Intracellular fluxes represent a joint outcome of cellular transcription and translation and reflect the availability and usage of nutrients from the environment. While approaches from the constraint-based metabolic framework can accurately predict cellular phenotypes, such as growth and exchange rates with the environment, accurate prediction of intracellular fluxes remains a pressing problem. Parsimonious flux balance analysis (pFBA) has become an approach of choice to predict intracellular fluxes by employing the principle of efficient usage of protein resources. Nevertheless, comparative analyses of intracellular flux predictions from pFBA against fluxes estimated from labeling experiments remain scarce. Here, we posited that steady-state flux distributions derived from the principle of maximizing multi-reaction dependencies are of improved accuracy and precision than those resulting from pFBA. To this end, we designed a constraint-based approach, termed complex-balanced FBA (cbFBA), to predict steady-state flux distributions that support the given specific growth rate and exchange fluxes. We showed that the steady-state flux distributions resulting from cbFBA in comparison to pFBA show better agreement with experimentally measured fluxes from 17 Escherichia coli strains and are more precise, due to the smaller space of alternative solutions. We also showed that the same principle holds in eukaryotes by comparing the predictions of pFBA and cbFBA against experimentally derived steady-state flux distributions from 26 knock-out mutants of Saccharomyces cerevisiae. Furthermore, our results showed that intracellular fluxes predicted by cbFBA provide better support for the principle of minimizing metabolic adjustment between mutants and wild types. Together, our findings point that other principles that consider the dynamics and coordination of steady states may govern the distribution of intracellular fluxes.
{"title":"Maximizing multi-reaction dependencies provides more accurate and precise predictions of intracellular fluxes than the principle of parsimony.","authors":"Seirana Hashemi, Zahra Razaghi-Moghadam, Zoran Nikoloski","doi":"10.1371/journal.pcbi.1011489","DOIUrl":"10.1371/journal.pcbi.1011489","url":null,"abstract":"<p><p>Intracellular fluxes represent a joint outcome of cellular transcription and translation and reflect the availability and usage of nutrients from the environment. While approaches from the constraint-based metabolic framework can accurately predict cellular phenotypes, such as growth and exchange rates with the environment, accurate prediction of intracellular fluxes remains a pressing problem. Parsimonious flux balance analysis (pFBA) has become an approach of choice to predict intracellular fluxes by employing the principle of efficient usage of protein resources. Nevertheless, comparative analyses of intracellular flux predictions from pFBA against fluxes estimated from labeling experiments remain scarce. Here, we posited that steady-state flux distributions derived from the principle of maximizing multi-reaction dependencies are of improved accuracy and precision than those resulting from pFBA. To this end, we designed a constraint-based approach, termed complex-balanced FBA (cbFBA), to predict steady-state flux distributions that support the given specific growth rate and exchange fluxes. We showed that the steady-state flux distributions resulting from cbFBA in comparison to pFBA show better agreement with experimentally measured fluxes from 17 Escherichia coli strains and are more precise, due to the smaller space of alternative solutions. We also showed that the same principle holds in eukaryotes by comparing the predictions of pFBA and cbFBA against experimentally derived steady-state flux distributions from 26 knock-out mutants of Saccharomyces cerevisiae. Furthermore, our results showed that intracellular fluxes predicted by cbFBA provide better support for the principle of minimizing metabolic adjustment between mutants and wild types. Together, our findings point that other principles that consider the dynamics and coordination of steady states may govern the distribution of intracellular fluxes.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011489"},"PeriodicalIF":4.3,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10312490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-18eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011463
Christopher E Overton, Sam Abbott, Rachel Christie, Fergus Cumming, Julie Day, Owen Jones, Rob Paton, Charlie Turner, Thomas Ward
In May 2022, a cluster of mpox cases were detected in the UK that could not be traced to recent travel history from an endemic region. Over the coming months, the outbreak grew, with over 3000 total cases reported in the UK, and similar outbreaks occurring worldwide. These outbreaks appeared linked to sexual contact networks between gay, bisexual and other men who have sex with men. Following the COVID-19 pandemic, local health systems were strained, and therefore effective surveillance for mpox was essential for managing public health policy. However, the mpox outbreak in the UK was characterised by substantial delays in the reporting of the symptom onset date and specimen collection date for confirmed positive cases. These delays led to substantial backfilling in the epidemic curve, making it challenging to interpret the epidemic trajectory in real-time. Many nowcasting models exist to tackle this challenge in epidemiological data, but these lacked sufficient flexibility. We have developed a nowcasting model using generalised additive models that makes novel use of individual-level patient data to correct the mpox epidemic curve in England. The aim of this model is to correct for backfilling in the epidemic curve and provide real-time characteristics of the state of the epidemic, including the real-time growth rate. This model benefited from close collaboration with individuals involved in collecting and processing the data, enabling temporal changes in the reporting structure to be built into the model, which improved the robustness of the nowcasts generated. The resulting model accurately captured the true shape of the epidemic curve in real time.
{"title":"Nowcasting the 2022 mpox outbreak in England.","authors":"Christopher E Overton, Sam Abbott, Rachel Christie, Fergus Cumming, Julie Day, Owen Jones, Rob Paton, Charlie Turner, Thomas Ward","doi":"10.1371/journal.pcbi.1011463","DOIUrl":"10.1371/journal.pcbi.1011463","url":null,"abstract":"<p><p>In May 2022, a cluster of mpox cases were detected in the UK that could not be traced to recent travel history from an endemic region. Over the coming months, the outbreak grew, with over 3000 total cases reported in the UK, and similar outbreaks occurring worldwide. These outbreaks appeared linked to sexual contact networks between gay, bisexual and other men who have sex with men. Following the COVID-19 pandemic, local health systems were strained, and therefore effective surveillance for mpox was essential for managing public health policy. However, the mpox outbreak in the UK was characterised by substantial delays in the reporting of the symptom onset date and specimen collection date for confirmed positive cases. These delays led to substantial backfilling in the epidemic curve, making it challenging to interpret the epidemic trajectory in real-time. Many nowcasting models exist to tackle this challenge in epidemiological data, but these lacked sufficient flexibility. We have developed a nowcasting model using generalised additive models that makes novel use of individual-level patient data to correct the mpox epidemic curve in England. The aim of this model is to correct for backfilling in the epidemic curve and provide real-time characteristics of the state of the epidemic, including the real-time growth rate. This model benefited from close collaboration with individuals involved in collecting and processing the data, enabling temporal changes in the reporting structure to be built into the model, which improved the robustness of the nowcasts generated. The resulting model accurately captured the true shape of the epidemic curve in real time.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011463"},"PeriodicalIF":4.3,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10307570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-18eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011472
Bayarbaatar Amgalan, Chi-Ping Day, Teresa M Przytycka
There is a growing awareness that tumor-adjacent normal tissues used as control samples in cancer studies do not represent fully healthy tissues. Instead, they are intermediates between healthy tissues and tumors. The factors that contribute to the deviation of such control samples from healthy state include exposure to the tumor-promoting factors, tumor-related immune response, and other aspects of tumor microenvironment. Characterizing the relation between gene expression of tumor-adjacent control samples and tumors is fundamental for understanding roles of microenvironment in tumor initiation and progression, as well as for identification of diagnostic and prognostic biomarkers for cancers. To address the demand, we developed and validated TranNet, a computational approach that utilizes gene expression in matched control and tumor samples to study the relation between their gene expression profiles. TranNet infers a sparse weighted bipartite graph from gene expression profiles of matched control samples to tumors. The results allow us to identify predictors (potential regulators) of this transition. To our knowledge, TranNet is the first computational method to infer such dependencies. We applied TranNet to the data of several cancer types and their matched control samples from The Cancer Genome Atlas (TCGA). Many predictors identified by TranNet are genes associated with regulation by the tumor microenvironment as they are enriched in G-protein coupled receptor signaling, cell-to-cell communication, immune processes, and cell adhesion. Correspondingly, targets of inferred predictors are enriched in pathways related to tissue remodelling (including the epithelial-mesenchymal Transition (EMT)), immune response, and cell proliferation. This implies that the predictors are markers and potential stromal facilitators of tumor progression. Our results provide new insights into the relationships between tumor adjacent control sample, tumor and the tumor environment. Moreover, the set of predictors identified by TranNet will provide a valuable resource for future investigations.
{"title":"Exploring tumor-normal cross-talk with TranNet: Role of the environment in tumor progression.","authors":"Bayarbaatar Amgalan, Chi-Ping Day, Teresa M Przytycka","doi":"10.1371/journal.pcbi.1011472","DOIUrl":"10.1371/journal.pcbi.1011472","url":null,"abstract":"<p><p>There is a growing awareness that tumor-adjacent normal tissues used as control samples in cancer studies do not represent fully healthy tissues. Instead, they are intermediates between healthy tissues and tumors. The factors that contribute to the deviation of such control samples from healthy state include exposure to the tumor-promoting factors, tumor-related immune response, and other aspects of tumor microenvironment. Characterizing the relation between gene expression of tumor-adjacent control samples and tumors is fundamental for understanding roles of microenvironment in tumor initiation and progression, as well as for identification of diagnostic and prognostic biomarkers for cancers. To address the demand, we developed and validated TranNet, a computational approach that utilizes gene expression in matched control and tumor samples to study the relation between their gene expression profiles. TranNet infers a sparse weighted bipartite graph from gene expression profiles of matched control samples to tumors. The results allow us to identify predictors (potential regulators) of this transition. To our knowledge, TranNet is the first computational method to infer such dependencies. We applied TranNet to the data of several cancer types and their matched control samples from The Cancer Genome Atlas (TCGA). Many predictors identified by TranNet are genes associated with regulation by the tumor microenvironment as they are enriched in G-protein coupled receptor signaling, cell-to-cell communication, immune processes, and cell adhesion. Correspondingly, targets of inferred predictors are enriched in pathways related to tissue remodelling (including the epithelial-mesenchymal Transition (EMT)), immune response, and cell proliferation. This implies that the predictors are markers and potential stromal facilitators of tumor progression. Our results provide new insights into the relationships between tumor adjacent control sample, tumor and the tumor environment. Moreover, the set of predictors identified by TranNet will provide a valuable resource for future investigations.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011472"},"PeriodicalIF":4.3,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538798/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10360970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011374
Elias Vera-Siguenza, Cristina Escribano-Gonzalez, Irene Serrano-Gonzalo, Kattri-Liis Eskla, Fabian Spill, Daniel Tennant
It is increasingly apparent that cancer cells, in addition to remodelling their metabolism to survive and proliferate, adapt and manipulate the metabolism of other cells. This property may be a telling sign that pre-clinical tumour metabolism studies exclusively utilising in-vitro mono-culture models could prove to be limited for uncovering novel metabolic targets able to translate into clinical therapies. Although this is increasingly recognised, and work towards addressing the issue is becoming routinary much remains poorly understood. For instance, knowledge regarding the biochemical mechanisms through which cancer cells manipulate non-cancerous cell metabolism, and the subsequent impact on their survival and proliferation remains limited. Additionally, the variations in these processes across different cancer types and progression stages, and their implications for therapy, also remain largely unexplored. This study employs an interdisciplinary approach that leverages the predictive power of mathematical modelling to enrich experimental findings. We develop a functional multicellular in-silico model that facilitates the qualitative and quantitative analysis of the metabolic network spawned by an in-vitro co-culture model of bone marrow mesenchymal stem- and myeloma cell lines. To procure this model, we devised a bespoke human genome constraint-based reconstruction workflow that combines aspects from the legacy mCADRE & Metabotools algorithms, the novel redHuman algorithm, along with 13C-metabolic flux analysis. Our workflow transforms the latest human metabolic network matrix (Recon3D) into two cell-specific models coupled with a metabolic network spanning a shared growth medium. When cross-validating our in-silico model against the in-vitro model, we found that the in-silico model successfully reproduces vital metabolic behaviours of its in-vitro counterpart; results include cell growth predictions, respiration rates, as well as support for observations which suggest cross-shuttling of redox-active metabolites between cells.
