首页 > 最新文献

Medical Engineering & Physics最新文献

英文 中文
Leadwise clustering multi-branch network for multi-label ECG classification 用于多标签心电图分类的导联聚类多分支网络
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-15 DOI: 10.1016/j.medengphy.2024.104196
Feiyan Zhou , Lingzhi Chen

The 12-lead electrocardiogram (ECG) is widely used for diagnosing cardiovascular diseases in clinical practice. Recently, deep learning methods have become increasingly effective for automatically classifying ECG signals. However, most current research simply combines the 12-lead ECG signals into a matrix without fully considering the intrinsic relationships between the leads and the heart's structure. To better utilize medical domain knowledge, we propose a multi-branch network for multi-label ECG classification and introduce an intuitive and effective lead grouping strategy. Correspondingly, we design multi-branch networks where each branch employs a multi-scale convolutional network structure to extract more comprehensive features, with each branch corresponding to a lead combination. To better integrate features from different leads, we propose a feature weighting fusion module. We evaluate our method on the PTB-XL dataset for classifying 4 arrhythmia types and normal rhythm, and on the China Physiological Signal Challenge 2018 (CPSC2018) database for classifying 8 arrhythmia types and normal rhythm. Experimental results on multiple multi-label datasets demonstrate that our proposed multi-branch network outperforms state-of-the-art networks in multi-label classification tasks

在临床实践中,12 导联心电图(ECG)被广泛用于诊断心血管疾病。最近,深度学习方法在自动对心电图信号进行分类方面变得越来越有效。然而,目前大多数研究只是简单地将 12 导联心电图信号组合成一个矩阵,而没有充分考虑导联与心脏结构之间的内在关系。为了更好地利用医学领域的知识,我们提出了一种用于多标签心电图分类的多分支网络,并引入了一种直观有效的导联分组策略。相应地,我们设计了多分支网络,每个分支采用多尺度卷积网络结构,以提取更全面的特征,每个分支对应一个导联组合。为了更好地整合来自不同线索的特征,我们提出了一个特征加权融合模块。我们在 PTB-XL 数据集上评估了我们的方法,对 4 种心律失常类型和正常节律进行了分类,并在 2018 年中国生理信号挑战赛(CPSC2018)数据库上评估了我们的方法,对 8 种心律失常类型和正常节律进行了分类。在多个多标签数据集上的实验结果表明,我们提出的多分支网络在多标签分类任务中的表现优于最先进的网络
{"title":"Leadwise clustering multi-branch network for multi-label ECG classification","authors":"Feiyan Zhou ,&nbsp;Lingzhi Chen","doi":"10.1016/j.medengphy.2024.104196","DOIUrl":"10.1016/j.medengphy.2024.104196","url":null,"abstract":"<div><p>The 12-lead electrocardiogram (ECG) is widely used for diagnosing cardiovascular diseases in clinical practice. Recently, deep learning methods have become increasingly effective for automatically classifying ECG signals. However, most current research simply combines the 12-lead ECG signals into a matrix without fully considering the intrinsic relationships between the leads and the heart's structure. To better utilize medical domain knowledge, we propose a multi-branch network for multi-label ECG classification and introduce an intuitive and effective lead grouping strategy. Correspondingly, we design multi-branch networks where each branch employs a multi-scale convolutional network structure to extract more comprehensive features, with each branch corresponding to a lead combination. To better integrate features from different leads, we propose a feature weighting fusion module. We evaluate our method on the PTB-XL dataset for classifying 4 arrhythmia types and normal rhythm, and on the China Physiological Signal Challenge 2018 (CPSC2018) database for classifying 8 arrhythmia types and normal rhythm. Experimental results on multiple multi-label datasets demonstrate that our proposed multi-branch network outperforms state-of-the-art networks in multi-label classification tasks</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141398345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Motion reconstruction and finite element analysis of the temporomandibular joint during swallowing in healthy adults 健康成年人吞咽时颞下颌关节的运动重建和有限元分析
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-15 DOI: 10.1016/j.medengphy.2024.104195
Haidong Teng , Jingheng Shu , Hedi Ma , Bingmei Shao , Zhan Liu

There is a close physiological connection between swallowing and the temporomandibular joint (TMJ). However, a shortage of quantitative research on the biomechanical behavior of the TMJ during swallowing exists. The purpose of this study was to reconstruct the movement of the temporomandibular joint (TMJ) based on in vivo experiment and analyze the biomechanical responses during swallowing in healthy adults to investigate the role of the TMJ in swallowing. Motion capture of swallowing, computed tomography (CT), and magnet resonance images (MRI) were performed on six healthy subjects. The movements of the TMJ during swallowing were reconstructed from the motion capture data. The three-dimensional finite element model was constructed. The dynamic finite element analysis of the swallowing process was performed based on the motion data. The range of condylar displacement was within 1 mm in all subjects. The left and right condyle movements were asymmetrical in two-thirds of the subjects. The peak stresses of the discs were relatively low, with a maximum of 0.11 MPa. During swallowing, the condylar displacement showed two trends: slow retraction and slow extension. The tendency to extend could lead to a gradual increase in stress on the disc.

吞咽与颞下颌关节(TMJ)之间存在着密切的生理联系。然而,有关吞咽时颞下颌关节生物力学行为的定量研究却十分缺乏。本研究的目的是根据活体实验重建颞下颌关节(TMJ)的运动,并分析健康成年人吞咽时的生物力学反应,以研究颞下颌关节在吞咽中的作用。研究人员对六名健康受试者进行了吞咽动作捕捉、计算机断层扫描(CT)和磁共振成像(MRI)。根据运动捕捉数据重建了颞下颌关节在吞咽过程中的运动。建立了三维有限元模型。根据运动数据对吞咽过程进行动态有限元分析。所有受试者的髁突位移范围都在 1 毫米以内。三分之二受试者的左右髁状突运动不对称。椎间盘的峰值应力相对较低,最大值为 0.11 兆帕。在吞咽过程中,髁突位移呈现两种趋势:缓慢回缩和缓慢伸展。伸展的趋势可能会导致椎间盘的应力逐渐增加。
{"title":"Motion reconstruction and finite element analysis of the temporomandibular joint during swallowing in healthy adults","authors":"Haidong Teng ,&nbsp;Jingheng Shu ,&nbsp;Hedi Ma ,&nbsp;Bingmei Shao ,&nbsp;Zhan Liu","doi":"10.1016/j.medengphy.2024.104195","DOIUrl":"10.1016/j.medengphy.2024.104195","url":null,"abstract":"<div><p>There is a close physiological connection between swallowing and the temporomandibular joint (TMJ). However, a shortage of quantitative research on the biomechanical behavior of the TMJ during swallowing exists. The purpose of this study was to reconstruct the movement of the temporomandibular joint (TMJ) based on in vivo experiment and analyze the biomechanical responses during swallowing in healthy adults to investigate the role of the TMJ in swallowing. Motion capture of swallowing, computed tomography (CT), and magnet resonance images (MRI) were performed on six healthy subjects. The movements of the TMJ during swallowing were reconstructed from the motion capture data. The three-dimensional finite element model was constructed. The dynamic finite element analysis of the swallowing process was performed based on the motion data. The range of condylar displacement was within 1 mm in all subjects. The left and right condyle movements were asymmetrical in two-thirds of the subjects. The peak stresses of the discs were relatively low, with a maximum of 0.11 MPa. During swallowing, the condylar displacement showed two trends: slow retraction and slow extension. The tendency to extend could lead to a gradual increase in stress on the disc.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141396964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical consequences to the annulus fibrosus following rapid internal pressurization and endplate fracture under restrained-expansion conditions 在受限膨胀条件下,快速内部加压和终板断裂对纤维环造成的机械后果。
IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-13 DOI: 10.1016/j.medengphy.2024.104194
John G. McMorran , Andra Neptune , Diane E. Gregory

Intervertebral disc herniation is not a common injury in the adolescent population, but the correlation between trauma and herniation warrants concern. Previous research demonstrated the capacity for rapid internal pressurization to reduce the mechanical integrity of the intervertebral disc's annulus fibrosus, even in the absence of fracture. The purpose of this study was to modify previous internal pressurization procedures towards a more transferable injury model, then investigate the capacity for these procedures to damage the mechanical integrity of the annulus fibrosus. Porcine cervical motion segments with intact facet joints were confined between a vice and force plate under 300 N of static compression, then a single, manual, rapid internal pressurization was delivered. Posterolateral annulus samples were extracted and situated in a 180° peel test configuration, exposing the interlamellar matrix of samples to separations of 0.5 mm/s, until complete separation of the sample occurred. Multilayer tensile testing was performed on superficial and mid-span samples of annulus by applying uniaxial tension of 1 %/s to 50 % strain. Compared to unpressurized controls, rapid pressurization causing fracture resulted in reduced lamellar adhesion and increased toe-region stress and strain properties in the annulus. Morphological assessment reported similar fracture patterns between endplate fractures achieved in the present experiment and endplate fractures documented in human patients. Mechanical plus morphological results suggest that rapid internal pressurization resulting in endplate fracture may represent a potent mechanism for subsequent damage to the intervertebral disc.

椎间盘突出症在青少年人群中并不常见,但外伤与椎间盘突出症之间的相关性值得关注。以前的研究表明,即使没有骨折,快速内部加压也能降低椎间盘纤维环的机械完整性。本研究的目的是修改以前的内部加压程序,使其更易于移植到损伤模型中,然后研究这些程序破坏椎间盘纤维环机械完整性的能力。将具有完整面关节的猪颈椎运动节段固定在钳子和受力板之间,施加 300 N 的静态压力,然后进行单次手动快速内加压。提取后外侧瓣环样本并将其置于 180° 剥离测试配置中,使样本的层间基质以 0.5 mm/s 的速度分离,直至样本完全分离。对环状体的表层和中跨样本进行了多层拉伸测试,施加 1 %/s 的单轴拉力至 50 % 的应变。与未加压的对照组相比,快速加压导致断裂后,环面的薄片粘附性降低,趾部应力和应变特性增加。形态学评估报告显示,本实验中发生的终板骨折与人类患者发生的终板骨折具有相似的骨折形态。机械和形态学结果表明,终板断裂导致的快速内部加压可能是椎间盘后续损伤的一种有效机制。
{"title":"Mechanical consequences to the annulus fibrosus following rapid internal pressurization and endplate fracture under restrained-expansion conditions","authors":"John G. McMorran ,&nbsp;Andra Neptune ,&nbsp;Diane E. Gregory","doi":"10.1016/j.medengphy.2024.104194","DOIUrl":"10.1016/j.medengphy.2024.104194","url":null,"abstract":"<div><p>Intervertebral disc herniation is not a common injury in the adolescent population, but the correlation between trauma and herniation warrants concern. Previous research demonstrated the capacity for rapid internal pressurization to reduce the mechanical integrity of the intervertebral disc's annulus fibrosus, even in the absence of fracture. The purpose of this study was to modify previous internal pressurization procedures towards a more transferable injury model, then investigate the capacity for these procedures to damage the mechanical integrity of the annulus fibrosus. Porcine cervical motion segments with intact facet joints were confined between a vice and force plate under 300 N of static compression, then a single, manual, rapid internal pressurization was delivered. Posterolateral annulus samples were extracted and situated in a 180° peel test configuration, exposing the interlamellar matrix of samples to separations of 0.5 mm/s, until complete separation of the sample occurred. Multilayer tensile testing was performed on superficial and mid-span samples of annulus by applying uniaxial tension of 1 %/s to 50 % strain. Compared to unpressurized controls, rapid pressurization causing fracture resulted in reduced lamellar adhesion and increased toe-region stress and strain properties in the annulus. Morphological assessment reported similar fracture patterns between endplate fractures achieved in the present experiment and endplate fractures documented in human patients. Mechanical plus morphological results suggest that rapid internal pressurization resulting in endplate fracture may represent a potent mechanism for subsequent damage to the intervertebral disc.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S135045332400095X/pdfft?md5=310e0e1d8b0892f8b74e4c1d2e45958c&pid=1-s2.0-S135045332400095X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D finite element modeling of earplug-induced occlusion effect in the human ear 耳塞诱发人耳闭塞效应的三维有限元建模
IF 2.2 4区 医学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-10 DOI: 10.1016/j.medengphy.2024.104192
John J. Bradshaw , Marcus A. Brown , Alexander G. Bien , Rong Z. Gan

