Pub Date : 2023-09-08eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011452
Tomohiro Otani, Nozomi Nishimura, Hiroshi Yamashita, Satoshi Ii, Shigeki Yamada, Yoshiyuki Watanabe, Marie Oshima, Shigeo Wada
The cerebral arterial network covering the brain cortex has multiscale anastomosis structures with sparse intermediate anastomoses (O[102] μm in diameter) and dense pial networks (O[101] μm in diameter). Recent studies indicate that collateral blood supply by cerebral arterial anastomoses has an essential role in the prognosis of acute ischemic stroke caused by large vessel occlusion. However, the physiological importance of these multiscale morphological properties-and especially of intermediate anastomoses-is poorly understood because of innate structural complexities. In this study, a computational model of multiscale anastomoses in whole-brain-scale cerebral arterial networks was developed and used to evaluate collateral blood supply by anastomoses during middle cerebral artery occlusion. Morphologically validated cerebral arterial networks were constructed by combining medical imaging data and mathematical modeling. Sparse intermediate anastomoses were assigned between adjacent main arterial branches; the pial arterial network was modeled as a dense network structure. Blood flow distributions in the arterial network during middle cerebral artery occlusion simulations were computed. Collateral blood supply by intermediate anastomoses increased sharply with increasing numbers of anastomoses and provided one-order-higher flow recoveries to the occluded region (15%-30%) compared with simulations using a pial network only, even with a small number of intermediate anastomoses (≤10). These findings demonstrate the importance of sparse intermediate anastomoses, which are generally considered redundant structures in cerebral infarction, and provide insights into the physiological significance of the multiscale properties of arterial anastomoses.
{"title":"Computational modeling of multiscale collateral blood supply in a whole-brain-scale arterial network.","authors":"Tomohiro Otani, Nozomi Nishimura, Hiroshi Yamashita, Satoshi Ii, Shigeki Yamada, Yoshiyuki Watanabe, Marie Oshima, Shigeo Wada","doi":"10.1371/journal.pcbi.1011452","DOIUrl":"10.1371/journal.pcbi.1011452","url":null,"abstract":"<p><p>The cerebral arterial network covering the brain cortex has multiscale anastomosis structures with sparse intermediate anastomoses (O[102] μm in diameter) and dense pial networks (O[101] μm in diameter). Recent studies indicate that collateral blood supply by cerebral arterial anastomoses has an essential role in the prognosis of acute ischemic stroke caused by large vessel occlusion. However, the physiological importance of these multiscale morphological properties-and especially of intermediate anastomoses-is poorly understood because of innate structural complexities. In this study, a computational model of multiscale anastomoses in whole-brain-scale cerebral arterial networks was developed and used to evaluate collateral blood supply by anastomoses during middle cerebral artery occlusion. Morphologically validated cerebral arterial networks were constructed by combining medical imaging data and mathematical modeling. Sparse intermediate anastomoses were assigned between adjacent main arterial branches; the pial arterial network was modeled as a dense network structure. Blood flow distributions in the arterial network during middle cerebral artery occlusion simulations were computed. Collateral blood supply by intermediate anastomoses increased sharply with increasing numbers of anastomoses and provided one-order-higher flow recoveries to the occluded region (15%-30%) compared with simulations using a pial network only, even with a small number of intermediate anastomoses (≤10). These findings demonstrate the importance of sparse intermediate anastomoses, which are generally considered redundant structures in cerebral infarction, and provide insights into the physiological significance of the multiscale properties of arterial anastomoses.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011452"},"PeriodicalIF":4.3,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10557031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-06eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011424
Lucía Graña-Miraglia, Nadia Morales-Lizcano, Pauline W Wang, David M Hwang, Yvonne C W Yau, Valerie J Waters, David S Guttman
Chronic Pseudomonas aeruginosa (Pa) lung infections are the leading cause of mortality among cystic fibrosis (CF) patients; therefore, the eradication of new-onset Pa lung infections is an important therapeutic goal that can have long-term health benefits. The use of early antibiotic eradication therapy (AET) has been shown to clear the majority of new-onset Pa infections, and it is hoped that identifying the underlying basis for AET failure will further improve treatment outcomes. Here we generated machine learning models to predict AET outcomes based on pathogen genomic data. We used a nested cross validation design, population structure control, and recursive feature selection to improve model performance and showed that incorporating population structure control was crucial for improving model interpretation and generalizability. Our best model, controlling for population structure and using only 30 recursively selected features, had an area under the curve of 0.87 for a holdout test dataset. The top-ranked features were generally associated with motility, adhesion, and biofilm formation.
