首页 > 最新文献

Radio Science最新文献

英文 中文
Front matters 前方事项
IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-01 DOI: 10.1002/rds.21245
{"title":"Front matters","authors":"","doi":"10.1002/rds.21245","DOIUrl":"https://doi.org/10.1002/rds.21245","url":null,"abstract":"","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 9","pages":"1-2"},"PeriodicalIF":1.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation and analysis of anomalous terrestrial diffraction as a mechanism of electromagnetic precursors of earthquakes 作为地震电磁前兆机制的异常地面衍射观测与分析
IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-01 DOI: 10.1029/2023RS007888
Masafumi Fujii
Detection of earthquake precursors has long been a controversial issue with regard to its possibility and realizability. Here we present the detection of electromagnetic anomalous signals before large earthquakes using an observation network of very high frequency radio wave receivers close to major tectonic lines in Japan. The receivers are equipped with specifically designed narrowband filters to suppress noises and to detect extremely weak signals. We detected different types of electromagnetic anomalies before earthquakes around mountainous and coastal regions, where presence of electric charges is anticipated on the surface located in the middle of the radio wave paths near major tectonic lines in Japan. We use numerical electromagnetic wave analysis to show that when electric charges are present on a ground surface as a consequence of tectonic activity, the surface charges interact strongly with radio waves and eventually cause strong diffraction of the radio waves. The analysis was performed using the three-dimensional finite-difference time-domain method with digital elevation models of the actual geographical landforms on a massively parallel supercomputer. The results confirm the consistent mechanisms of the electromagnetic precursors, which explains the anomalous electromagnetic signals observed by the authors before large earthquakes.
长期以来,地震前兆探测在可能性和可实现性方面一直存在争议。在此,我们介绍了利用日本主要构造线附近的甚高频无线电波接收器观测网络探测大地震前的电磁异常信号的情况。这些接收器配备了专门设计的窄带滤波器,以抑制噪声和探测极弱信号。我们在山区和沿海地区地震前探测到了不同类型的电磁异常现象,这些异常现象位于日本主要构造线附近无线电波路径中间的地表,预计会有电荷存在。我们利用数值电磁波分析表明,当构造活动导致地表出现电荷时,地表电荷会与无线电波产生强烈的相互作用,最终导致无线电波的强烈衍射。该分析采用三维有限差分时域法,在大型并行超级计算机上利用实际地理地貌的数字高程模型进行。结果证实了电磁前兆的一致机制,这也解释了作者在大地震前观测到的异常电磁信号。
{"title":"Observation and analysis of anomalous terrestrial diffraction as a mechanism of electromagnetic precursors of earthquakes","authors":"Masafumi Fujii","doi":"10.1029/2023RS007888","DOIUrl":"https://doi.org/10.1029/2023RS007888","url":null,"abstract":"Detection of earthquake precursors has long been a controversial issue with regard to its possibility and realizability. Here we present the detection of electromagnetic anomalous signals before large earthquakes using an observation network of very high frequency radio wave receivers close to major tectonic lines in Japan. The receivers are equipped with specifically designed narrowband filters to suppress noises and to detect extremely weak signals. We detected different types of electromagnetic anomalies before earthquakes around mountainous and coastal regions, where presence of electric charges is anticipated on the surface located in the middle of the radio wave paths near major tectonic lines in Japan. We use numerical electromagnetic wave analysis to show that when electric charges are present on a ground surface as a consequence of tectonic activity, the surface charges interact strongly with radio waves and eventually cause strong diffraction of the radio waves. The analysis was performed using the three-dimensional finite-difference time-domain method with digital elevation models of the actual geographical landforms on a massively parallel supercomputer. The results confirm the consistent mechanisms of the electromagnetic precursors, which explains the anomalous electromagnetic signals observed by the authors before large earthquakes.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 9","pages":"1-18"},"PeriodicalIF":1.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Satellite onboard transmitter design with spread spectrum MIMO antenna for 5G wireless networks 采用扩频多输入多输出天线的 5G 无线网络卫星星载发射机设计
IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-01 DOI: 10.1029/2024RS007958
Ravandran Muttiah
The 5G new era implements standalone satellite communications that support wireless networking systems for future mobile communications by locating multiple satellites in low Earth orbit to provide global coverage of the entire Earth's surface. In this research, a newly found model of a satellite onboard transmitter using a uniform circular array multiple-input multiple-output antenna was designed to operate at a carrier frequency of 12 GHz and derived theoretical equations compared to the real-time scenario. The integration of spread spectrum with multiple-input multiple-output antenna provides an advantage for higher capacity. It has a higher percentage of gain amplification on improving the transmission of electromagnetic power to meet the bandwidth requirement of center operating frequency, and this can transmit over a bandwidth of 1.28 GHz. The proposed satellite onboard transmitter model design aims to minimize the components, increase the speed of operations for higher bandwidth, and transmit large amounts of information to a large group of users. The transmitter can operate for the speed of 1.28 Gbps using pseudo-random code, direct-sequence spread spectrum, quadrature phase shift keying modulation, bandwidth separated in bands for 64 symbols using 128 Chebyshev-type bandpass filter for transmission using 128-element uniform circular array multiple-input multiple-output antenna. The satellite transmitter antenna produces a maximum gain of 14.526 dBi, and a maximum directivity of 17.986 dBi, and the efficiency at 12 GHz is 45.1% for the radiated power at 0.93 mW. This satellite transmitter will interconnect 5G wireless networks for the application of mobile communications complement terrestrial-dependent networks.
5G 新时代实现了独立卫星通信,通过在低地球轨道上定位多颗卫星来提供对整个地球表面的全球覆盖,从而支持未来移动通信的无线网络系统。在这项研究中,设计了一种新发现的卫星星载发射机模型,该模型采用了均匀圆阵多输入多输出天线,工作在 12 GHz 的载波频率上,并推导出了与实时场景相比较的理论方程。扩频与多输入多输出天线的整合为更高的容量提供了优势。它在提高电磁功率传输方面具有更高的增益放大比例,以满足中心工作频率的带宽要求,可在 1.28 GHz 的带宽上进行传输。所提出的卫星星载发射机模型设计旨在最大限度地减少组件,提高更高带宽的运行速度,并向大量用户传输大量信息。该发射机采用伪随机码、直接序列扩频、正交相移键控调制,使用 128 元均匀圆阵多输入多输出天线,利用 128 切比雪夫型带通滤波器将带宽分隔为 64 个符号,传输速度可达 1.28 Gbps。卫星发射器天线的最大增益为 14.526 dBi,最大指向性为 17.986 dBi,在 12 GHz 频率下的效率为 45.1%,辐射功率为 0.93 mW。该卫星发射机将实现 5G 无线网络的互联互通,为移动通信应用补充依赖地面的网络。
{"title":"Satellite onboard transmitter design with spread spectrum MIMO antenna for 5G wireless networks","authors":"Ravandran Muttiah","doi":"10.1029/2024RS007958","DOIUrl":"https://doi.org/10.1029/2024RS007958","url":null,"abstract":"The 5G new era implements standalone satellite communications that support wireless networking systems for future mobile communications by locating multiple satellites in low Earth orbit to provide global coverage of the entire Earth's surface. In this research, a newly found model of a satellite onboard transmitter using a uniform circular array multiple-input multiple-output antenna was designed to operate at a carrier frequency of 12 GHz and derived theoretical equations compared to the real-time scenario. The integration of spread spectrum with multiple-input multiple-output antenna provides an advantage for higher capacity. It has a higher percentage of gain amplification on improving the transmission of electromagnetic power to meet the bandwidth requirement of center operating frequency, and this can transmit over a bandwidth of 1.28 GHz. The proposed satellite onboard transmitter model design aims to minimize the components, increase the speed of operations for higher bandwidth, and transmit large amounts of information to a large group of users. The transmitter can operate for the speed of 1.28 Gbps using pseudo-random code, direct-sequence spread spectrum, quadrature phase shift keying modulation, bandwidth separated in bands for 64 symbols using 128 Chebyshev-type bandpass filter for transmission using 128-element uniform circular array multiple-input multiple-output antenna. The satellite transmitter antenna produces a maximum gain of 14.526 dBi, and a maximum directivity of 17.986 dBi, and the efficiency at 12 GHz is 45.1% for the radiated power at 0.93 mW. This satellite transmitter will interconnect 5G wireless networks for the application of mobile communications complement terrestrial-dependent networks.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 9","pages":"1-20"},"PeriodicalIF":1.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low latitude ionospheric irregularity observations across a wide frequency spectrum from VHF to S-band in the Indian longitudes 在印度经度地区从甚高频到 S 波段的宽频谱范围内进行低纬度电离层不规则性观测
IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 DOI: 10.1029/2023RS007928
A. Paul;A. Das;T. Biswas;T. Das;P. Nandakumar
This study reports coordinated observation of ionospheric irregularities from VHF Radar, GPS and IRNSS (Indian Regional Navigation Satellite System), from regions near the northern crest of the EIA (Equatorial Ionization Anomaly), which has not been explored earlier. Efforts have been made to study the signal-in-space environment for concurrent detection of ionospheric irregularities over a range of radio frequency, starting from 53 MHz of the Radar, to L-band of GPS at 1,575.42 MHz and S band signal of IRNSS at 2,492.5 MHz. The radar is operational at Ionosphere Field Station, Haringhata (geographic latitude 22.93°N; geographic longitude 88.5I°E; magnetic dip angle 36.2°N) of University of Calcutta. The GPS and IRNSS data are recorded at Calcutta (22.58°N, 88.38°E geographic; magnetic dip: 36°N), separated from Haringhata by 50 km. The spatial as well as temporal variations of irregularities affecting different radio frequencies have been presented. Coordinated observations have been made during period of March-April 2023. Results of the study reveal the common zone of impact of the different radio frequency links spanning from 53 to 2,592.5 MHz and was identified within I6°–25°N, 85°–90°E. During coordinated observations made over several days, irregularity structures have been observed with radar, having backscatter SNR (Signal to Noise ratio) intensity within — 5 to 15 dB. During this time, while intense L band scintillation was recorded on multiple satellites of GPS, scintillation recorded at S band signal was moderate to intense.
本研究报告了从甚高频雷达、全球定位系统和 IRNSS(印度区域导航卫星系 统)对电离层不规则现象进行的协调观测,观测地点位于赤道电离异常北部峰顶 附近的区域,此前未对该区域进行过探索。已努力研究空间信号环境,以便同时探测从雷达 53 兆赫到全球定位系统 L 波段 1,575.42 兆赫和 IRNSS S 波段 2,492.5 兆赫的无线电频率范围内的电离层不规则情况。雷达在加尔各答大学哈林哈塔电离层场站(地理纬度 22.93°N;地理经度 88.5I°E;磁倾角 36.2°N)运行。全球定位系统和 IRNSS 数据记录在加尔各答(地理纬度 22.58°N,88.38°E;磁倾角 36°N),与哈林哈塔相距 50 公里。介绍了影响不同无线电频率的不规则现象的空间和时间变化。在 2023 年 3 月至 4 月期间进行了协调观测。研究结果表明,不同无线电频率链路的共同影响区跨越 53 至 2,592.5 兆赫,位于北纬 I6°-25°,东经 85°-90°。在几天的协调观测中,雷达观测到了不规则结构,其反向散射 SNR(信噪比)强度在 - 5 至 15 dB 之间。在此期间,虽然全球定位系统的多颗卫星记录到强烈的 L 波段闪烁,但 S 波段信号记录到的闪烁强度为中等至强烈。
{"title":"Low latitude ionospheric irregularity observations across a wide frequency spectrum from VHF to S-band in the Indian longitudes","authors":"A. Paul;A. Das;T. Biswas;T. Das;P. Nandakumar","doi":"10.1029/2023RS007928","DOIUrl":"https://doi.org/10.1029/2023RS007928","url":null,"abstract":"This study reports coordinated observation of ionospheric irregularities from VHF Radar, GPS and IRNSS (Indian Regional Navigation Satellite System), from regions near the northern crest of the EIA (Equatorial Ionization Anomaly), which has not been explored earlier. Efforts have been made to study the signal-in-space environment for concurrent detection of ionospheric irregularities over a range of radio frequency, starting from 53 MHz of the Radar, to L-band of GPS at 1,575.42 MHz and S band signal of IRNSS at 2,492.5 MHz. The radar is operational at Ionosphere Field Station, Haringhata (geographic latitude 22.93°N; geographic longitude 88.5I°E; magnetic dip angle 36.2°N) of University of Calcutta. The GPS and IRNSS data are recorded at Calcutta (22.58°N, 88.38°E geographic; magnetic dip: 36°N), separated from Haringhata by 50 km. The spatial as well as temporal variations of irregularities affecting different radio frequencies have been presented. Coordinated observations have been made during period of March-April 2023. Results of the study reveal the common zone of impact of the different radio frequency links spanning from 53 to 2,592.5 MHz and was identified within I6°–25°N, 85°–90°E. During coordinated observations made over several days, irregularity structures have been observed with radar, having backscatter SNR (Signal to Noise ratio) intensity within — 5 to 15 dB. During this time, while intense L band scintillation was recorded on multiple satellites of GPS, scintillation recorded at S band signal was moderate to intense.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-9"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesosphere and lower thermosphere wind perturbations due to the 2022 Hunga Tonga-Hunga Ha'apai eruption as observed by multistatic specular meteor radars 多静态镜面流星雷达观测到的 2022 年 Hunga Tonga-Hunga Ha'apai 火山喷发造成的中间层和低温层风扰动
IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 DOI: 10.1029/2024RS008013
Jorge L. Chau;Facundo L. Poblet;Hanli Liu;Alan Liu;Njål Gulbrandsen;Christoph Jacobi;Rodolfo R. Rodriguez;Danny Scipion;Masaki Tsutsumi
Utilizing multistatic specular meteor radar (MSMR) observations, this study delves into global aspects of wind perturbations in the mesosphere and lower thermosphere (MLT) from the unprecedented 2022 eruption of the Hunga Tonga-Hunga Ha'apai (HTHH) submarine volcano. The combination of MSMR observations from different viewing angles over South America and Europe, and the decomposition of the horizontal wind in components along and transversal to the HTHH eruption's epicenter direction allow an unambiguous detection and identification of MLT perturbations related to the eruption. The performance of this decomposition is evaluated using Whole Atmosphere Community Climate Model with thermosphere/ ionosphere extension (WACCM-X) simulations of the event. The approach shows that indeed the HTHH eruption signals are clearly identified, and other signals can be easily discarded. The winds in this decomposition display dominant Eastward soliton-like perturbations observed as far as 25,000 km from HTHH, and propagating at 242 m/s. A weaker perturbation observed only over Europe propagates faster (but slower than 300 m/s) in the Westward direction. These results suggest that we might be observing the so-called Pekeris mode, also consistent with the L1 pseudomode, reproduced by WACCM-X simulations at MLT altitudes. They also rule out the previous hypothesis connecting the observations in South America to the Tsunami associated with the eruption because these perturbations are observed over Europe as well. Despite the progress, the L0 pseudomode in the MLT reproduced by WACCM-X remains elusive to observations.
本研究利用多静态镜面流星雷达(MSMR)观测数据,深入研究了 2022 年洪加汤加-洪加哈帕伊(HTHH)海底火山史无前例的喷发对中间层和低温层(MLT)风扰动的全球影响。结合南美洲和欧洲上空不同观测角度的 MSMR 观测数据,并将水平风分解为 HTHH 火山喷发震中方向沿线和横向的分量,可以明确探测和识别与火山喷发有关的 MLT 扰动。利用热层/电离层扩展的全大气层群气候模式(WACCM-X)对该事件进行了模拟,评估了这种分解方法的性能。结果表明,HTHH 火山喷发信号确实被清晰地识别出来,而其他信号则很容易被剔除。在这种分解中,风以 242 米/秒的速度向东传播,在距离 HTHH 25,000 公里处观测到了主要的孤子状扰动。仅在欧洲上空观测到的一个较弱的扰动以每秒 300 米的速度向西传播。这些结果表明,我们观测到的可能是所谓的 Pekeris 模式,它也与 L1 伪模式一致,由 WACCM-X 模拟在 MLT 高度再现。它们还排除了之前将南美洲的观测结果与喷发引起的海啸联系起来的假设,因为在欧洲上空也观测到了这些扰动。尽管取得了进展,但 WACCM-X 在 MLT 中再现的 L0 伪模式仍然难以观测到。
{"title":"Mesosphere and lower thermosphere wind perturbations due to the 2022 Hunga Tonga-Hunga Ha'apai eruption as observed by multistatic specular meteor radars","authors":"Jorge L. Chau;Facundo L. Poblet;Hanli Liu;Alan Liu;Njål Gulbrandsen;Christoph Jacobi;Rodolfo R. Rodriguez;Danny Scipion;Masaki Tsutsumi","doi":"10.1029/2024RS008013","DOIUrl":"https://doi.org/10.1029/2024RS008013","url":null,"abstract":"Utilizing multistatic specular meteor radar (MSMR) observations, this study delves into global aspects of wind perturbations in the mesosphere and lower thermosphere (MLT) from the unprecedented 2022 eruption of the Hunga Tonga-Hunga Ha'apai (HTHH) submarine volcano. The combination of MSMR observations from different viewing angles over South America and Europe, and the decomposition of the horizontal wind in components along and transversal to the HTHH eruption's epicenter direction allow an unambiguous detection and identification of MLT perturbations related to the eruption. The performance of this decomposition is evaluated using Whole Atmosphere Community Climate Model with thermosphere/ ionosphere extension (WACCM-X) simulations of the event. The approach shows that indeed the HTHH eruption signals are clearly identified, and other signals can be easily discarded. The winds in this decomposition display dominant Eastward soliton-like perturbations observed as far as 25,000 km from HTHH, and propagating at 242 m/s. A weaker perturbation observed only over Europe propagates faster (but slower than 300 m/s) in the Westward direction. These results suggest that we might be observing the so-called Pekeris mode, also consistent with the L\u0000<inf>1</inf>\u0000 pseudomode, reproduced by WACCM-X simulations at MLT altitudes. They also rule out the previous hypothesis connecting the observations in South America to the Tsunami associated with the eruption because these perturbations are observed over Europe as well. Despite the progress, the L\u0000<inf>0</inf>\u0000 pseudomode in the MLT reproduced by WACCM-X remains elusive to observations.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-14"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A prototype of a 900 MHz band integrated rectenna by using a planar monopole antenna with feeder 使用带馈线的平面单极子天线的 900 MHz 波段集成整流天线原型
IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 DOI: 10.1029/2024RS008022
N. Nakashima;T. Sumiyoshi
a rectenna designed for wireless power transfer at 900 MHz focuses on conjugate impedance matching and image impedance matching for improved efficiency. To do them, a voltage doubler rectifier circuit (VD) and a planar monopole antenna (PMA) were engineered with the same pure resistance value and integrated into the rectenna. The input impedance of the VD with 30 Ω load resistance indicated a pure resistance of approximately 73 Ω. This value closely matches the input impedance of a dipole antenna operating as a pure resistor. Since the prototype rectifier circuit is unbalanced, the authors constructed a PMA, an unbalanced antenna similar to a dipole antenna, on a double-sided circuit board. In this setup, a microstrip line was created by extending the radiating element, achieving the impedance matchings. Measurements indicated a voltage standing wave ratio of approximately 1.03. A rectenna efficiency of 37.4% was observed for a transmission distance of 50 cm. The rectification efficiency of the VD is nearly 0% when the input power is less than — 20 dBm, and the received power of the PMA is less than — 20 dBm when the transmission distance is 60 cm or more. It is predicted that the rectenna efficiency will be 0% when the transmission distance is 60 cm or more. However, the rectenna efficiency was 24.6% when the transmission distance was 60 cm. This over 20% improvement is due to the connection between the PMA and the VD using pure resistance.
一种为 900 MHz 无线功率传输而设计的整流天线侧重于共轭阻抗匹配和图像阻抗匹配,以提高效率。为此,设计了一个电压倍增器整流电路(VD)和一个平面单极天线(PMA),它们具有相同的纯电阻值,并集成到整流天线中。负载电阻为 30 Ω 的电压倍增器的输入阻抗显示,纯电阻值约为 73 Ω。由于原型整流电路是不平衡的,因此作者在双面电路板上构建了一个 PMA(一种与偶极子天线类似的不平衡天线)。在这个装置中,通过延长辐射元件创建了一条微带线,从而实现了阻抗匹配。测量结果表明,电压驻波比约为 1.03。在传输距离为 50 厘米时,整流天线效率为 37.4%。当输入功率小于 - 20 dBm 时,VD 的整流效率接近 0%;当传输距离大于等于 60 厘米时,PMA 的接收功率小于 - 20 dBm。据预测,当传输距离为 60 厘米或以上时,整流天线效率将为 0%。然而,当传输距离为 60 厘米时,整流天线效率为 24.6%。之所以能提高 20% 以上,是因为 PMA 与 VD 之间的连接使用了纯电阻。
{"title":"A prototype of a 900 MHz band integrated rectenna by using a planar monopole antenna with feeder","authors":"N. Nakashima;T. Sumiyoshi","doi":"10.1029/2024RS008022","DOIUrl":"https://doi.org/10.1029/2024RS008022","url":null,"abstract":"a rectenna designed for wireless power transfer at 900 MHz focuses on conjugate impedance matching and image impedance matching for improved efficiency. To do them, a voltage doubler rectifier circuit (VD) and a planar monopole antenna (PMA) were engineered with the same pure resistance value and integrated into the rectenna. The input impedance of the VD with 30 Ω load resistance indicated a pure resistance of approximately 73 Ω. This value closely matches the input impedance of a dipole antenna operating as a pure resistor. Since the prototype rectifier circuit is unbalanced, the authors constructed a PMA, an unbalanced antenna similar to a dipole antenna, on a double-sided circuit board. In this setup, a microstrip line was created by extending the radiating element, achieving the impedance matchings. Measurements indicated a voltage standing wave ratio of approximately 1.03. A rectenna efficiency of 37.4% was observed for a transmission distance of 50 cm. The rectification efficiency of the VD is nearly 0% when the input power is less than — 20 dBm, and the received power of the PMA is less than — 20 dBm when the transmission distance is 60 cm or more. It is predicted that the rectenna efficiency will be 0% when the transmission distance is 60 cm or more. However, the rectenna efficiency was 24.6% when the transmission distance was 60 cm. This over 20% improvement is due to the connection between the PMA and the VD using pure resistance.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-12"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front matters 前方事项
IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 DOI: 10.1002/rds.21244
{"title":"Front matters","authors":"","doi":"10.1002/rds.21244","DOIUrl":"https://doi.org/10.1002/rds.21244","url":null,"abstract":"","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-2"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663897","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Architecture design and ground performance of Netherlands-China low-frequency explorer 荷兰-中国低频探测器的结构设计和地面性能
IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 DOI: 10.1029/2023RS007906
Sukanth Karapakula;Christiaan Brinkerink;Antonio Vecchio;Hamid R. Pourshaghaghi;Peter Dolron;Roel Jordans;Eric Bertels;Gerard Aalbers;Mark Ruiter;Albert J. Boonstra;Mark Bentum;David Prinsloo;Michel Arts;Jeanette Bast;Sieds Damstra;Albert van Duin;Nico Ebbendorf;Hans van der Marel;Juergen Morawietz;Roel Witvers;Wietse Poiesz;Rico van Dongen;Baptiste Cecconi;Philippe Zarka;Moustapha Dekkali;Linjie Chen;Mingyuan Wang;Mo Zhang;Maohai Huang;Yihua Yan;Liang Dong;Baolin Tan;Lihua Zhang;Liang Xiong;Ji Sun;Hongbo Zhang;Jinsong Ping;Marc Klein Wolt;Heino Falcke
The Netherlands-China Low-Frequency Explorer (NCLE) (Boonstra et al., 2017, https://www. ursi.org/proceedings/procGA17/papers/Paper_J19-2(1603).pdf; Chen et al., 2020, https://ui.adsabs.harvard.edu/abs/2020AAS...23610203C/abstract) is a radio instrument for astrophysical studies in the low-frequency range (80 kHz-80 MHz). As a technology demonstrator, NCLE shall inform the design of future radio receivers that aim at low-frequency radio astronomy. NCLE can make observations at very high spectral resolution (<1 kHz) and generate radio sky maps at an angular resolution of ≈1.5 radians. NCLE uses three monopole antennas, each 5 m long, and three identical analog signal chains to process the signal from each antenna. A single digital receiver samples the signal and calculates the auto-correlated and cross-correlated spectra. The instrument's analog and digital signal chains are extensively configurable. They can be fine-tuned to produce broadband spectra covering the instrument's complete operating frequency range or sub-bands. NCLE was developed within a veryshort timescale of 2 years, and currently, it is on board Queqiao, the relay spacecraft of the Chang'e-4 mission, in a halo orbit around the Earth-Moon L2 point. This paper outlines the science cases, instrument architecture with focus on the signal chain, and discusses the laboratory measurements during the pre-launch phase.
荷兰-中国低频探测器(NCLE)(Boonstra 等人,2017 年,https://www. ursi.org/proceedings/procGA17/papers/Paper_J19-2(1603).pdf;Chen 等人,2020 年,https://ui.adsabs.harvard.edu/abs/2020AAS...23610203C/abstract)是一台用于低频范围(80 kHz-80 MHz)天体物理学研究的射电仪器。作为一项技术示范,NCLE 将为未来低频射电天文学射电接收器的设计提供参考。全国射电天文台可进行极高光谱分辨率(<1 千赫)的观测,并生成角度分辨率≈1.5 弧度的射电天空图。NCLE 使用三个单极天线(每个长 5 米)和三个相同的模拟信号链来处理来自每个天线的信号。单个数字接收器对信号进行采样,并计算自相关和交叉相关频谱。仪器的模拟和数字信号链具有广泛的可配置性。它们可以进行微调,以产生覆盖仪器整个工作频率范围或子频带的宽带光谱。NCLE 是在 2 年的极短时间内开发完成的,目前正搭载在嫦娥四号任务的中继航天器 "曲桥 "号上,处于环绕地月 L2 点的光环轨道上。本文概述了科学案例、以信号链为重点的仪器结构,并讨论了发射前阶段的实验室测量。
{"title":"Architecture design and ground performance of Netherlands-China low-frequency explorer","authors":"Sukanth Karapakula;Christiaan Brinkerink;Antonio Vecchio;Hamid R. Pourshaghaghi;Peter Dolron;Roel Jordans;Eric Bertels;Gerard Aalbers;Mark Ruiter;Albert J. Boonstra;Mark Bentum;David Prinsloo;Michel Arts;Jeanette Bast;Sieds Damstra;Albert van Duin;Nico Ebbendorf;Hans van der Marel;Juergen Morawietz;Roel Witvers;Wietse Poiesz;Rico van Dongen;Baptiste Cecconi;Philippe Zarka;Moustapha Dekkali;Linjie Chen;Mingyuan Wang;Mo Zhang;Maohai Huang;Yihua Yan;Liang Dong;Baolin Tan;Lihua Zhang;Liang Xiong;Ji Sun;Hongbo Zhang;Jinsong Ping;Marc Klein Wolt;Heino Falcke","doi":"10.1029/2023RS007906","DOIUrl":"https://doi.org/10.1029/2023RS007906","url":null,"abstract":"The Netherlands-China Low-Frequency Explorer (NCLE) (Boonstra et al., 2017, https://www. ursi.org/proceedings/procGA17/papers/Paper_J19-2(1603).pdf; Chen et al., 2020, https://ui.adsabs.harvard.edu/abs/2020AAS...23610203C/abstract) is a radio instrument for astrophysical studies in the low-frequency range (80 kHz-80 MHz). As a technology demonstrator, NCLE shall inform the design of future radio receivers that aim at low-frequency radio astronomy. NCLE can make observations at very high spectral resolution (<1 kHz) and generate radio sky maps at an angular resolution of ≈1.5 radians. NCLE uses three monopole antennas, each 5 m long, and three identical analog signal chains to process the signal from each antenna. A single digital receiver samples the signal and calculates the auto-correlated and cross-correlated spectra. The instrument's analog and digital signal chains are extensively configurable. They can be fine-tuned to produce broadband spectra covering the instrument's complete operating frequency range or sub-bands. NCLE was developed within a veryshort timescale of 2 years, and currently, it is on board Queqiao, the relay spacecraft of the Chang'e-4 mission, in a halo orbit around the Earth-Moon L2 point. This paper outlines the science cases, instrument architecture with focus on the signal chain, and discusses the laboratory measurements during the pre-launch phase.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-39"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Miniaturized, broadband, circular polarized horn antenna with Groove gap waveguide technology 采用沟槽间隙波导技术的小型化宽带圆极化喇叭天线
IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 DOI: 10.1029/2024RS007965
Amir Hossein Haghparast;Pejman Rezaei
In this study, a wideband circularly polarized (CP) H-plane horn antenna based on Gap Waveguide (GW) technology in K-band is presented. The proposed antenna consists of two unconnected metal planes. To produce broadband CP radiation, two main methods are utilized. First, two antipodal tapered plates (ATPs) are added in front of the horn. The ATPs are carefully designed for dissimilar polarization orientations. By this technique, the orthogonal electric fields can be prepared. Then, by embedding three metal square pins near the center of the aperture in both inner plates, the impedance bandwidth (BW) and BW of CP radiation of the proposed horn is entirely improved. Its BW for target |S11| < —10 dB is 18—28 GHz. Also, the peak gain fluctuates between 11.5 and 13 dB. This antenna can provide a 3 dB polarization axial-ratio BW of about 28.5% (20–26 GHz). Total radiation efficiency is higher than 94%. To verify the design, the proposed structure is manufactured and tested. The proposed horn antenna result has an appropriate agreement between measurement and simulation. Its miniaturized dimensions, easy and cheap fabrication, and broadband CP capability make it a proper volunteer for broadband communication systems.