{"title":"Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model.","authors":"Elias Vera-Siguenza, Cristina Escribano-Gonzalez, Irene Serrano-Gonzalo, Kattri-Liis Eskla, Fabian Spill, Daniel Tennant","doi":"10.1371/journal.pcbi.1011374","DOIUrl":"10.1371/journal.pcbi.1011374","url":null,"abstract":"<p><p>It is increasingly apparent that cancer cells, in addition to remodelling their metabolism to survive and proliferate, adapt and manipulate the metabolism of other cells. This property may be a telling sign that pre-clinical tumour metabolism studies exclusively utilising in-vitro mono-culture models could prove to be limited for uncovering novel metabolic targets able to translate into clinical therapies. Although this is increasingly recognised, and work towards addressing the issue is becoming routinary much remains poorly understood. For instance, knowledge regarding the biochemical mechanisms through which cancer cells manipulate non-cancerous cell metabolism, and the subsequent impact on their survival and proliferation remains limited. Additionally, the variations in these processes across different cancer types and progression stages, and their implications for therapy, also remain largely unexplored. This study employs an interdisciplinary approach that leverages the predictive power of mathematical modelling to enrich experimental findings. We develop a functional multicellular in-silico model that facilitates the qualitative and quantitative analysis of the metabolic network spawned by an in-vitro co-culture model of bone marrow mesenchymal stem- and myeloma cell lines. To procure this model, we devised a bespoke human genome constraint-based reconstruction workflow that combines aspects from the legacy mCADRE & Metabotools algorithms, the novel redHuman algorithm, along with 13C-metabolic flux analysis. Our workflow transforms the latest human metabolic network matrix (Recon3D) into two cell-specific models coupled with a metabolic network spanning a shared growth medium. When cross-validating our in-silico model against the in-vitro model, we found that the in-silico model successfully reproduces vital metabolic behaviours of its in-vitro counterpart; results include cell growth predictions, respiration rates, as well as support for observations which suggest cross-shuttling of redox-active metabolites between cells.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011374"},"PeriodicalIF":4.3,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10309574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011460
Erik Nordquist, Guohui Zhang, Shrishti Barethiya, Nathan Ji, Kelli M White, Lu Han, Zhiguang Jia, Jingyi Shi, Jianmin Cui, Jianhan Chen
Machine learning has played transformative roles in numerous chemical and biophysical problems such as protein folding where large amount of data exists. Nonetheless, many important problems remain challenging for data-driven machine learning approaches due to the limitation of data scarcity. One approach to overcome data scarcity is to incorporate physical principles such as through molecular modeling and simulation. Here, we focus on the big potassium (BK) channels that play important roles in cardiovascular and neural systems. Many mutants of BK channel are associated with various neurological and cardiovascular diseases, but the molecular effects are unknown. The voltage gating properties of BK channels have been characterized for 473 site-specific mutations experimentally over the last three decades; yet, these functional data by themselves remain far too sparse to derive a predictive model of BK channel voltage gating. Using physics-based modeling, we quantify the energetic effects of all single mutations on both open and closed states of the channel. Together with dynamic properties derived from atomistic simulations, these physical descriptors allow the training of random forest models that could reproduce unseen experimentally measured shifts in gating voltage, ∆V1/2, with a RMSE ~ 32 mV and correlation coefficient of R ~ 0.7. Importantly, the model appears capable of uncovering nontrivial physical principles underlying the gating of the channel, including a central role of hydrophobic gating. The model was further evaluated using four novel mutations of L235 and V236 on the S5 helix, mutations of which are predicted to have opposing effects on V1/2 and suggest a key role of S5 in mediating voltage sensor-pore coupling. The measured ∆V1/2 agree quantitatively with prediction for all four mutations, with a high correlation of R = 0.92 and RMSE = 18 mV. Therefore, the model can capture nontrivial voltage gating properties in regions where few mutations are known. The success of predictive modeling of BK voltage gating demonstrates the potential of combining physics and statistical learning for overcoming data scarcity in nontrivial protein function prediction.
{"title":"Incorporating physics to overcome data scarcity in predictive modeling of protein function: A case study of BK channels.","authors":"Erik Nordquist, Guohui Zhang, Shrishti Barethiya, Nathan Ji, Kelli M White, Lu Han, Zhiguang Jia, Jingyi Shi, Jianmin Cui, Jianhan Chen","doi":"10.1371/journal.pcbi.1011460","DOIUrl":"10.1371/journal.pcbi.1011460","url":null,"abstract":"<p><p>Machine learning has played transformative roles in numerous chemical and biophysical problems such as protein folding where large amount of data exists. Nonetheless, many important problems remain challenging for data-driven machine learning approaches due to the limitation of data scarcity. One approach to overcome data scarcity is to incorporate physical principles such as through molecular modeling and simulation. Here, we focus on the big potassium (BK) channels that play important roles in cardiovascular and neural systems. Many mutants of BK channel are associated with various neurological and cardiovascular diseases, but the molecular effects are unknown. The voltage gating properties of BK channels have been characterized for 473 site-specific mutations experimentally over the last three decades; yet, these functional data by themselves remain far too sparse to derive a predictive model of BK channel voltage gating. Using physics-based modeling, we quantify the energetic effects of all single mutations on both open and closed states of the channel. Together