{"title":"Predictive modeling of antibiotic eradication therapy success for new-onset Pseudomonas aeruginosa pulmonary infections in children with cystic fibrosis.","authors":"Lucía Graña-Miraglia, Nadia Morales-Lizcano, Pauline W Wang, David M Hwang, Yvonne C W Yau, Valerie J Waters, David S Guttman","doi":"10.1371/journal.pcbi.1011424","DOIUrl":"10.1371/journal.pcbi.1011424","url":null,"abstract":"<p><p>Chronic Pseudomonas aeruginosa (Pa) lung infections are the leading cause of mortality among cystic fibrosis (CF) patients; therefore, the eradication of new-onset Pa lung infections is an important therapeutic goal that can have long-term health benefits. The use of early antibiotic eradication therapy (AET) has been shown to clear the majority of new-onset Pa infections, and it is hoped that identifying the underlying basis for AET failure will further improve treatment outcomes. Here we generated machine learning models to predict AET outcomes based on pathogen genomic data. We used a nested cross validation design, population structure control, and recursive feature selection to improve model performance and showed that incorporating population structure control was crucial for improving model interpretation and generalizability. Our best model, controlling for population structure and using only 30 recursively selected features, had an area under the curve of 0.87 for a holdout test dataset. The top-ranked features were generally associated with motility, adhesion, and biofilm formation.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011424"},"PeriodicalIF":4.3,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-06eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011428
Zheng Jiang, Yue-Yue Shen, Rong Liu
Accurate prediction of nucleic binding residues is essential for the understanding of transcription and translation processes. Integration of feature- and template-based strategies could improve the prediction of these key residues in proteins. Nevertheless, traditional hybrid algorithms have been surpassed by recently developed deep learning-based methods, and the possibility of integrating deep learning- and template-based approaches to improve performance remains to be explored. To address these issues, we developed a novel structure-based integrative algorithm called NABind that can accurately predict DNA- and RNA-binding residues. A deep learning module was built based on the diversified sequence and structural descriptors and edge aggregated graph attention networks, while a template module was constructed by transforming the alignments between the query and its multiple templates into features for supervised learning. Furthermore, the stacking strategy was adopted to integrate the above two modules for improving prediction performance. Finally, a post-processing module dependent on the random walk algorithm was proposed to further correct the integrative predictions. Extensive evaluations indicated that our approach could not only achieve excellent performance on both native and predicted structures but also outperformed existing hybrid algorithms and recent deep learning methods. The NABind server is available at http://liulab.hzau.edu.cn/NABind/.
{"title":"Structure-based prediction of nucleic acid binding residues by merging deep learning- and template-based approaches.","authors":"Zheng Jiang, Yue-Yue Shen, Rong Liu","doi":"10.1371/journal.pcbi.1011428","DOIUrl":"10.1371/journal.pcbi.1011428","url":null,"abstract":"<p><p>Accurate prediction of nucleic binding residues is essential for the understanding of transcription and translation processes. Integration of feature- and template-based strategies could improve the prediction of these key residues in proteins. Nevertheless, traditional hybrid algorithms have been surpassed by recently developed deep learning-based methods, and the possibility of integrating deep learning- and template-based approaches to improve performance remains to be explored. To address these issues, we developed a novel structure-based integrative algorithm called NABind that can accurately predict DNA- and RNA-binding residues. A deep learning module was built based on the diversified sequence and structural descriptors and edge aggregated graph attention networks, while a template module was constructed by transforming the alignments between the query and its multiple templates into features for supervised learning. Furthermore, the stacking strategy was adopted to integrate the above two modules for improving prediction performance. Finally, a post-processing module dependent on the random walk algorithm was proposed to further correct the integrative predictions. Extensive evaluations indicated that our approach could not only achieve excellent performance on both native and predicted structures but also outperformed existing hybrid algorithms and recent deep learning methods. The NABind server is available at http://liulab.hzau.edu.cn/NABind/.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011428"},"PeriodicalIF":4.3,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10182672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-06eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011457
Charlie M Sexton, Anthony N Burkitt, Hinze Hogendoorn
The ability of the brain to represent the external world in real-time is impacted by the fact that neural processing takes time. Because neural delays accumulate as information progresses through the visual system, representations encoded at each hierarchical level are based upon input that is progressively outdated with respect to the external world. This 'representational lag' is particularly relevant to the task of localizing a moving object-because the object's location changes with time, neural representations of its location potentially lag behind its true location. Converging evidence suggests that the brain has evolved mechanisms that allow it to compensate for its inherent delays by extrapolating the position of moving objects along their trajectory. We have previously shown how spike-timing dependent plasticity (STDP) can achieve motion extrapolation in a two-layer, feedforward network of velocity-tuned neurons, by shifting the receptive fields of second layer neurons in the opposite direction to a moving stimulus. The current study extends this work by implementing two important changes to the network to bring it more into line with biology: we expanded the network to multiple layers to reflect the depth of the visual hierarchy, and we implemented more realistic synaptic time-courses. We investigate the accumulation of STDP-driven receptive field shifts across several layers, observing a velocity-dependent reduction in representational lag. These results highlight the role of STDP, operating purely along the feedforward pathway, as a developmental strategy for delay compensation.
{"title":"Spike-timing dependent plasticity partially compensates for neural delays in a multi-layered network of motion-sensitive neurons.","authors":"Charlie M Sexton, Anthony N Burkitt, Hinze Hogendoorn","doi":"10.1371/journal.pcbi.1011457","DOIUrl":"10.1371/journal.pcbi.1011457","url":null,"abstract":"<p><p>The ability of the brain to represent the external world in real-time is impacted by the fact that neural processing takes time. Because neural delays accumulate as information progresses through the visual system, representations encoded at each hierarchical level are based upon input that is progressively outdated with respect to the external world. This 'representational lag' is particularly relevant to the task of localizing a moving object-because the object's location changes with time, neural representations of its location potentially lag behind its true location. Converging evidence suggests that the brain has evolved mechanisms that allow it to compensate for its inherent delays by extrapolating the position of moving objects along their trajectory. We have previously shown how spike-timing dependent plasticity (STDP) can achieve motion extrapolation in a two-layer, feedforward network of velocity-tuned neurons, by shifting the receptive fields of second layer neurons in the opposite direction to a moving stimulus. The current study extends this work by implementing two important changes to the network to bring it more into line with biology: we expanded the network to multiple layers to reflect the depth of the visual hierarchy, and we implemented more realistic synaptic time-courses. We investigate the accumulation of STDP-driven receptive field shifts across several layers, observing a velocity-dependent reduction in representational lag. These results highlight the role of STDP, operating purely along the feedforward pathway, as a developmental strategy for delay compensation.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011457"},"PeriodicalIF":4.3,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10297406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-06eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011448
Joanna N de Klerk, Erin E Gorsich, John D Grewar, Benjamin D Atkins, Warren S D Tennant, Karien Labuschagne, Michael J Tildesley
African horse sickness is an equine orbivirus transmitted by Culicoides Latreille biting midges. In the last 80 years, it has caused several devastating outbreaks in the equine population in Europe, the Far and Middle East, North Africa, South-East Asia, and sub-Saharan Africa. The disease is endemic in South Africa; however, a unique control area has been set up in the Western Cape where increased surveillance and control measures have been put in place. A deterministic metapopulation model was developed to explore if an outbreak might occur, and how it might develop, if a latently infected horse was to be imported into the control area, by varying the geographical location and months of import. To do this, a previously published ordinary differential equation model was developed with a metapopulation approach and included a vaccinated horse population. Outbreak length, time to peak infection, number of infected horses at the peak, number of horses overall affected (recovered or dead), re-emergence, and Rv (the basic reproduction number in the presence of vaccination) were recorded and displayed using GIS mapping. The model predictions were compared to previous outbreak data to ensure validity. The warmer months (November to March) had longer outbreaks than the colder months (May to September), took more time to reach the peak, and had a greater total outbreak size with more horses infected at the peak. Rv appeared to be a poor predictor of outbreak dynamics for this simulation. A sensitivity analysis indicated that control measures such as vaccination and vector control are potentially effective to manage the spread of an outbreak, and shortening the vaccination window to July to September may reduce the risk of vaccine-associated outbreaks.
{"title":"Modelling African horse sickness emergence and transmission in the South African control area using a deterministic metapopulation approach.","authors":"Joanna N de Klerk, Erin E Gorsich, John D Grewar, Benjamin D Atkins, Warren S D Tennant, Karien Labuschagne, Michael J Tildesley","doi":"10.1371/journal.pcbi.1011448","DOIUrl":"10.1371/journal.pcbi.1011448","url":null,"abstract":"<p><p>African horse sickness is an equine orbivirus transmitted by Culicoides Latreille biting midges. In the last 80 years, it has caused several devastating outbreaks in the equine population in Europe, the Far and Middle East, North Africa, South-East Asia, and sub-Saharan Africa. The disease is endemic in South Africa; however, a unique control area has been set up in the Western Cape where increased surveillance and control measures have been put in place. A deterministic metapopulation model was developed to explore if an outbreak might occur, and how it might develop, if a latently infected horse was to be imported into the control area, by varying the geographical location and months of import. To do this, a previously published ordinary differential equation model was developed with a metapopulation approach and included a vaccinated horse population. Outbreak length, time to peak infection, number of infected horses at the peak, number of horses overall affected (recovered or dead), re-emergence, and Rv (the basic reproduction number in the presence of vaccination) were recorded and displayed using GIS mapping. The model predictions were compared to previous outbreak data to ensure validity. The warmer months (November to March) had longer outbreaks than the colder months (May to September), took more time to reach the peak, and had a greater total outbreak size with more horses infected at the peak. Rv appeared to be a poor predictor of outbreak dynamics for this simulation. A sensitivity analysis indicated that control measures such as vaccination and vector control are potentially effective to manage the spread of an outbreak, and shortening the vaccination window to July to September may reduce the risk of vaccine-associated outbreaks.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011448"},"PeriodicalIF":4.3,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10297408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011446
Leijun Ye, Jianfeng Feng, Chunhe Li
Understanding the underlying dynamical mechanisms of the brain and controlling it is a crucial issue in brain science. The energy landscape and transition path approach provides a possible route to address these challenges. Here, taking working memory as an example, we quantified its landscape based on a large-scale macaque model. The working memory function is governed by the change of landscape and brain-wide state switching in response to the task demands. The kinetic transition path reveals that information flow follows the direction of hierarchical structure. Importantly, we propose a landscape control approach to manipulate brain state transition by modulating external stimulation or inter-areal connectivity, demonstrating the crucial roles of associative areas, especially prefrontal and parietal cortical areas in working memory performance. Our findings provide new insights into the dynamical mechanism of cognitive function, and the landscape control approach helps to develop therapeutic strategies for brain disorders.
