In space applications, remote sensing relies on HSIs (Hyperspectral Images) to capture extensive Earth observation data. However, the substantial data volumes generated by HSIs present significant challenges for onboard storage and processing in space systems, underscoring the importance of efficient compression strategies. Additionally, the harsh conditions of the space environment expose these systems to potential faults, making the integration of fault-tolerant mechanisms crucial for maintaining reliable operation. In this context, this article presents the implementation of a low-cost and fault-tolerant CCSDS 123 HSI compressor. The compressor is present in different configurations employing hardening techniques such as TMR (Triple Modular Redundancy) and Hamming ECC (Error Correcting Code) to mitigate SEUs (Single-Event Upsets). We implemented techniques to enhance observability and evaluated the compressor reliability through fault injection simulations and physical tests at the ChipIr neutron irradiation facility. We present the resource utilization and performance results of each version with a comparative analysis with related work. The results highlight the lowest resource utilization achieved in the unhardened version, capable of processing 20.57 MSa/s and accelerating the application in 24 compared to a software solution. The reliability results demonstrate a high error rate of 97.9% in the unhardened version, significantly reduced in partially hardened versions, with no error propagation in the fully hardened design. Furthermore, we present an analysis of the main components of the accelerator affected by the radiation-induced events observed in the particle accelerator test.
扫码关注我们
求助内容:
应助结果提醒方式:
