首页 > 最新文献

Radio Science最新文献

英文 中文
Front matters 前方事项
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-30 DOI: 10.1002/rds.21241
{"title":"Front matters","authors":"","doi":"10.1002/rds.21241","DOIUrl":"https://doi.org/10.1002/rds.21241","url":null,"abstract":"","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10542685","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-latitude off-great circle propagation associated with the solar terminator 与太阳终结者有关的高纬度偏离大圆传播
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-30 DOI: 10.1029/2023RS007917
T. G. Cameron;R. A. D. Fiori;G. W. Perry;J. J. Ruck;T. Thayaparan
Large-scale ionospheric gradients associated with the solar terminator can deflect high frequency (HF) radio waves to off-great circle paths during the morning and evening, negatively impacting technologies reliant on HF radio wave propagation. For example, geolocation algorithms used by scientific and military over-the-horizon radars (OTHRs) generally assume on-great circle propagation, and thus lateral deviations from the great-circle path can lead to positioning errors. In this study, radio wave propagation is simulated via 3D numerical ray traces though an empirical, high-latitude model ionosphere initialized for a variety of times of the day and year to explore and quantify high-latitude off-great circle propagation associated with the solar terminator. Analysis of these simulations show large scale east-west ionospheric gradients due to the solar terminator can cause lateral deviations in north-directed propagation paths exceeding 20° at sunrise and sunset depending on radio wave frequency, though the largest portion of received signal power tends to experience maximum deflections of 5°. An exploration of the dependence of propagation direction on deflection shows that propagation paths parallel to the solar terminator tend to experience the largest deflections. Since the solar terminator at high latitudes is at an angle with respect to north in the winter and summer, propagation paths oriented west or east of north can experience larger deflections than north oriented paths at sunrise and sunset during these times of year. Impacts of these diurnal deflections on the operation of OTHR and scientific radar are discussed, as well as possible strategies for mitigating them.
与太阳终结者有关的大规模电离层梯度会使高频(HF)无线电波在早晨和傍晚偏离大圆路径,从而对依赖 HF 无线电波传播的技术产生负面影响。例如,科学和军用超视距雷达(OTHR)使用的地理定位算法通常假定是在大圆上传播的,因此横向偏离大圆路径会导致定位错误。在这项研究中,通过三维数值射线轨迹模拟了无线电波的传播,该射线轨迹是在一天和一年中的不同时间初始化的经验高纬度电离层模型,以探索和量化与太阳终结者有关的高纬度偏离大圆传播。对这些模拟的分析表明,太阳终结者造成的大尺度东西电离层梯度在日出和日落时会导致向北传播路径的横向偏差超过 20°,这取决于无线电波频率,尽管接收信号功率的最大部分往往会出现 5°的最大偏差。对传播方向与偏转关系的研究表明,与太阳终结点平行的传播路径往往偏转最大。由于高纬度地区的太阳终结者在冬季和夏季与北方成一定角度,因此在这些季节的日出和日落时分,向北偏西或偏东的传播路径会比向北的传播路径发生更大的偏转。本文讨论了这些昼夜偏转对 OTHR 和科学雷达运行的影响,以及减轻这些影响的可能策略。
{"title":"High-latitude off-great circle propagation associated with the solar terminator","authors":"T. G. Cameron;R. A. D. Fiori;G. W. Perry;J. J. Ruck;T. Thayaparan","doi":"10.1029/2023RS007917","DOIUrl":"10.1029/2023RS007917","url":null,"abstract":"Large-scale ionospheric gradients associated with the solar terminator can deflect high frequency (HF) radio waves to off-great circle paths during the morning and evening, negatively impacting technologies reliant on HF radio wave propagation. For example, geolocation algorithms used by scientific and military over-the-horizon radars (OTHRs) generally assume on-great circle propagation, and thus lateral deviations from the great-circle path can lead to positioning errors. In this study, radio wave propagation is simulated via 3D numerical ray traces though an empirical, high-latitude model ionosphere initialized for a variety of times of the day and year to explore and quantify high-latitude off-great circle propagation associated with the solar terminator. Analysis of these simulations show large scale east-west ionospheric gradients due to the solar terminator can cause lateral deviations in north-directed propagation paths exceeding 20° at sunrise and sunset depending on radio wave frequency, though the largest portion of received signal power tends to experience maximum deflections of 5°. An exploration of the dependence of propagation direction on deflection shows that propagation paths parallel to the solar terminator tend to experience the largest deflections. Since the solar terminator at high latitudes is at an angle with respect to north in the winter and summer, propagation paths oriented west or east of north can experience larger deflections than north oriented paths at sunrise and sunset during these times of year. Impacts of these diurnal deflections on the operation of OTHR and scientific radar are discussed, as well as possible strategies for mitigating them.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141140263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of wide-beam transmission for advanced operations of SuperDARN Borealis radars in monostatic and multistatic modes 应用宽波束传输实现单静态和多静态模式下超级雷达网北极光雷达的高级操作
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-30 DOI: 10.1029/2023RS007900
R. A. Rohel;P. Ponomarenko;K. A. McWilliams
The Super Dual Auroral Radar Network (SuperDARN) consists of more than 30 monostatic high-frequency (HF, 8-20 MHz) radars to study dynamic processes in the ionosphere. SuperDARN provides maps of global-scale ionospheric plasma drift circulation from the mid-latitudes to the poles. The conventional SuperDARN radars consecutively scan through 16 beam directions with a lower limit of 1 minute to sample the entire field of view. In this work, we use the advanced capabilities of the recently developed Borealis digital SuperDARN radar system. Combining a wide transmission beam with multiple narrow reception beams allows us to sample all conventional beam directions simultaneously and to speed up scanning of the entire field-of-view by up to 16 times without noticeable deterioration of the data quality. The wide-beam emission also enabled the implementation of multistatic operations, where ionospheric scatter signals from one radar are received by other radars with overlapping viewing areas. These novel operations required the development of a new model to determine the geographic location of the source of the multistatic radar echoes. Our preliminary studies showed that, in comparison with the conventional monostatic operations, the multistatic operations provide a significant increase in geographic coverage, in some cases nearly doubling it. The multistatic data also provide additional velocity vector components, increasing the likelihood of reconstructing full plasma drift velocity vectors. The developed operational modes can be readily implemented at other fully digital SuperDARN radars.
超级双极光雷达网(SuperDARN)由 30 多个单静态高频(HF,8-20 兆赫)雷达组成,用于研究电离层的动态过程。SuperDARN 提供从中纬度到两极的全球尺度电离层等离子体漂移环流图。传统的 SuperDARN 雷达连续扫描 16 个波束方向,整个视场的采样时间下限为 1 分钟。在这项工作中,我们使用了最近开发的 Borealis 数字超级雷达网雷达系统的先进功能。宽发射波束与多个窄接收波束相结合,使我们能够同时对所有常规波束方向进行采样,并将整个视场的扫描速度提高了 16 倍,而数据质量却没有明显下降。宽波束发射还使多静态操作成为可能,在多静态操作中,一台雷达发出的电离层散射信号会被视场重叠的其他雷达接收。这些新的操作要求开发一种新的模型,以确定多静态雷达回波源的地理位置。我们的初步研究表明,与传统的单静态操作相比,多静态操作的地理覆盖范围显著扩大,在某些情况下几乎翻了一番。多静态数据还提供了额外的速度矢量分量,增加了重建完整等离子体漂移速度矢量的可能性。所开发的运行模式可随时在其他全数字超级雷达网雷达上实施。
{"title":"Application of wide-beam transmission for advanced operations of SuperDARN Borealis radars in monostatic and multistatic modes","authors":"R. A. Rohel;P. Ponomarenko;K. A. McWilliams","doi":"10.1029/2023RS007900","DOIUrl":"10.1029/2023RS007900","url":null,"abstract":"The Super Dual Auroral Radar Network (SuperDARN) consists of more than 30 monostatic high-frequency (HF, 8-20 MHz) radars to study dynamic processes in the ionosphere. SuperDARN provides maps of global-scale ionospheric plasma drift circulation from the mid-latitudes to the poles. The conventional SuperDARN radars consecutively scan through 16 beam directions with a lower limit of 1 minute to sample the entire field of view. In this work, we use the advanced capabilities of the recently developed Borealis digital SuperDARN radar system. Combining a wide transmission beam with multiple narrow reception beams allows us to sample all conventional beam directions simultaneously and to speed up scanning of the entire field-of-view by up to 16 times without noticeable deterioration of the data quality. The wide-beam emission also enabled the implementation of multistatic operations, where ionospheric scatter signals from one radar are received by other radars with overlapping viewing areas. These novel operations required the development of a new model to determine the geographic location of the source of the multistatic radar echoes. Our preliminary studies showed that, in comparison with the conventional monostatic operations, the multistatic operations provide a significant increase in geographic coverage, in some cases nearly doubling it. The multistatic data also provide additional velocity vector components, increasing the likelihood of reconstructing full plasma drift velocity vectors. The developed operational modes can be readily implemented at other fully digital SuperDARN radars.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141047304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct digital RF transceiver technology for millimeter-wave DBF systems 毫米波 DBF 系统的直接数字 RF 收发器技术
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-30 DOI: 10.1029/2023RS007802
Noriharu Suematsu
Digital RF technology has been developed and has been applied to below 6 GHz wireless applications. By replacing the IC die consumptive RF/analog circuit blocks by digital signal processor and circuit, digital rich/small transceivers can be realized. Since the foundation of this technology is based on the Nyquist theory, the operational frequency of the circuit has been limited by the Nyquist frequency (=1/2 of sampling clock frequency). As a result, the maximum operational RF frequency of existing digital RF technology was below 6 GHz. In this paper, a new direct digital RF technology that utilizes the higher-order Nyquist zones is introduced. This technology enables handling RF signal in beyond Nyquist frequency range which means over 6 GHz range. The results of fabricated 26/28 GHz-band transmitter/receiver are reviewed. Since the transceiver architecture with the proposed technologies does not require an RF local oscillator and up/down converters, it is suitable for microwave/millimeter-wave multi-antenna systems such as next generation satellite on-board digital beam forming and Beyond 5G fully digital Massive multiple-input multiple-output systems.
数字射频技术已被开发并应用于 6 GHz 以下的无线应用。通过用数字信号处理器和电路取代消耗集成电路芯片的射频/模拟电路块,可以实现富数字/小型收发器。由于这项技术的基础是奈奎斯特理论,因此电路的工作频率受到奈奎斯特频率(=采样时钟频率的 1/2)的限制。因此,现有数字射频技术的最高工作射频频率低于 6 GHz。本文介绍了一种利用高阶奈奎斯特区的新型直接数字 RF 技术。该技术可处理奈奎斯特频率范围以外的射频信号,即 6 GHz 以上的射频信号。本文回顾了 26/28 GHz 波段发射器/接收器的制造结果。由于采用所提技术的收发器架构不需要射频本地振荡器和上/下转换器,因此适用于微波/毫米波多天线系统,如下一代卫星机载数字波束成形和 Beyond 5G 全数字大规模多输入多输出系统。
{"title":"Direct digital RF transceiver technology for millimeter-wave DBF systems","authors":"Noriharu Suematsu","doi":"10.1029/2023RS007802","DOIUrl":"https://doi.org/10.1029/2023RS007802","url":null,"abstract":"Digital RF technology has been developed and has been applied to below 6 GHz wireless applications. By replacing the IC die consumptive RF/analog circuit blocks by digital signal processor and circuit, digital rich/small transceivers can be realized. Since the foundation of this technology is based on the Nyquist theory, the operational frequency of the circuit has been limited by the Nyquist frequency (=1/2 of sampling clock frequency). As a result, the maximum operational RF frequency of existing digital RF technology was below 6 GHz. In this paper, a new direct digital RF technology that utilizes the higher-order Nyquist zones is introduced. This technology enables handling RF signal in beyond Nyquist frequency range which means over 6 GHz range. The results of fabricated 26/28 GHz-band transmitter/receiver are reviewed. Since the transceiver architecture with the proposed technologies does not require an RF local oscillator and up/down converters, it is suitable for microwave/millimeter-wave multi-antenna systems such as next generation satellite on-board digital beam forming and Beyond 5G fully digital Massive multiple-input multiple-output systems.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel scheme for GPU-accelerated finite-difference time-domain simulation of electromagnetic wave interaction with magnetic plasma GPU 加速时域有限差分模拟电磁波与磁性等离子体相互作用的新方案
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-30 DOI: 10.1029/2023RS007862
Shimin He;Moran Liu;Ting Feng;Yiyun Wu;Xiang Wang;Chen Zhou;Ting Lan;Haiyin Qing
Based on graphical processing unit acceleration, a new method of finite-difference time-domain scheme is proposed to simulate the interaction between electromagnetic waves and magnetized plasma in two-dimensional conditions. In this study, transversely electric and transversely magnetic are computed in time to avoid matrix operations involving Lorentz equations of motion. Compared to Young's method, the new method reduces addition and multiplication by about 63% and 66%, respectively. The simulation results of ionospheric wave propagation show that the new method agrees well with Young's method and the calculation speed is improved significantly.
基于图形处理单元加速,提出了一种新的有限差分时域方案方法,用于模拟二维条件下电磁波与磁化等离子体之间的相互作用。在这项研究中,横向电场和横向磁场是及时计算的,以避免涉及洛伦兹运动方程的矩阵运算。与杨氏方法相比,新方法的加法和乘法运算分别减少了约 63% 和 66%。电离层波传播的模拟结果表明,新方法与杨氏方法非常吻合,而且计算速度显著提高。
{"title":"Novel scheme for GPU-accelerated finite-difference time-domain simulation of electromagnetic wave interaction with magnetic plasma","authors":"Shimin He;Moran Liu;Ting Feng;Yiyun Wu;Xiang Wang;Chen Zhou;Ting Lan;Haiyin Qing","doi":"10.1029/2023RS007862","DOIUrl":"10.1029/2023RS007862","url":null,"abstract":"Based on graphical processing unit acceleration, a new method of finite-difference time-domain scheme is proposed to simulate the interaction between electromagnetic waves and magnetized plasma in two-dimensional conditions. In this study, transversely electric and transversely magnetic are computed in time to avoid matrix operations involving Lorentz equations of motion. Compared to Young's method, the new method reduces addition and multiplication by about 63% and 66%, respectively. The simulation results of ionospheric wave propagation show that the new method agrees well with Young's method and the calculation speed is improved significantly.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141057515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and characterization of the engineering model of the spectrometer onboard LuSEE-Night 设计和鉴定 LuSEE-Night 星上光谱仪的工程模型
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-30 DOI: 10.1029/2023RS007925
Emi Tamura;Jack Fried;Sven Herrmann;Paul O'Connor;Eric J. Raguzin;Anze Slosar
The Lunar Surface Electromagnetics Explorer—Night, LuSEE-Night, is a low-frequency radio astronomy experiment that will explore the cosmic Dark Ages signal on the radio-quiet farside of the Moon. The LuSEE-Night carries a radio frequency spectrometer consisting of a set of antennas, analog and digital processing electronics, and will be launched by NASA's Commercial Lunar Payload Services in 2025. The spectrometer is designed to observe the spectrum of the radio sky in the 0.5–50 MHz band. The engineering model (EM) of the four-channel spectrometer has been developed. The EM has been characterized for linearity, gain, noise, and their temperature dependence, confirming that the EM meets all the requirements for LuSEE-Night. Three mitigation techniques have been implemented and verified to suppress self-induced electromagnetic interference. The flight model of the spectrometer is currently being developed and is scheduled to be shipped to the integration site in early 2024.
月球表面电磁学探索者之夜(LuSEE-Night)是一项低频射电天文学实验,将在无线电静默的月球远端探索宇宙黑暗时代的信号。LuSEE-Night携带一个射频频谱仪,由一组天线、模拟和数字处理电子设备组成,将于2025年由美国宇航局的商业月球有效载荷服务发射。该频谱仪旨在观测 0.5-50 兆赫频段的射电天空频谱。四通道光谱仪的工程模型(EM)已经开发出来。已对工程模型的线性度、增益、噪声及其温度依赖性进行了鉴定,确认工程模型符合 LuSEE-Night 的所有要求。为抑制自发电磁干扰,实施并验证了三种缓解技术。目前正在开发分光计的飞行模型,计划于 2024 年初运往集成地点。
{"title":"Design and characterization of the engineering model of the spectrometer onboard LuSEE-Night","authors":"Emi Tamura;Jack Fried;Sven Herrmann;Paul O'Connor;Eric J. Raguzin;Anze Slosar","doi":"10.1029/2023RS007925","DOIUrl":"https://doi.org/10.1029/2023RS007925","url":null,"abstract":"The Lunar Surface Electromagnetics Explorer—Night, LuSEE-Night, is a low-frequency radio astronomy experiment that will explore the cosmic Dark Ages signal on the radio-quiet farside of the Moon. The LuSEE-Night carries a radio frequency spectrometer consisting of a set of antennas, analog and digital processing electronics, and will be launched by NASA's Commercial Lunar Payload Services in 2025. The spectrometer is designed to observe the spectrum of the radio sky in the 0.5–50 MHz band. The engineering model (EM) of the four-channel spectrometer has been developed. The EM has been characterized for linearity, gain, noise, and their temperature dependence, confirming that the EM meets all the requirements for LuSEE-Night. Three mitigation techniques have been implemented and verified to suppress self-induced electromagnetic interference. The flight model of the spectrometer is currently being developed and is scheduled to be shipped to the integration site in early 2024.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power spectral characteristics of in-situ irregularities and topside GPS signal intensity at low latitudes using high-sample-rate swarm echo (e-POP) measurements 利用高采样率蜂群回波(e-POP)测量低纬度原地不规则性和顶层 GPS 信号强度的功率谱特征
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-30 DOI: 10.1029/2023RS007885
Ali Mohandesi;David J. Knudsen;Susan Skone;Richard B. Langley;Andrew W. Yau
Ionospheric density structures at low latitudes range in size from thousands of kilometers down to a few meters. Radio frequency (RF) signals, such as those from global navigation satellite systems, that propagate through irregularities suffer from rapid fluctuations in phase and intensity, known as scintillations. In this study, we use the high-sample-rate measurements of the Swarm Echo (CASSIOPE/e-POP) satellite's GPS Occultation (GAP-O) receiver taken after its antenna was re-oriented to vertical-pointing, simultaneously with e-POP Ion Mass Spectrometer surface current observations as a proxy for plasma density, to obtain the spectral characteristics of GPS signal intensity and in-situ irregularities at altitudes from 350 to 1,280 km. We show that the power spectra of both measurements can generally be characterized by a power law. In the case of density irregularities, the spectral index with the highest occurrence rate is around 1.7, which is consistent with previous studies. Also, all the power spectra of GPS signal intensity in this study show a single spectral index near 2. Moreover, roll-off frequencies estimated in this work range from 0.4 to 2.5 Hz, which is significantly higher than Fresnel frequencies calculated from ground GPS receivers at low latitudes (between 0.2 and 0.45 Hz). Part of this increase is due to the 8 km/s orbital velocity of Swarm Echo near perigee. Another key difference is that variations in the GPS signals in this study are dominated by the topside ionosphere, whereas GPS signals received from ground are affected mostly by the relatively dense F-region plasma in the 250-350 km altitudinal range.