with dynamic properties derived from atomistic simulations, these physical descriptors allow the training of random forest models that could reproduce unseen experimentally measured shifts in gating voltage, ∆V1/2, with a RMSE ~ 32 mV and correlation coefficient of R ~ 0.7. Importantly, the model appears capable of uncovering nontrivial physical principles underlying the gating of the channel, including a central role of hydrophobic gating. The model was further evaluated using four novel mutations of L235 and V236 on the S5 helix, mutations of which are predicted to have opposing effects on V1/2 and suggest a key role of S5 in mediating voltage sensor-pore coupling. The measured ∆V1/2 agree quantitatively with prediction for all four mutations, with a high correlation of R = 0.92 and RMSE = 18 mV. Therefore, the model can capture nontrivial voltage gating properties in regions where few mutations are known. The success of predictive modeling of BK voltage gating demonstrates the potential of combining physics and statistical learning for overcoming data scarcity in nontrivial protein function prediction.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011460"},"PeriodicalIF":4.3,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10265087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-14eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011488
Simon Boutry, Raphaël Helaers, Tom Lenaerts, Miikka Vikkula
The development of high-throughput next-generation sequencing technologies and large-scale genetic association studies produced numerous advances in the biostatistics field. Various aggregation tests, i.e. statistical methods that analyze associations of a trait with multiple markers within a genomic region, have produced a variety of novel discoveries. Notwithstanding their usefulness, there is no single test that fits all needs, each suffering from specific drawbacks. Selecting the right aggregation test, while considering an unknown underlying genetic model of the disease, remains an important challenge. Here we propose a new ensemble method, called Excalibur, based on an optimal combination of 36 aggregation tests created after an in-depth study of the limitations of each test and their impact on the quality of result. Our findings demonstrate the ability of our method to control type I error and illustrate that it offers the best average power across all scenarios. The proposed method allows for novel advances in Whole Exome/Genome sequencing association studies, able to handle a wide range of association models, providing researchers with an optimal aggregation analysis for the genetic regions of interest.
{"title":"Excalibur: A new ensemble method based on an optimal combination of aggregation tests for rare-variant association testing for sequencing data.","authors":"Simon Boutry, Raphaël Helaers, Tom Lenaerts, Miikka Vikkula","doi":"10.1371/journal.pcbi.1011488","DOIUrl":"10.1371/journal.pcbi.1011488","url":null,"abstract":"<p><p>The development of high-throughput next-generation sequencing technologies and large-scale genetic association studies produced numerous advances in the biostatistics field. Various aggregation tests, i.e. statistical methods that analyze associations of a trait with multiple markers within a genomic region, have produced a variety of novel discoveries. Notwithstanding their usefulness, there is no single test that fits all needs, each suffering from specific drawbacks. Selecting the right aggregation test, while considering an unknown underlying genetic model of the disease, remains an important challenge. Here we propose a new ensemble method, called Excalibur, based on an optimal combination of 36 aggregation tests created after an in-depth study of the limitations of each test and their impact on the quality of result. Our findings demonstrate the ability of our method to control type I error and illustrate that it offers the best average power across all scenarios. The proposed method allows for novel advances in Whole Exome/Genome sequencing association studies, able to handle a wide range of association models, providing researchers with an optimal aggregation analysis for the genetic regions of interest.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011488"},"PeriodicalIF":4.3,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10233141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-14eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011430
Nhat Minh Le, Murat Yildirim, Yizhi Wang, Hiroki Sugihara, Mehrdad Jazayeri, Mriganka Sur
In reversal learning tasks, the behavior of humans and animals is often assumed to be uniform within single experimental sessions to facilitate data analysis and model fitting. However, behavior of agents can display substantial variability in single experimental sessions, as they execute different blocks of trials with different transition dynamics. Here, we observed that in a deterministic reversal learning task, mice display noisy and sub-optimal choice transitions even at the expert stages of learning. We investigated two sources of the sub-optimality in the behavior. First, we found that mice exhibit a high lapse rate during task execution, as they reverted to unrewarded directions after choice transitions. Second, we unexpectedly found that a majority of mice did not execute a uniform strategy, but rather mixed between several behavioral modes with different transition dynamics. We quantified the use of such mixtures with a state-space model, block Hidden Markov Model (block HMM), to dissociate the mixtures of dynamic choice transitions in individual blocks of trials. Additionally, we found that blockHMM transition modes in rodent behavior can be accounted for by two different types of behavioral algorithms, model-free or inference-based learning, that might be used to solve the task. Combining these approaches, we found that mice used a mixture of both exploratory, model-free strategies and deterministic, inference-based behavior in the task, explaining their overall noisy choice sequences. Together, our combined computational approach highlights intrinsic sources of noise in rodent reversal learning behavior and provides a richer description of behavior than conventional techniques, while uncovering the hidden states that underlie the block-by-block transitions.
{"title":"Mixtures of strategies underlie rodent behavior during reversal learning.","authors":"Nhat Minh Le, Murat Yildirim, Yizhi Wang, Hiroki Sugihara, Mehrdad Jazayeri, Mriganka Sur","doi":"10.1371/journal.pcbi.1011430","DOIUrl":"10.1371/journal.pcbi.1011430","url":null,"abstract":"<p><p>In reversal learning tasks, the behavior of humans and animals is often assumed to be uniform within single experimental sessions to facilitate data analysis and model fitting. However, behavior of agents can display substantial variability in single experimental sessions, as they execute different blocks of trials with different transition dynamics. Here, we observed that in a deterministic reversal learning task, mice display noisy and sub-optimal choice transitions even at the expert stages of learning. We investigated two sources of the sub-optimality in the behavior. First, we found that mice exhibit a high lapse rate during task execution, as they reverted to unrewarded directions after choice transitions. Second, we unexpectedly found that a majority of mice did not execute a uniform strategy, but rather mixed between several behavioral modes with different transition dynamics. We quantified the use of such mixtures with a state-space model, block Hidden Markov Model (block HMM), to dissociate the mixtures of dynamic choice transitions in individual blocks of trials. Additionally, we found that blockHMM transition modes in rodent behavior can be accounted for by two different types of behavioral algorithms, model-free or inference-based learning, that might be used to solve the task. Combining these approaches, we found that mice used a mixture of both exploratory, model-free strategies and deterministic, inference-based behavior in the task, explaining their overall noisy choice sequences. Together, our combined computational approach highlights intrinsic sources of noise in rodent reversal learning behavior and provides a richer description of behavior than conventional techniques, while uncovering the hidden states that underlie the block-by-block transitions.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011430"},"PeriodicalIF":4.3,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10276831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-13eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1010867
Adrian L Hauber, Marcus Rosenblatt, Jens Timmer
Ordinary differential equations are frequently employed for mathematical modeling of biological systems. The identification of mechanisms that are specific to certain cell types is crucial for building useful models and to gain insights into the underlying biological processes. Regularization techniques have been proposed and applied to identify mechanisms specific to two cell types, e.g., healthy and cancer cells, including the LASSO (least absolute shrinkage and selection operator). However, when analyzing more than two cell types, these approaches are not consistent, and require the selection of a reference cell type, which can affect the results. To make the regularization approach applicable to identifying cell-type specific mechanisms in any number of cell types, we propose to incorporate the clustered LASSO into the framework of ordinary differential equation modeling by penalizing the pairwise differences of the logarithmized fold-change parameters encoding a specific mechanism in different cell types. The symmetry introduced by this approach renders the results independent of the reference cell type. We discuss the necessary adaptations of state-of-the-art numerical optimization techniques and the process of model selection for this method. We assess the performance with realistic biological models and synthetic data, and demonstrate that it outperforms existing approaches. Finally, we also exemplify its application to published biological models including experimental data, and link the results to independent biological measurements.
{"title":"Uncovering specific mechanisms across cell types in dynamical models.","authors":"Adrian L Hauber, Marcus Rosenblatt, Jens Timmer","doi":"10.1371/journal.pcbi.1010867","DOIUrl":"10.1371/journal.pcbi.1010867","url":null,"abstract":"<p><p>Ordinary differential equations are frequently employed for mathematical modeling of biological systems. The identification of mechanisms that are specific to certain cell types is crucial for building useful models and to gain insights into the underlying biological processes. Regularization techniques have been proposed and applied to identify mechanisms specific to two cell types, e.g., healthy and cancer cells, including the LASSO (least absolute shrinkage and selection operator). However, when analyzing more than two cell types, these approaches are not consistent, and require the selection of a reference cell type, which can affect the results. To make the regularization approach applicable to identifying cell-type specific mechanisms in any number of cell types, we propose to incorporate the clustered LASSO into the framework of ordinary differential equation modeling by penalizing the pairwise differences of the logarithmized fold-change parameters encoding a specific mechanism in different cell types. The symmetry introduced by this approach renders the results independent of the reference cell type. We discuss the necessary adaptations of state-of-the-art numerical optimization techniques and the process of model selection for this method. We assess the performance with realistic biological models and synthetic data, and demonstrate that it outperforms existing approaches. Finally, we also exemplify its application to published biological models including experimental data, and link the results to independent biological measurements.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1010867"},"PeriodicalIF":4.3,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10285169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-12eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011459
Ilias Rentzeperis, Luca Calatroni, Laurent U Perrinet, Dario Prandi
Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general.
