravity (CoG), the stability margin quantification expression is reformulated to the constraint form of quadratic programming (QP). Furthermore, a foot force distribution method, integrating stability margin considerations into the QP model, has been devised to ensure post-adjustment stability of the landing leg. Experiments on tipping judgment and recovery demonstrate the effectiveness of the proposed approaches on tipping judgment and recovery.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An experimental evaluation of robot-stopping approaches for improving fluency in collaborative robotics 对机器人停止方法的实验评估,以提高协作机器人技术的流畅性
IF 2.7 4区 计算机科学 Q1 Mathematics Pub Date : 2024-03-15 DOI: 10.1017/s0263574724000262
Lorenzo Scalera, Federico Lozer, Andrea Giusti, Alessandro Gasparetto
This paper explores and experimentally compares the effectiveness of robot-stopping approaches based on the speed and separation monitoring for improving fluency in collaborative robotics. In the compared approaches, a supervisory controller checks the distance between the bounding volumes enclosing human operator and robot and prevents potential collisions by determining the robot’s stop time and triggering a stop trajectory if necessary. The methods are tested on a Franka Emika robot with 7 degrees of freedom, involving 27 volunteer participants, who are asked to walk along assigned paths to cyclically intrude the robot workspace, while the manipulator is working. The experimental results show that scaling online the dynamic safety zones is beneficial for improving fluency of human-robot collaboration, showing significant statistical differences with respect to alternative approaches.
本文探讨并通过实验比较了基于速度和分离监控的机器人停止方法的有效性,以提高协作机器人技术的流畅性。在所比较的方法中,监督控制器会检查人类操作员和机器人所包围的边界体之间的距离,并通过确定机器人的停止时间和在必要时触发停止轨迹来防止潜在的碰撞。这些方法在具有 7 个自由度的 Franka Emika 机器人上进行了测试,有 27 名志愿者参与,要求他们在机械手工作时沿着指定路径行走,循环侵入机器人工作区。实验结果表明,在线扩展动态安全区有利于提高人机协作的流畅性,与其他方法相比,显示出显著的统计差异。
{"title":"An experimental evaluation of robot-stopping approaches for improving fluency in collaborative robotics","authors":"Lorenzo Scalera, Federico Lozer, Andrea Giusti, Alessandro Gasparetto","doi":"10.1017/s0263574724000262","DOIUrl":"https://doi.org/10.1017/s0263574724000262","url":null,"abstract":"This paper explores and experimentally compares the effectiveness of robot-stopping approaches based on the speed and separation monitoring for improving fluency in collaborative robotics. In the compared approaches, a supervisory controller checks the distance between the bounding volumes enclosing human operator and robot and prevents potential collisions by determining the robot’s stop time and triggering a stop trajectory if necessary. The methods are tested on a Franka Emika robot with 7 degrees of freedom, involving 27 volunteer participants, who are asked to walk along assigned paths to cyclically intrude the robot workspace, while the manipulator is working. The experimental results show that scaling online the dynamic safety zones is beneficial for improving fluency of human-robot collaboration, showing significant statistical differences with respect to alternative approaches.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the deployment of a social robot-augmented telepresence robot in an elder care clinic – perspectives from patients and therapists: a pilot study 在老年护理诊所部署社交机器人增强型远程呈现机器人的启示--患者和治疗师的观点:一项试点研究
IF 2.7 4区 计算机科学 Q1 Mathematics Pub Date : 2024-03-14 DOI: 10.1017/s026357472400002x
Michael J. Sobrepera, Anh T. Nguyen, Emily S. Gavin, Michelle J. Johnson

As the proportion of the elderly population in the USA expands, so will the demand for rehabilitation and social care, which play an important role in maintaining function and mediating motor and cognitive decline in older adults. The use of social robotics and telemedicine are each potential solutions but each have limitations. To address challenges with classical telemedicine for rehabilitation, we propose to use a social robot-augmented telepresence (SRAT), Flo, which was deployed for long-term use in a community-based rehabilitation facility catering to older adults. Our goals were to explore how clinicians and patients would use and respond to the robot during rehab interactions. In this pilot study, three clinicians were recruited and asked to rate usability after receiving training for operating the robot and two of them conducted multiple rehab interactions with their patients using the robot (eleven patients with cognitive impairment and/or motor impairment and 23 rehab sessions delivered via SRAT in total). We report on the experience of both therapists and patients after the interactions.

随着美国老年人口比例的增加,对康复和社会护理的需求也将随之增加,而康复和社会护理在维持老年人的功能以及缓解运动和认知能力衰退方面发挥着重要作用。使用社交机器人和远程医疗都是潜在的解决方案,但各自都有局限性。为了应对传统远程医疗在康复方面的挑战,我们建议使用社交机器人增强型远程呈现(SRAT)"Flo",它被部署在一个以社区为基础、面向老年人的康复设施中长期使用。我们的目标是探索临床医生和患者在康复互动过程中如何使用和应对机器人。在这项试点研究中,我们招募了三名临床医生,要求他们在接受机器人操作培训后对机器人的可用性进行评分,其中两名医生使用机器人与患者进行了多次康复互动(11 名患者患有认知障碍和/或运动障碍,通过 SRAT 共进行了 23 次康复治疗)。我们报告了治疗师和患者在互动后的体验。
{"title":"Insights into the deployment of a social robot-augmented telepresence robot in an elder care clinic – perspectives from patients and therapists: a pilot study","authors":"Michael J. Sobrepera, Anh T. Nguyen, Emily S. Gavin, Michelle J. Johnson","doi":"10.1017/s026357472400002x","DOIUrl":"https://doi.org/10.1017/s026357472400002x","url":null,"abstract":"<p>As the proportion of the elderly population in the USA expands, so will the demand for rehabilitation and social care, which play an important role in maintaining function and mediating motor and cognitive decline in older adults. The use of social robotics and telemedicine are each potential solutions but each have limitations. To address challenges with classical telemedicine for rehabilitation, we propose to use a social robot-augmented telepresence (SRAT), Flo, which was deployed for long-term use in a community-based rehabilitation facility catering to older adults. Our goals were to explore how clinicians and patients would use and respond to the robot during rehab interactions. In this pilot study, three clinicians were recruited and asked to rate usability after receiving training for operating the robot and two of them conducted multiple rehab interactions with their patients using the robot (eleven patients with cognitive impairment and/or motor impairment and 23 rehab sessions delivered via SRAT in total). We report on the experience of both therapists and patients after the interactions.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research and experiment on active training of lower limb based on five-bar mechanism of man-machine integration system 基于人机一体化系统五杆机构的下肢主动训练研究与实验
IF 2.7 4区 计算机科学 Q1 Mathematics Pub Date : 2024-03-14 DOI: 10.1017/s0263574724000304
Jianghong Sun, Fuqing Hu, Keke Gao, Feng Gao, Chao Ma, Junjian Wang

In view of the fact that the current research on active and passive rehabilitation training of lower limbs is mainly based on the analysis of exoskeleton prototype and the lack of analysis of the actual movement law of limbs, the human-machine coupling dynamic characteristics for active rehabilitation training of lower limbs are studied. In this paper, the forward and inverse kinematics are solved on the basis of innovatively integrating the lower limb and rehabilitation prototype into a human-machine integration system and equivalent to a five-bar mechanism. According to the constraint relationship of hip joint, knee joint and ankle joint, the Lagrange dynamic equation and simulation model of five-bar mechanism under the constraint of human physiological joint motion are constructed, and the simulation problem of closed-loop five-bar mechanism is solved. The joint angle experimental system was built to carry out rehabilitation training experiments to analyze the relationship between lower limb error and height, weight and BMI, and then, a personalized training planning method suitable for people with different lower limb sizes was proposed. The reliability of the method is proved by experiments. Therefore, we can obtain the law of limb movement on the basis of traditional rehabilitation training, appropriately reduce the training speed or reduce the man-machine position distance and reduce the training speed or increase the man-machine distance to reduce the error to obtain the range of motion angle closer to the theory of hip joint and knee joint respectively, so as to achieve better rehabilitation.

鉴于目前对下肢主被动康复训练的研究主要基于外骨骼原型的分析,缺乏对肢体实际运动规律的分析,研究了下肢主动康复训练的人机耦合动态特性。本文在创新性地将下肢与康复原型机整合为人机一体化系统并等效为五杆机构的基础上,求解了其正反运动学特性。根据髋关节、膝关节和踝关节的约束关系,构建了人体生理关节运动约束下的拉格朗日动力学方程和五杆机构仿真模型,解决了闭环五杆机构的仿真问题。建立关节角度实验系统,开展康复训练实验,分析下肢误差与身高、体重和 BMI 的关系,提出适合不同下肢尺寸人群的个性化训练规划方法。实验证明了该方法的可靠性。因此,我们可以在传统康复训练的基础上获得肢体运动规律,适当降低训练速度或减少人机位置距离,降低训练速度或增加人机距离来减少误差,分别获得更接近髋关节和膝关节理论的运动范围角度,从而达到更好的康复效果。
{"title":"Research and experiment on active training of lower limb based on five-bar mechanism of man-machine integration system","authors":"Jianghong Sun, Fuqing Hu, Keke Gao, Feng Gao, Chao Ma, Junjian Wang","doi":"10.1017/s0263574724000304","DOIUrl":"https://doi.org/10.1017/s0263574724000304","url":null,"abstract":"<p>In view of the fact that the current research on active and passive rehabilitation training of lower limbs is mainly based on the analysis of exoskeleton prototype and the lack of analysis of the actual movement law of limbs, the human-machine coupling dynamic characteristics for active rehabilitation training of lower limbs are studied. In this paper, the forward and inverse kinematics are solved on the basis of innovatively integrating the lower limb and rehabilitation prototype into a human-machine integration system and equivalent to a five-bar mechanism. According to the constraint relationship of hip joint, knee joint and ankle joint, the Lagrange dynamic equation and simulation model of five-bar mechanism under the constraint of human physiological joint motion are constructed, and the simulation problem of closed-loop five-bar mechanism is solved. The joint angle experimental system was built to carry out rehabilitation training experiments to analyze the relationship between lower limb error and height, weight and BMI, and then, a personalized training planning method suitable for people with different lower limb sizes was proposed. The reliability of the method is proved by experiments. Therefore, we can obtain the law of limb movement on the basis of traditional rehabilitation training, appropriately reduce the training speed or reduce the man-machine position distance and reduce the training speed or increase the man-machine distance to reduce the error to obtain the range of motion angle closer to the theory of hip joint and knee joint respectively, so as to achieve better rehabilitation.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive fractional-order integral fast terminal sliding mode and fault-tolerant control of dual-arm robots 双臂机器人的自适应分数阶积分快速终端滑动模式和容错控制
IF 2.7 4区 计算机科学 Q1 Mathematics Pub Date : 2024-03-07 DOI: 10.1017/s0263574724000328
Le Anh Tuan, Quang Phuc Ha

Closed-loop kinematics of a dual-arm robot (DAR) often induces motion conflict. Control formulation is increasingly difficult in face of actuator failures. This article presents a new approach for fault-tolerant control of DARs based on advanced sliding mode control. A comprehensive fractional-order model is proposed taking nonlinear viscous and viscoelastic friction at the joints into account. Using integral fast terminal sliding mode control and fractional calculus, we develop two robust controllers for robots subject to motor faults, parametric uncertainties, and disturbances. Their merits rest with their strong robustness, speedy finite-time convergence, shortened reaching phase, and flexible selection of derivative orders. To avoid the need for full knowledge of faults, robot parameters, and disturbances, two versions of the proposed approach, namely adaptive integral fractional-order fast terminal sliding mode control, are developed. Here, an adaptation mechanism is equipped for estimating a common representative of individual uncertainties. Simulation and experiment are provided along with an extensive comparison with existing approaches. The results demonstrate the superiority of the proposed control technique. The robot performs well the tasks with better responses (e.g., with settling time reduced by at least 16%).

双臂机器人(DAR)的闭环运动学经常会引发运动冲突。面对执行器故障,控制制定变得越来越困难。本文提出了一种基于先进滑模控制的 DAR 容错控制新方法。本文提出了一个综合的分数阶模型,将关节处的非线性粘性和粘弹性摩擦考虑在内。利用积分快速终端滑动模态控制和分数微积分,我们为受电机故障、参数不确定性和干扰影响的机器人开发了两种鲁棒控制器。它们的优点在于鲁棒性强、有限时间收敛速度快、到达阶段短以及导数阶数选择灵活。为了避免对故障、机器人参数和干扰的全面了解,我们开发了两种版本的拟议方法,即自适应积分分数阶快速终端滑模控制。这里配备了一种适应机制,用于估计个别不确定性的共同代表。仿真和实验结果与现有方法进行了广泛比较。结果证明了所提出的控制技术的优越性。机器人能以更好的响应执行任务(例如,沉降时间至少缩短了 16%)。
{"title":"Adaptive fractional-order integral fast terminal sliding mode and fault-tolerant control of dual-arm robots","authors":"Le Anh Tuan, Quang Phuc Ha","doi":"10.1017/s0263574724000328","DOIUrl":"https://doi.org/10.1017/s0263574724000328","url":null,"abstract":"<p>Closed-loop kinematics of a dual-arm robot (DAR) often induces motion conflict. Control formulation is increasingly difficult in face of actuator failures. This article presents a new approach for fault-tolerant control of DARs based on advanced sliding mode control. A comprehensive fractional-order model is proposed taking nonlinear viscous and viscoelastic friction at the joints into account. Using integral fast terminal sliding mode control and fractional calculus, we develop two robust controllers for robots subject to motor faults, parametric uncertainties, and disturbances. Their merits rest with their strong robustness, speedy finite-time convergence, shortened reaching phase, and flexible selection of derivative orders. To avoid the need for full knowledge of faults, robot parameters, and disturbances, two versions of the proposed approach, namely adaptive integral fractional-order fast terminal sliding mode control, are developed. Here, an adaptation mechanism is equipped for estimating a common representative of individual uncertainties. Simulation and experiment are provided along with an extensive comparison with existing approaches. The results demonstrate the superiority of the proposed control technique. The robot performs well the tasks with better responses (e.g., with settling time reduced by at least 16%).</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140056721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Robotica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1