{"title":"Controlling brain dynamics: Landscape and transition path for working memory.","authors":"Leijun Ye, Jianfeng Feng, Chunhe Li","doi":"10.1371/journal.pcbi.1011446","DOIUrl":"10.1371/journal.pcbi.1011446","url":null,"abstract":"<p><p>Understanding the underlying dynamical mechanisms of the brain and controlling it is a crucial issue in brain science. The energy landscape and transition path approach provides a possible route to address these challenges. Here, taking working memory as an example, we quantified its landscape based on a large-scale macaque model. The working memory function is governed by the change of landscape and brain-wide state switching in response to the task demands. The kinetic transition path reveals that information flow follows the direction of hierarchical structure. Importantly, we propose a landscape control approach to manipulate brain state transition by modulating external stimulation or inter-areal connectivity, demonstrating the crucial roles of associative areas, especially prefrontal and parietal cortical areas in working memory performance. Our findings provide new insights into the dynamical mechanism of cognitive function, and the landscape control approach helps to develop therapeutic strategies for brain disorders.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011446"},"PeriodicalIF":4.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10287168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011301
Georgi K Kanev, Yaran Zhang, Albert J Kooistra, Andreas Bender, Rob Leurs, David Bailey, Thomas Würdinger, Chris de Graaf, Iwan J P de Esch, Bart A Westerman
Many therapies in clinical trials are based on single drug-single target relationships. To further extend this concept to multi-target approaches using multi-targeted drugs, we developed a machine learning pipeline to unravel the target landscape of kinase inhibitors. This pipeline, which we call 3D-KINEssence, uses a new type of protein fingerprints (3D FP) based on the structure of kinases generated through a 3D convolutional neural network (3D-CNN). These 3D-CNN kinase fingerprints were matched to molecular Morgan fingerprints to predict the targets of each respective kinase inhibitor based on available bioactivity data. The performance of the pipeline was evaluated on two test sets: a sparse drug-target set where each drug is matched in most cases to a single target and also on a densely-covered drug-target set where each drug is matched to most if not all targets. This latter set is more challenging to train, given its non-exclusive character. Our model's root-mean-square error (RMSE) based on the two datasets was 0.68 and 0.8, respectively. These results indicate that 3D FP can predict the target landscape of kinase inhibitors at around 0.8 log units of bioactivity. Our strategy can be utilized in proteochemometric or chemogenomic workflows by consolidating the target landscape of kinase inhibitors.
{"title":"Predicting the target landscape of kinase inhibitors using 3D convolutional neural networks.","authors":"Georgi K Kanev, Yaran Zhang, Albert J Kooistra, Andreas Bender, Rob Leurs, David Bailey, Thomas Würdinger, Chris de Graaf, Iwan J P de Esch, Bart A Westerman","doi":"10.1371/journal.pcbi.1011301","DOIUrl":"10.1371/journal.pcbi.1011301","url":null,"abstract":"<p><p>Many therapies in clinical trials are based on single drug-single target relationships. To further extend this concept to multi-target approaches using multi-targeted drugs, we developed a machine learning pipeline to unravel the target landscape of kinase inhibitors. This pipeline, which we call 3D-KINEssence, uses a new type of protein fingerprints (3D FP) based on the structure of kinases generated through a 3D convolutional neural network (3D-CNN). These 3D-CNN kinase fingerprints were matched to molecular Morgan fingerprints to predict the targets of each respective kinase inhibitor based on available bioactivity data. The performance of the pipeline was evaluated on two test sets: a sparse drug-target set where each drug is matched in most cases to a single target and also on a densely-covered drug-target set where each drug is matched to most if not all targets. This latter set is more challenging to train, given its non-exclusive character. Our model's root-mean-square error (RMSE) based on the two datasets was 0.68 and 0.8, respectively. These results indicate that 3D FP can predict the target landscape of kinase inhibitors at around 0.8 log units of bioactivity. Our strategy can be utilized in proteochemometric or chemogenomic workflows by consolidating the target landscape of kinase inhibitors.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011301"},"PeriodicalIF":4.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10652854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1010835
Neta Ravid Tannenbaum, Omer Gottesman, Azadeh Assadi, Mjaye Mazwi, Uri Shalit, Danny Eytan
Intensive care medicine is complex and resource-demanding. A critical and common challenge lies in inferring the underlying physiological state of a patient from partially observed data. Specifically for the cardiovascular system, clinicians use observables such as heart rate, arterial and venous blood pressures, as well as findings from the physical examination and ancillary tests to formulate a mental model and estimate hidden variables such as cardiac output, vascular resistance, filling pressures and volumes, and autonomic tone. Then, they use this mental model to derive the causes for instability and choose appropriate interventions. Not only this is a very hard problem due to the nature of the signals, but it also requires expertise and a clinician's ongoing presence at the bedside. Clinical decision support tools based on mechanistic dynamical models offer an appealing solution due to their inherent explainability, corollaries to the clinical mental process, and predictive power. With a translational motivation in mind, we developed iCVS: a simple, with high explanatory power, dynamical mechanistic model to infer hidden cardiovascular states. Full model estimation requires no prior assumptions on physiological parameters except age and weight, and the only inputs are arterial and venous pressure waveforms. iCVS also considers autonomic and non-autonomic modulations. To gain more information without increasing model complexity, both slow and fast timescales of the blood pressure traces are exploited, while the main inference and dynamic evolution are at the longer, clinically relevant, timescale of minutes. iCVS is designed to allow bedside deployment at pediatric and adult intensive care units and for retrospective investigation of cardiovascular mechanisms underlying instability. In this paper, we describe iCVS and inference system in detail, and using a dataset of critically-ill children, we provide initial indications to its ability to identify bleeding, distributive states, and cardiac dysfunction, in isolation and in combination.
{"title":"iCVS-Inferring Cardio-Vascular hidden States from physiological signals available at the bedside.","authors":"Neta Ravid Tannenbaum, Omer Gottesman, Azadeh Assadi, Mjaye Mazwi, Uri Shalit, Danny Eytan","doi":"10.1371/journal.pcbi.1010835","DOIUrl":"10.1371/journal.pcbi.1010835","url":null,"abstract":"<p><p>Intensive care medicine is complex and resource-demanding. A critical and common challenge lies in inferring the underlying physiological state of a patient from partially observed data. Specifically for the cardiovascular system, clinicians use observables such as heart rate, arterial and venous blood pressures, as well as findings from the physical examination and ancillary tests to formulate a mental model and estimate hidden variables such as cardiac output, vascular resistance, filling pressures and volumes, and autonomic tone. Then, they use this mental model to derive the causes for instability and choose appropriate interventions. Not only this is a very hard problem due to the nature of the signals, but it also requires expertise and a clinician's ongoing presence at the bedside. Clinical decision support tools based on mechanistic dynamical models offer an appealing solution due to their inherent explainability, corollaries to the clinical mental process, and predictive power. With a translational motivation in mind, we developed iCVS: a simple, with high explanatory power, dynamical mechanistic model to infer hidden cardiovascular states. Full model estimation requires no prior assumptions on physiological parameters except age and weight, and the only inputs are arterial and venous pressure waveforms. iCVS also considers autonomic and non-autonomic modulations. To gain more information without increasing model complexity, both slow and fast timescales of the blood pressure traces are exploited, while the main inference and dynamic evolution are at the longer, clinically relevant, timescale of minutes. iCVS is designed to allow bedside deployment at pediatric and adult intensive care units and for retrospective investigation of cardiovascular mechanisms underlying instability. In this paper, we describe iCVS and inference system in detail, and using a dataset of critically-ill children, we provide initial indications to its ability to identify bleeding, distributive states, and cardiac dysfunction, in isolation and in combination.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1010835"},"PeriodicalIF":4.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10631517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011217
Ronan F Arthur, May Levin, Alexandre Labrogere, Marcus W Feldman
Heterogeneity in contact patterns, mortality rates, and transmissibility among and between different age classes can have significant effects on epidemic outcomes. Adaptive behavior in response to the spread of an infectious pathogen may give rise to complex epidemiological dynamics. Here we model an infectious disease in which adaptive behavior incentives, and mortality rates, can vary between two and three age classes. The model indicates that age-dependent variability in infection aversion can produce more complex epidemic dynamics at lower levels of pathogen transmissibility and that those at less risk of infection can still drive complexity in the dynamics of those at higher risk of infection. Policymakers should consider the interdependence of such heterogeneous groups when making decisions.
{"title":"Age-differentiated incentives for adaptive behavior during epidemics produce oscillatory and chaotic dynamics.","authors":"Ronan F Arthur, May Levin, Alexandre Labrogere, Marcus W Feldman","doi":"10.1371/journal.pcbi.1011217","DOIUrl":"10.1371/journal.pcbi.1011217","url":null,"abstract":"<p><p>Heterogeneity in contact patterns, mortality rates, and transmissibility among and between different age classes can have significant effects on epidemic outcomes. Adaptive behavior in response to the spread of an infectious pathogen may give rise to complex epidemiological dynamics. Here we model an infectious disease in which adaptive behavior incentives, and mortality rates, can vary between two and three age classes. The model indicates that age-dependent variability in infection aversion can produce more complex epidemic dynamics at lower levels of pathogen transmissibility and that those at less risk of infection can still drive complexity in the dynamics of those at higher risk of infection. Policymakers should consider the interdependence of such heterogeneous groups when making decisions.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011217"},"PeriodicalIF":4.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10336366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05eCollection Date: 2023-09-01DOI: 10.1371/journal.pcbi.1011477
Yiming Zhang, Ran Zhou, Lunxu Liu, Lu Chen, Yuan Wang
Here, we introduce Trackplot, a Python package for generating publication-quality visualization by a programmable and interactive web-based approach. Compared to the existing versions of programs generating sashimi plots, Trackplot offers a versatile platform for visually interpreting genomic data from a wide variety of sources, including gene annotation with functional domain mapping, isoform expression, isoform structures identified by scRNA-seq and long-read sequencing, as well as chromatin accessibility and architecture without any preprocessing, and also offers a broad degree of flexibility for formats of output files that satisfy the requirements of major journals. The Trackplot package is an open-source software which is freely available on Bioconda (https://anaconda.org/bioconda/trackplot), Docker (https://hub.docker.com/r/ygidtu/trackplot), PyPI (https://pypi.org/project/trackplot/) and GitHub (https://github.com/ygidtu/trackplot), and a built-in web server for local deployment is also provided.
{"title":"Trackplot: A flexible toolkit for combinatorial analysis of genomic data.","authors":"Yiming Zhang, Ran Zhou, Lunxu Liu, Lu Chen, Yuan Wang","doi":"10.1371/journal.pcbi.1011477","DOIUrl":"10.1371/journal.pcbi.1011477","url":null,"abstract":"<p><p>Here, we introduce Trackplot, a Python package for generating publication-quality visualization by a programmable and interactive web-based approach. Compared to the existing versions of programs generating sashimi plots, Trackplot offers a versatile platform for visually interpreting genomic data from a wide variety of sources, including gene annotation with functional domain mapping, isoform expression, isoform structures identified by scRNA-seq and long-read sequencing, as well as chromatin accessibility and architecture without any preprocessing, and also offers a broad degree of flexibility for formats of output files that satisfy the requirements of major journals. The Trackplot package is an open-source software which is freely available on Bioconda (https://anaconda.org/bioconda/trackplot), Docker (https://hub.docker.com/r/ygidtu/trackplot), PyPI (https://pypi.org/project/trackplot/) and GitHub (https://github.com/ygidtu/trackplot), and a built-in web server for local deployment is also provided.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011477"},"PeriodicalIF":4.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10631511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}