低纬度电离层密度结构的大小从数千公里到几米不等。射频(RF)信号,例如来自全球导航卫星系统的信号,在不规则结构中传播时会受到相位和强度快速波动的影响,即所谓的闪烁。在这项研究中,我们利用蜂群回波(CASSIOPE/e-POP)卫星的全球定位系统掩星(GAP-O)接收器在其天线重新定向为垂直指向后进行的高采样率测量,同时利用 e-POP 离子质谱仪的表面电流观测作为等离子体密度的替代指标,获得了全球定位系统信号强度和高度为 350 至 1280 千米的原地不规则现象的频谱特征。我们的研究表明,这两种测量结果的功率谱一般都可以用幂律来描述。就密度不规则而言,出现率最高的频谱指数约为 1.7,这与之前的研究结果一致。此外,本研究中 GPS 信号强度的所有功率谱都显示出接近 2 的单一谱指数。此外,本研究估计的滚降频率在 0.4 至 2.5 赫兹之间,明显高于低纬度地面 GPS 接收器计算的菲涅尔频率(0.2 至 0.45 赫兹)。频率增加的部分原因是 Swarm Echo 在近地点附近的轨道速度为每秒 8 公里。另一个主要区别是,本研究中 GPS 信号的变化主要受顶部电离层的影响,而从地面接收的 GPS 信号主要受 250-350 公里高度范围内相对密集的 F 区等离子体的影响。
{"title":"Power spectral characteristics of in-situ irregularities and topside GPS signal intensity at low latitudes using high-sample-rate swarm echo (e-POP) measurements","authors":"Ali Mohandesi;David J. Knudsen;Susan Skone;Richard B. Langley;Andrew W. Yau","doi":"10.1029/2023RS007885","DOIUrl":"10.1029/2023RS007885","url":null,"abstract":"Ionospheric density structures at low latitudes range in size from thousands of kilometers down to a few meters. Radio frequency (RF) signals, such as those from global navigation satellite systems, that propagate through irregularities suffer from rapid fluctuations in phase and intensity, known as scintillations. In this study, we use the high-sample-rate measurements of the Swarm Echo (CASSIOPE/e-POP) satellite's GPS Occultation (GAP-O) receiver taken after its antenna was re-oriented to vertical-pointing, simultaneously with e-POP Ion Mass Spectrometer surface current observations as a proxy for plasma density, to obtain the spectral characteristics of GPS signal intensity and in-situ irregularities at altitudes from 350 to 1,280 km. We show that the power spectra of both measurements can generally be characterized by a power law. In the case of density irregularities, the spectral index with the highest occurrence rate is around 1.7, which is consistent with previous studies. Also, all the power spectra of GPS signal intensity in this study show a single spectral index near 2. Moreover, roll-off frequencies estimated in this work range from 0.4 to 2.5 Hz, which is significantly higher than Fresnel frequencies calculated from ground GPS receivers at low latitudes (between 0.2 and 0.45 Hz). Part of this increase is due to the 8 km/s orbital velocity of Swarm Echo near perigee. Another key difference is that variations in the GPS signals in this study are dominated by the topside ionosphere, whereas GPS signals received from ground are affected mostly by the relatively dense F-region plasma in the 250-350 km altitudinal range.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavelet Analysis of Differential TEC Measurements Obtained Using LOFAR 利用 LOFAR 获取的 TEC 差分测量结果的小波分析
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-30 DOI: 10.1029/2023rs007871
Ben Boyde, Alan Wood, G. Dorrian, Frits Sweijen, Francesco de Gasperin, Maaijke Mevius, Kasia Beser, David Themens
Radio interferometers used to make astronomical observations, such as the LOw Frequency ARray (LOFAR), experience distortions imposed upon the received signal due to the ionosphere as well as those from instrumental errors. Calibration using a well‐characterized radio source can be used to mitigate these effects and produce more accurate images of astronomical sources, and the calibration process provides measurements of ionospheric conditions over a wide range of length scales. The basic ionospheric measurement this provides is differential Total Electron Content (TEC, the integral of electron density along the line of sight). Differential TEC measurements made using LOFAR have a precision of <1 mTECu and therefore enable investigation of ionospheric disturbances which may be undetectable to many other methods. We demonstrate an approach to identify ionospheric waves from these data using a wavelet transform and a simple plane wave model. The noise spectra are robustly characterized to provide uncertainty estimates for the fitted parameters. An example is shown in which this method identifies a wave with an amplitude an order of magnitude below those reported using Global Navigation Systems Satellite TEC measurements. Artificially generated data are used to test the accuracy of the method and establish the range of wavelengths which can be detected using this method with LOFAR data. This technique will enable the use of a large and mostly unexplored data set to study traveling ionospheric disturbances over Europe.
用于进行天文观测的无线电干涉仪,如低频雷达(LOFAR),会受到电离层以及仪器误差对接收信号造成的失真影响。使用特性良好的射电源进行校准可减轻这些影响,并生成更精确的天文源图像,校准过程可提供大范围长度尺度的电离层状况测量结果。它提供的基本电离层测量方法是差分电子总含量(TEC,电子密度沿视线方向的积分)。利用 LOFAR 进行的差分 TEC 测量精度小于 1 mTECu,因此能够调查许多其他方法可能无法检测到的电离层扰动。我们展示了一种利用小波变换和简单平面波模型从这些数据中识别电离层波的方法。对噪声频谱进行了稳健表征,以提供拟合参数的不确定性估计。举例说明了这种方法识别出的电离层波的振幅比全球导航系统卫星 TEC 测量报告的振幅低一个数量级。使用人工生成的数据来测试该方法的准确性,并确定使用该方法和 LOFAR 数据可以探测到的波长范围。这项技术将使人们能够利用大量大部分尚未开发的数据集来研究欧洲上空的行进电离层扰动。
{"title":"Wavelet Analysis of Differential TEC Measurements Obtained Using LOFAR","authors":"Ben Boyde, Alan Wood, G. Dorrian, Frits Sweijen, Francesco de Gasperin, Maaijke Mevius, Kasia Beser, David Themens","doi":"10.1029/2023rs007871","DOIUrl":"https://doi.org/10.1029/2023rs007871","url":null,"abstract":"Radio interferometers used to make astronomical observations, such as the LOw Frequency ARray (LOFAR), experience distortions imposed upon the received signal due to the ionosphere as well as those from instrumental errors. Calibration using a well‐characterized radio source can be used to mitigate these effects and produce more accurate images of astronomical sources, and the calibration process provides measurements of ionospheric conditions over a wide range of length scales. The basic ionospheric measurement this provides is differential Total Electron Content (TEC, the integral of electron density along the line of sight). Differential TEC measurements made using LOFAR have a precision of <1 mTECu and therefore enable investigation of ionospheric disturbances which may be undetectable to many other methods. We demonstrate an approach to identify ionospheric waves from these data using a wavelet transform and a simple plane wave model. The noise spectra are robustly characterized to provide uncertainty estimates for the fitted parameters. An example is shown in which this method identifies a wave with an amplitude an order of magnitude below those reported using Global Navigation Systems Satellite TEC measurements. Artificially generated data are used to test the accuracy of the method and establish the range of wavelengths which can be detected using this method with LOFAR data. This technique will enable the use of a large and mostly unexplored data set to study traveling ionospheric disturbances over Europe.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140364463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D-CDA: A denoise and change detection approach for flood disaster location from SAR images D-CDA:利用合成孔径雷达图像进行洪水灾害定位的去噪和变化检测方法
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-30 DOI: 10.1029/2023RS007846
Runbo Xie;Guang Yang;Yuping Zhang;Dongzhe Han;Meng Huang;Shuai Liu;Wangze Lu
Floods are among the most devastating natural disasters worldwide. Such disasters are often accompanied by strong precipitation and other weather factors, making it more difficult to identify affected areas. Moreover, synthetic aperture radar (SAR) technology can capture images in a 24-hr window and penetrate clouds and fog. Change detection (CD) technology based on SAR images is generally utilized to locate disaster-stricken areas by analyzing the differences between pre- and post-disaster images. However, this method faces two main challenges: the presence of speckle noise, which reduces the difference detection accuracy, and the lack of a suitable SAR data set for flood disaster CD. Therefore, this study proposes a novel two-stage approach for locating flood disaster areas, known as the denoising-change detection approach (D-CDA). The first stage comprises a nine-layer denoising network with an encoder-decoder structure known as the SAR denoising network (SDNet). It utilizes a multiresidual block and a parallel convolutional block attention module to extract features during the encoding process to suppress the noise component. In the second stage, a novel convolution neural network is proposed to detect the changes between bitemporal SAR images, namely, the coordinate attention fused network, which combines the siamese network and UNet++ as the backbone, and fuses coordinate attention modules to enhance the change features. Moreover, a CD data set (Zhengzhou flood data set) was constructed using Sentinel-1 SAR images based on the 2021 flood disaster in Zhengzhou, China. Simulations verify the effectiveness of the proposed method. The experimental results indicate that D-CDA achieves favorable detection performance in locating flood disaster areas.
洪水是全世界最具破坏性的自然灾害之一。这种灾害往往伴随着强降水和其他天气因素,使得确定受灾地区变得更加困难。此外,合成孔径雷达(SAR)技术可在 24 小时内捕捉图像,并能穿透云雾。基于合成孔径雷达图像的变化检测(CD)技术通常通过分析灾前和灾后图像之间的差异来定位受灾地区。然而,这种方法面临两个主要挑战:斑点噪声的存在降低了差异检测的准确性,以及缺乏适用于洪水灾害变化检测的合成孔径雷达数据集。因此,本研究提出了一种新颖的两阶段洪水灾害区域定位方法,即去噪变化检测方法(D-CDA)。第一阶段包括一个具有编码器-解码器结构的九层去噪网络,称为合成孔径雷达去噪网络(SDNet)。它利用多残差块和并行卷积块注意模块,在编码过程中提取特征,以抑制噪声成分。在第二阶段,提出了一种新型卷积神经网络来检测位时 SAR 图像之间的变化,即坐标注意融合网络,它以连体网络和 UNet++ 为骨干,融合坐标注意模块来增强变化特征。此外,基于 2021 年中国郑州洪水灾害,利用 Sentinel-1 SAR 图像构建了 CD 数据集(郑州洪水数据集)。仿真验证了所提方法的有效性。实验结果表明,D-CDA 在洪水灾害区域定位方面具有良好的检测性能。
{"title":"D-CDA: A denoise and change detection approach for flood disaster location from SAR images","authors":"Runbo Xie;Guang Yang;Yuping Zhang;Dongzhe Han;Meng Huang;Shuai Liu;Wangze Lu","doi":"10.1029/2023RS007846","DOIUrl":"https://doi.org/10.1029/2023RS007846","url":null,"abstract":"Floods are among the most devastating natural disasters worldwide. Such disasters are often accompanied by strong precipitation and other weather factors, making it more difficult to identify affected areas. Moreover, synthetic aperture radar (SAR) technology can capture images in a 24-hr window and penetrate clouds and fog. Change detection (CD) technology based on SAR images is generally utilized to locate disaster-stricken areas by analyzing the differences between pre- and post-disaster images. However, this method faces two main challenges: the presence of speckle noise, which reduces the difference detection accuracy, and the lack of a suitable SAR data set for flood disaster CD. Therefore, this study proposes a novel two-stage approach for locating flood disaster areas, known as the denoising-change detection approach (D-CDA). The first stage comprises a nine-layer denoising network with an encoder-decoder structure known as the SAR denoising network (SDNet). It utilizes a multiresidual block and a parallel convolutional block attention module to extract features during the encoding process to suppress the noise component. In the second stage, a novel convolution neural network is proposed to detect the changes between bitemporal SAR images, namely, the coordinate attention fused network, which combines the siamese network and UNet++ as the backbone, and fuses coordinate attention modules to enhance the change features. Moreover, a CD data set (Zhengzhou flood data set) was constructed using Sentinel-1 SAR images based on the 2021 flood disaster in Zhengzhou, China. Simulations verify the effectiveness of the proposed method. The experimental results indicate that D-CDA achieves favorable detection performance in locating flood disaster areas.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Polarization Gain Calibration of Linearly Polarized VLBI Antennas by Observations of 4C 39.25 通过观测 4C 39.25 校准线性极化 VLBI 天线的跨极化增益
IF 1.6 4区 地球科学 Q2 Earth and Planetary Sciences Pub Date : 2024-03-28 DOI: 10.1029/2023rs007892
F. Jaron, I. Martí-Vidal, M. Schartner, J. González-García, E. Albentosa-Ruiz, S. Bernhart, J. Böhm, J. Gruber, S. Modiri, A. Nothnagel, V. Pérez-Díez, T. Savolainen, B. Soja, E. Varenius, M. H. Xu
Radio telescopes with dual linearly polarized feeds regularly participate in Very Long Baseline Interferometry. One example is the VLBI Global Observing System (VGOS), which is employed for high-precision geodesy and astrometry. In order to achieve the maximum signal-to-noise ratio, the visibilities of all four polarization products are combined to Stokes I before fringe-fitting. Our aim is to improve cross-polarization bandpass calibration, which is an essential processing step in this context. Here we investigate the shapes of these station-specific quantities as a function of frequency and time. We observed the extra-galactic source 4C 39.25 for 6 hours with a VGOS network. We correlated the data with the DiFX software and analyzed the visibilities with PolConvert to determine the complex cross-bandpasses with high accuracy. Their frequency-dependent shape is to first order characterized by a group delay between the two orthogonal polarizations, in the order of several hundred picoseconds. We find that this group delay shows systematic variability in the range of a few picoseconds, but can remain stable within this range for several years, as evident from earlier sessions. On top of the linear phase-frequency relationship there are systematic deviations of several tens of degrees, which in addition are subject to smooth temporal evolution. The antenna cross-bandpasses are variable on time scales of ∼1 hr, which defines the frequency of necessary calibrator scans. The source 4C 39.25 is confirmed as an excellent cross-bandpass calibrator. Dedicated surveys are highly encouraged to search for more calibrators of similar quality.
具有双线性偏振馈源的射电望远镜经常参与甚长基线干涉测量。其中一个例子是用于高精度大地测量和天体测量的 VLBI 全球观测系统(VGOS)。为了获得最大信噪比,在进行边缘拟合之前,所有四个偏振产品的可见度都要合并为斯托克斯 I。我们的目的是改进交叉偏振带通校准,这是这方面的一个重要处理步骤。在这里,我们研究了这些观测站特定量随频率和时间变化的形状。我们利用 VGOS 网络对银河系外源 4C 39.25 进行了 6 小时的观测。我们用 DiFX 软件对数据进行了关联,并用 PolConvert 对可见度进行了分析,从而高精度地确定了复杂的交叉带通。其频率相关形状的一阶特征是两个正交偏振之间的群延迟,大约为几百皮秒。我们发现,这个群延迟在几皮秒的范围内显示出系统性的变化,但可以在这个范围内保持稳定数年,这一点从之前的会议中可以明显看出。在线性相位-频率关系之外,还存在几十度的系统偏差,此外,这些偏差还受平稳的时间演变影响。天线跨带通在 1 小时的时间尺度上是可变的,这就决定了必要的校准扫描频率。源 4C 39.25 被证实是一个极好的交叉带通校准器。强烈建议进行专门的勘测,以寻找更多类似质量的校准器。
{"title":"Cross-Polarization Gain Calibration of Linearly Polarized VLBI Antennas by Observations of 4C 39.25","authors":"F. Jaron, I. Martí-Vidal, M. Schartner, J. González-García, E. Albentosa-Ruiz, S. Bernhart, J. Böhm, J. Gruber, S. Modiri, A. Nothnagel, V. Pérez-Díez, T. Savolainen, B. Soja, E. Varenius, M. H. Xu","doi":"10.1029/2023rs007892","DOIUrl":"https://doi.org/10.1029/2023rs007892","url":null,"abstract":"Radio telescopes with dual linearly polarized feeds regularly participate in Very Long Baseline Interferometry. One example is the VLBI Global Observing System (VGOS), which is employed for high-precision geodesy and astrometry. In order to achieve the maximum signal-to-noise ratio, the visibilities of all four polarization products are combined to Stokes <i>I</i> before fringe-fitting. Our aim is to improve cross-polarization bandpass calibration, which is an essential processing step in this context. Here we investigate the shapes of these station-specific quantities as a function of frequency and time. We observed the extra-galactic source 4C 39.25 for 6 hours with a VGOS network. We correlated the data with the DiFX software and analyzed the visibilities with PolConvert to determine the complex cross-bandpasses with high accuracy. Their frequency-dependent shape is to first order characterized by a group delay between the two orthogonal polarizations, in the order of several hundred picoseconds. We find that this group delay shows systematic variability in the range of a few picoseconds, but can remain stable within this range for several years, as evident from earlier sessions. On top of the linear phase-frequency relationship there are systematic deviations of several tens of degrees, which in addition are subject to smooth temporal evolution. The antenna cross-bandpasses are variable on time scales of ∼1 hr, which defines the frequency of necessary calibrator scans. The source 4C 39.25 is confirmed as an excellent cross-bandpass calibrator. Dedicated surveys are highly encouraged to search for more calibrators of similar quality.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Radio Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1