本研究提出了一种基于间隙波导(GW)技术的 K 波段宽带圆极化(CP)H 平面喇叭天线。该天线由两个未连接的金属平面组成。为了产生宽带 CP 辐射,主要采用了两种方法。首先,在喇叭前面增加了两个对顶锥形板(ATP)。ATP 经过精心设计,具有不同的极化方向。通过这种技术,可以制备正交电场。然后,通过在两块内板上靠近孔径中心的位置嵌入三个金属方针,完全改善了拟建喇叭的阻抗带宽(BW)和 CP 辐射带宽。当目标 |S11| < -10 dB 时,其 BW 为 18-28 GHz。此外,峰值增益在 11.5 和 13 dB 之间波动。该天线可提供约 28.5% (20-26 GHz)的 3 dB 极化轴向比频带宽度。总辐射效率高于 94%。为了验证设计,对所提出的结构进行了制造和测试。所提议的喇叭天线的测量结果与模拟结果之间具有适当的一致性。其微型化的尺寸、简便廉价的制造工艺和宽带 CP 能力使其成为宽带通信系统的理想选择。
{"title":"Miniaturized, broadband, circular polarized horn antenna with Groove gap waveguide technology","authors":"Amir Hossein Haghparast;Pejman Rezaei","doi":"10.1029/2024RS007965","DOIUrl":"https://doi.org/10.1029/2024RS007965","url":null,"abstract":"In this study, a wideband circularly polarized (CP) H-plane horn antenna based on Gap Waveguide (GW) technology in K-band is presented. The proposed antenna consists of two unconnected metal planes. To produce broadband CP radiation, two main methods are utilized. First, two antipodal tapered plates (ATPs) are added in front of the horn. The ATPs are carefully designed for dissimilar polarization orientations. By this technique, the orthogonal electric fields can be prepared. Then, by embedding three metal square pins near the center of the aperture in both inner plates, the impedance bandwidth (BW) and BW of CP radiation of the proposed horn is entirely improved. Its BW for target |S\u0000<inf>11</inf>\u0000| < —10 dB is 18—28 GHz. Also, the peak gain fluctuates between 11.5 and 13 dB. This antenna can provide a 3 dB polarization axial-ratio BW of about 28.5% (20–26 GHz). Total radiation efficiency is higher than 94%. To verify the design, the proposed structure is manufactured and tested. The proposed horn antenna result has an appropriate agreement between measurement and simulation. Its miniaturized dimensions, easy and cheap fabrication, and broadband CP capability make it a proper volunteer for broadband communication systems.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-10"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-interception waveforms: To prevent the recognition of spectrum waveform modulation via adversarial examples 低截获波形:防止通过对抗范例识别频谱波形调制
IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 DOI: 10.1029/2022RS007486
Jia Tan;Haidong Xie;Xiaoying Zhang;Nan Ji;Haihua Liao;ZuGuo Yu;Xueshuang Xiang;Naijin Liu
Deep learning is applied to many complex tasks in the field of wireless communication, such as modulation recognition of spectrum waveforms, because of its convenience and efficiency. This leads to the problem of a malicious third party using a deep learning model to easily recognize the modulation format of the transmitted waveform. Some existing works address this problem directly using the concept of adversarial examples in the computer vision field without fully considering the characteristics of the waveform transmission in the physical world. Therefore, we propose two low-interception waveforms (LIWs) generation methods, the LIW and ULIW algorithms, which can reduce the probability of the modulation being recognized by a third party without affecting the reliable communication of the friendly party. Among them, ULIW improves LIW algorithm by simulating channel noise during training cycle, and substantially reduces the perturbation magnitude while maintaining low interception accuracy. Our LIW and ULIW exhibit significant low-interception performance in both numerical simulations and hardware experiments.
深度学习因其便捷性和高效性,被应用于无线通信领域的许多复杂任务,如频谱波形的调制识别。这就导致了恶意第三方利用深度学习模型轻松识别传输波形的调制格式的问题。现有的一些作品直接使用计算机视觉领域的对抗范例概念来解决这一问题,而没有充分考虑物理世界中波形传输的特点。因此,我们提出了两种低拦截波形(LIWs)生成方法,即LIW算法和ULIW算法,它们可以在不影响友方可靠通信的前提下降低调制方式被第三方识别的概率。其中,ULIW 通过在训练周期内模拟信道噪声来改进 LIW 算法,在保持较低拦截精度的同时大幅降低了扰动幅度。我们的LIW和ULIW在数值模拟和硬件实验中都表现出了显著的低拦截性能。
{"title":"Low-interception waveforms: To prevent the recognition of spectrum waveform modulation via adversarial examples","authors":"Jia Tan;Haidong Xie;Xiaoying Zhang;Nan Ji;Haihua Liao;ZuGuo Yu;Xueshuang Xiang;Naijin Liu","doi":"10.1029/2022RS007486","DOIUrl":"https://doi.org/10.1029/2022RS007486","url":null,"abstract":"Deep learning is applied to many complex tasks in the field of wireless communication, such as modulation recognition of spectrum waveforms, because of its convenience and efficiency. This leads to the problem of a malicious third party using a deep learning model to easily recognize the modulation format of the transmitted waveform. Some existing works address this problem directly using the concept of adversarial examples in the computer vision field without fully considering the characteristics of the waveform transmission in the physical world. Therefore, we propose two low-interception waveforms (LIWs) generation methods, the LIW and ULIW algorithms, which can reduce the probability of the modulation being recognized by a third party without affecting the reliable communication of the friendly party. Among them, ULIW improves LIW algorithm by simulating channel noise during training cycle, and substantially reduces the perturbation magnitude while maintaining low interception accuracy. Our LIW and ULIW exhibit significant low-interception performance in both numerical simulations and hardware experiments.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-13"},"PeriodicalIF":1.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Radio Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1