{"title":"Beyond ℓ1 sparse coding in V1.","authors":"Ilias Rentzeperis, Luca Calatroni, Laurent U Perrinet, Dario Prandi","doi":"10.1371/journal.pcbi.1011459","DOIUrl":"10.1371/journal.pcbi.1011459","url":null,"abstract":"<p><p>Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011459"},"PeriodicalIF":4.3,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10214238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-12eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011453
James D Munday, Sam Abbott, Sophie Meakin, Sebastian Funk
Mathematical and statistical models can be used to make predictions of how epidemics may progress in the near future and form a central part of outbreak mitigation and control. Renewal equation based models allow inference of epidemiological parameters from historical data and forecast future epidemic dynamics without requiring complex mechanistic assumptions. However, these models typically ignore interaction between age groups, partly due to challenges in parameterising a time varying interaction matrix. Social contact data collected regularly during the COVID-19 epidemic provide a means to inform interaction between age groups in real-time. We developed an age-specific forecasting framework and applied it to two age-stratified time-series: incidence of SARS-CoV-2 infection, estimated from a national infection and antibody prevalence survey; and, reported cases according to the UK national COVID-19 dashboard. Jointly fitting our model to social contact data from the CoMix study, we inferred a time-varying next generation matrix which we used to project infections and cases in the four weeks following each of 29 forecast dates between October 2020 and November 2021. We evaluated the forecasts using proper scoring rules and compared performance with three other models with alternative data and specifications alongside two naive baseline models. Overall, incorporating age interaction improved forecasts of infections and the CoMix-data-informed model was the best performing model at time horizons between two and four weeks. However, this was not true when forecasting cases. We found that age group interaction was most important for predicting cases in children and older adults. The contact-data-informed models performed best during the winter months of 2020-2021, but performed comparatively poorly in other periods. We highlight challenges regarding the incorporation of contact data in forecasting and offer proposals as to how to extend and adapt our approach, which may lead to more successful forecasts in future.
{"title":"Evaluating the use of social contact data to produce age-specific short-term forecasts of SARS-CoV-2 incidence in England.","authors":"James D Munday, Sam Abbott, Sophie Meakin, Sebastian Funk","doi":"10.1371/journal.pcbi.1011453","DOIUrl":"10.1371/journal.pcbi.1011453","url":null,"abstract":"<p><p>Mathematical and statistical models can be used to make predictions of how epidemics may progress in the near future and form a central part of outbreak mitigation and control. Renewal equation based models allow inference of epidemiological parameters from historical data and forecast future epidemic dynamics without requiring complex mechanistic assumptions. However, these models typically ignore interaction between age groups, partly due to challenges in parameterising a time varying interaction matrix. Social contact data collected regularly during the COVID-19 epidemic provide a means to inform interaction between age groups in real-time. We developed an age-specific forecasting framework and applied it to two age-stratified time-series: incidence of SARS-CoV-2 infection, estimated from a national infection and antibody prevalence survey; and, reported cases according to the UK national COVID-19 dashboard. Jointly fitting our model to social contact data from the CoMix study, we inferred a time-varying next generation matrix which we used to project infections and cases in the four weeks following each of 29 forecast dates between October 2020 and November 2021. We evaluated the forecasts using proper scoring rules and compared performance with three other models with alternative data and specifications alongside two naive baseline models. Overall, incorporating age interaction improved forecasts of infections and the CoMix-data-informed model was the best performing model at time horizons between two and four weeks. However, this was not true when forecasting cases. We found that age group interaction was most important for predicting cases in children and older adults. The contact-data-informed models performed best during the winter months of 2020-2021, but performed comparatively poorly in other periods. We highlight challenges regarding the incorporation of contact data in forecasting and offer proposals as to how to extend and adapt our approach, which may lead to more successful forecasts in future.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011453"},"PeriodicalIF":4.3,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10263500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}