Poor utilization of earplugs among military personnel may be due to discomfort caused by the occlusion effect (OE). The OE occurs when an earplug occludes the ear canal, thereby changing bone conduction (BC) hearing and amplifying physiological noises from the wearer. There is a need to understand and reduce the OE in the human ear. A 3D finite element model of the human ear including a 3-chambered spiral cochlea was employed to simulate the OE caused by foam and aerogel earplugs. 90 dB sound pressure was applied at the ear canal entrance and BC sound was applied as vibration of the canal bony wall. The model reported the ear canal pressure and the displacements of the stapes footplate and cochlear basilar membrane with and without earplugs. Without BC stimulation, the foam earplug showed a greater pressure attenuation than the aerogel earplug. However, the foam earplug results were more affected by BC stimulation, with a maximum sound pressure increase of 34 dB, compared to the 21.0 dB increase with the aerogel earplug. The aerogel earplug's lower OE demonstrates its promise as an earplug material. Future work with this model will examine BC sound transmission in the cochlea.

军人对耳塞使用率低的原因可能是闭塞效应(OE)造成的不适。当耳塞堵塞耳道,从而改变骨传导(BC)听力并放大佩戴者的生理噪音时,就会产生 OE。有必要了解并减少人耳中的 OE。我们采用了包括三腔螺旋耳蜗在内的人耳三维有限元模型来模拟泡沫耳塞和气凝胶耳塞造成的 OE。在耳道入口处施加 90 dB 的声压,并以耳道骨壁振动的形式施加 BC 声。该模型报告了佩戴和不佩戴耳塞时的耳道压力以及镫骨脚板和耳蜗基底膜的位移。在没有 BC 刺激的情况下,泡沫耳塞比气凝胶耳塞显示出更大的压力衰减。不过,泡沫耳塞受 BC 刺激的影响更大,最大声压增加了 34 分贝,而气凝胶耳塞只增加了 21.0 分贝。气凝胶耳塞较低的 OE 值证明了其作为耳塞材料的前景。该模型的未来工作将研究BC声在耳蜗中的传播。
{"title":"3D finite element modeling of earplug-induced occlusion effect in the human ear","authors":"John J. Bradshaw ,&nbsp;Marcus A. Brown ,&nbsp;Alexander G. Bien ,&nbsp;Rong Z. Gan","doi":"10.1016/j.medengphy.2024.104192","DOIUrl":"https://doi.org/10.1016/j.medengphy.2024.104192","url":null,"abstract":"<div><p>Poor utilization of earplugs among military personnel may be due to discomfort caused by the occlusion effect (OE). The OE occurs when an earplug occludes the ear canal, thereby changing bone conduction (BC) hearing and amplifying physiological noises from the wearer. There is a need to understand and reduce the OE in the human ear. A 3D finite element model of the human ear including a 3-chambered spiral cochlea was employed to simulate the OE caused by foam and aerogel earplugs. 90 dB sound pressure was applied at the ear canal entrance and BC sound was applied as vibration of the canal bony wall. The model reported the ear canal pressure and the displacements of the stapes footplate and cochlear basilar membrane with and without earplugs. Without BC stimulation, the foam earplug showed a greater pressure attenuation than the aerogel earplug. However, the foam earplug results were more affected by BC stimulation, with a maximum sound pressure increase of 34 dB, compared to the 21.0 dB increase with the aerogel earplug. The aerogel earplug's lower OE demonstrates its promise as an earplug material. Future work with this model will examine BC sound transmission in the cochlea.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141324542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing pulsatile blood flow of coronary artery under incomplete boundary conditions 计算不完全边界条件下冠状动脉的搏动血流
IF 1.7 4区 医学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-10 DOI: 10.1016/j.medengphy.2024.104193
WenJun Pu , Yan Chen , Shuai Zhao , Tiantong Yu , Heqiang Lin , Haokao Gao , Songyun Xie , Xi Zhang , Bohui Zhang , Chengxiang Li , Kun Lian , Xinzhou Xie

Background

Accurate measurement of pulsatile blood flow in the coronary arteries enables coronary wave intensity analysis, which can serve as an indicator for assessing coronary artery physiology and myocardial viability. Computational fluid dynamics (CFD) methods integrating coronary angiography images and fractional flow reserve (FFR) offer a novel approach for computing mean coronary blood flow. However, previous methods neglect the inertial effect of blood flow, which may have great impact on pulsatile blood flow calculation. To improve the accuracy of pulsatile blood flow calculation, a novel CFD based method considering the inertia term is proposed.

Methods

A flow resistance model based on Pressure-Flow vs.Time curves is proposed to model the resistance of the epicardial artery. The parameters of the flow resistance model can be fitted from the simulated pulsating flow rates and pressure drops of a specific mode. Then, pulsating blood flow can be calculated by combining the incomplete pressure boundary conditions under pulsating conditions which are easily obtained in clinic. Through simulation experiments, the effectiveness of the proposed method is validated in idealized and reconstructed 3D model of coronary artery. The impacts of key parameters for generating the simulated pulsating flow rates and pressure drops on the accuracy of pulsatile blood flow calculation are also investigated.

Results

For the idealized model, the previously proposed Pressure-Flow model has a significant leading effect on the computed blood flow waveform in the moderate model, and this leading effect disappears with the increase of the degree of stenosis. The improved model proposed in this paper has no leading effect, the root mean square error (RMSE) of the proposed model is low (the left coronary mode:≤0.0160, the right coronary mode:≤0.0065) for all simulated models, and the RMSE decreases with an increase of stenosis. The RMSE is consistently small (≤0.0217) as the key parameters of the proposed method vary in a large range. It is verified in the reconstructed model that the proposed model significantly reduces the RMSE of patients with moderate stenosis (the Pressure-Flow model:≤0.0683, the Pressure-Flow vs.Time model:≤0.0297), and the obtained blood flow waveform has a higher coincidence with the simulated reference waveform.

Conclusions

This paper confirms that ignoring the effect of inertia term can significantly affect the accuracy of calculating pulsatile blood flow in moderate stenosis lesions, and the new method proposed in this paper can significantly improves the accuracy of calculating pulsatile blood flow in moderate stenosis lesions. The proposed method provides a convenient clinical method for obtaining pressure-synchronized blood flow, which is expected to facilitate the application of waveform analysis in the diagnosis of coronary artery disease.

背景准确测量冠状动脉中的搏动性血流可进行冠状动脉波强度分析,这可作为评估冠状动脉生理学和心肌活力的指标。计算流体动力学(CFD)方法整合了冠状动脉造影图像和分数血流储备(FFR),为计算冠状动脉平均血流量提供了一种新方法。然而,以前的方法忽略了血流的惯性效应,这可能会对搏动血流的计算产生很大影响。为了提高搏动血流计算的准确性,本文提出了一种考虑惯性项的基于 CFD 的新型方法。流动阻力模型的参数可根据特定模式的模拟搏动流速和压降进行拟合。然后,结合临床上容易获得的搏动条件下的不完全压力边界条件,即可计算出搏动血流。通过模拟实验,在理想化和重建的冠状动脉三维模型中验证了所提方法的有效性。结果在理想化模型中,之前提出的压力-流量模型对中度模型中计算出的血流波形有明显的引导作用,这种引导作用随着狭窄程度的增加而消失。本文提出的改进模型没有前导效应,所有模拟模型的均方根误差(RMSE)都很低(左冠状动脉模式:≤0.0160,右冠状动脉模式:≤0.0065),且均方根误差随着狭窄程度的增加而减小。由于所提方法的关键参数变化范围较大,因此均方根误差始终很小(≤0.0217)。在重建的模型中可以验证,所提出的模型明显降低了中度狭窄患者的均方根误差(压力-流量模型:≤0.0683,压力-流量 vs. 时间模型:≤0.0297),获得的血流波形与模拟的参考波形具有更高的重合度。结论 本文证实,忽略惯性项的影响会显著影响中度狭窄病变搏动血流计算的准确性,而本文提出的新方法能显著提高中度狭窄病变搏动血流计算的准确性。本文提出的方法为临床获取压力同步血流提供了一种便捷的方法,有望促进波形分析在冠心病诊断中的应用。
{"title":"Computing pulsatile blood flow of coronary artery under incomplete boundary conditions","authors":"WenJun Pu ,&nbsp;Yan Chen ,&nbsp;Shuai Zhao ,&nbsp;Tiantong Yu ,&nbsp;Heqiang Lin ,&nbsp;Haokao Gao ,&nbsp;Songyun Xie ,&nbsp;Xi Zhang ,&nbsp;Bohui Zhang ,&nbsp;Chengxiang Li ,&nbsp;Kun Lian ,&nbsp;Xinzhou Xie","doi":"10.1016/j.medengphy.2024.104193","DOIUrl":"10.1016/j.medengphy.2024.104193","url":null,"abstract":"<div><h3>Background</h3><p>Accurate measurement of pulsatile blood flow in the coronary arteries enables coronary wave intensity analysis, which can serve as an indicator for assessing coronary artery physiology and myocardial viability. Computational fluid dynamics (CFD) methods integrating coronary angiography images and fractional flow reserve (FFR) offer a novel approach for computing mean coronary blood flow. However, previous methods neglect the inertial effect of blood flow, which may have great impact on pulsatile blood flow calculation. To improve the accuracy of pulsatile blood flow calculation, a novel CFD based method considering the inertia term is proposed.</p></div><div><h3>Methods</h3><p>A flow resistance model based on Pressure-Flow vs.Time curves is proposed to model the resistance of the epicardial artery. The parameters of the flow resistance model can be fitted from the simulated pulsating flow rates and pressure drops of a specific mode. Then, pulsating blood flow can be calculated by combining the incomplete pressure boundary conditions under pulsating conditions which are easily obtained in clinic. Through simulation experiments, the effectiveness of the proposed method is validated in idealized and reconstructed 3D model of coronary artery. The impacts of key parameters for generating the simulated pulsating flow rates and pressure drops on the accuracy of pulsatile blood flow calculation are also investigated.</p></div><div><h3>Results</h3><p>For the idealized model, the previously proposed Pressure-Flow model has a significant leading effect on the computed blood flow waveform in the moderate model, and this leading effect disappears with the increase of the degree of stenosis. The improved model proposed in this paper has no leading effect, the root mean square error (RMSE) of the proposed model is low (the left coronary mode:≤0.0160, the right coronary mode:≤0.0065) for all simulated models, and the RMSE decreases with an increase of stenosis. The RMSE is consistently small (≤0.0217) as the key parameters of the proposed method vary in a large range. It is verified in the reconstructed model that the proposed model significantly reduces the RMSE of patients with moderate stenosis (the Pressure-Flow model:≤0.0683, the Pressure-Flow vs.Time model:≤0.0297), and the obtained blood flow waveform has a higher coincidence with the simulated reference waveform.</p></div><div><h3>Conclusions</h3><p>This paper confirms that ignoring the effect of inertia term can significantly affect the accuracy of calculating pulsatile blood flow in moderate stenosis lesions, and the new method proposed in this paper can significantly improves the accuracy of calculating pulsatile blood flow in moderate stenosis lesions. The proposed method provides a convenient clinical method for obtaining pressure-synchronized blood flow, which is expected to facilitate the application of waveform analysis in the diagnosis of coronary artery disease.</p></","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141397512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal tibial tunnel angulation for anatomical anterior cruciate ligament reconstruction using transtibial technique 利用经胫骨技术重建解剖型前十字韧带的最佳胫骨隧道角度
IF 2.2 4区 医学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-05-29 DOI: 10.1016/j.medengphy.2024.104190
Ling Zhang , Junjie Xu , Cong Wang , Ye Luo , Tsung-Yuan Tsai , Jinzhong Zhao , Shaobai Wang

Numerous studies have suggested that the primary cause of failure in transtibial anterior cruciate ligament reconstruction (ACLR) is often attributed to non-anatomical placement of the bone tunnels, typically resulting from improper tibial guidance. We aimed to establish the optimal tibial tunnel angle for anatomical ACLR by adapting the transtibial (TT) technique. Additionally, we aimed to assess graft bending angle (GBA) and length changes during in vivo dynamic flexion of the knee.

Twenty knee joints underwent a CT scan and dual fluoroscopic imaging system (DFIS) to reproduce relative knee position during dynamic flexion. For the single-legged lunge, subjects began in a natural standing position and flexed the right knee beyond 90° When performing the lunge task, the subject supported the body weight on the right leg, while the left leg was used to keep the balance. The tibial and femoral tunnels were established on each knee using a modified TT technique for single-bundle ACLR. The tibial tunnel angulation to the tibial axis and the sagittal plane were measured. Considering that ACL injuries tend to occur at low knee flexion angles, GBA and graft length were measured between 0° and 90° of flexion in this study.

The tibial tunnel angulated the sagittal plane at 42.8° ± 3.4°, and angulated the tibial axis at 45.3° ± 5.1° The GBA was 0° at 90° flexion of the knee and increased substantially to 76.4 ± 5.5° at 0° flexion. The GBA significantly increased with the knee extending from 90° to 0° (p < 0.001). The ACL length was 30.2mm±3.0 mm at 0° flexion and decreased to 27.5mm ± 2.8 mm at 90° flexion (p = 0.072). To achieve anatomic single-bundle ACLR, the optimal tibial tunnel should be angulated at approximately 43° to the sagittal plane and approximately 45° to the tibial axis using the modified TT technique. What's more, anatomical TT ACLR resulted in comparable GBA and a relatively constant ACL length from 0° to 90° of flexion. These findings provide theoretical support for the clinical application and the promotion of the current modified TT technique with the assistance of a robot to achieve anatomical ACLR.

大量研究表明,经胫骨前交叉韧带重建术(ACLR)失败的主要原因往往是骨隧道的非解剖位置,通常是由于胫骨引导不当造成的。我们的目标是通过调整经胫骨(TT)技术,为解剖性前交叉韧带重建确定最佳胫骨隧道角度。20 个膝关节接受了 CT 扫描和双透视成像系统 (DFIS),以再现膝关节在动态屈曲过程中的相对位置。在进行单腿蛙跳时,受试者从自然站立姿势开始,将右膝屈曲超过90°,在完成蛙跳任务时,受试者用右腿支撑身体重量,左腿则用来保持平衡。采用单束前交叉韧带置换术的改良 TT 技术在每个膝关节上建立胫骨和股骨隧道。测量胫骨隧道与胫骨轴和矢状面的角度。考虑到前交叉韧带损伤往往发生在膝关节屈曲角度较低时,本研究在膝关节屈曲0°和90°之间测量了GBA和移植物长度。胫骨隧道与矢状面的角度为42.8° ± 3.4°,与胫骨轴的角度为45.3° ± 5.1°。膝关节从 90° 伸展到 0° 时,GBA 明显增加(p < 0.001)。前交叉韧带长度在屈曲 0° 时为 30.2mm±3.0 mm,在屈曲 90° 时降至 27.5mm±2.8 mm(p = 0.072)。要实现解剖型单束前交叉韧带重建,使用改良的 TT 技术,最佳的胫骨隧道角度应与矢状面成约 43°,与胫骨轴成约 45°。此外,解剖 TT 前交叉韧带置换术可获得相似的 GBA,且前交叉韧带在屈曲 0° 至 90° 期间的长度相对恒定。这些研究结果为当前改良 TT 技术的临床应用和推广提供了理论支持,该技术可在机器人的辅助下实现解剖学前交叉韧带损伤。
{"title":"Optimal tibial tunnel angulation for anatomical anterior cruciate ligament reconstruction using transtibial technique","authors":"Ling Zhang ,&nbsp;Junjie Xu ,&nbsp;Cong Wang ,&nbsp;Ye Luo ,&nbsp;Tsung-Yuan Tsai ,&nbsp;Jinzhong Zhao ,&nbsp;Shaobai Wang","doi":"10.1016/j.medengphy.2024.104190","DOIUrl":"https://doi.org/10.1016/j.medengphy.2024.104190","url":null,"abstract":"<div><p>Numerous studies have suggested that the primary cause of failure in transtibial anterior cruciate ligament reconstruction (ACLR) is often attributed to non-anatomical placement of the bone tunnels, typically resulting from improper tibial guidance. We aimed to establish the optimal tibial tunnel angle for anatomical ACLR by adapting the transtibial (TT) technique. Additionally, we aimed to assess graft bending angle (GBA) and length changes during in vivo dynamic flexion of the knee.</p><p>Twenty knee joints underwent a CT scan and dual fluoroscopic imaging system (DFIS) to reproduce relative knee position during dynamic flexion. For the single-legged lunge, subjects began in a natural standing position and flexed the right knee beyond 90° When performing the lunge task, the subject supported the body weight on the right leg, while the left leg was used to keep the balance. The tibial and femoral tunnels were established on each knee using a modified TT technique for single-bundle ACLR. The tibial tunnel angulation to the tibial axis and the sagittal plane were measured. Considering that ACL injuries tend to occur at low knee flexion angles, GBA and graft length were measured between 0° and 90° of flexion in this study.</p><p>The tibial tunnel angulated the sagittal plane at 42.8° ± 3.4°, and angulated the tibial axis at 45.3° ± 5.1° The GBA was 0° at 90° flexion of the knee and increased substantially to 76.4 ± 5.5° at 0° flexion. The GBA significantly increased with the knee extending from 90° to 0° (<em>p</em> &lt; 0.001). The ACL length was 30.2mm±3.0 mm at 0° flexion and decreased to 27.5mm ± 2.8 mm at 90° flexion (<em>p</em> = 0.072). To achieve anatomic single-bundle ACLR, the optimal tibial tunnel should be angulated at approximately 43° to the sagittal plane and approximately 45° to the tibial axis using the modified TT technique. What's more, anatomical TT ACLR resulted in comparable GBA and a relatively constant ACL length from 0° to 90° of flexion. These findings provide theoretical support for the clinical application and the promotion of the current modified TT technique with the assistance of a robot to achieve anatomical ACLR.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141240212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cylindrical depth image based customized helical bone plate design 基于圆柱深度图像的定制螺旋骨板设计
IF 2.2 4区 医学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-05-27 DOI: 10.1016/j.medengphy.2024.104187
Udeok Seo , Yoo-Joo Choi , Ku-Jin Kim

Commercial straight metal plates have been generally used to fix fractured bones, but recently, the need for customized and helical metal plates has emerged. Customized metal plates are designed to fit the shape of the fracture area that is a 3D curved surface, making it more difficult than designing on a 2D plane. Helical plates are researched due to their advantage in avoiding blood vessel damage compared to commercially available straight metal plates. In this paper, we propose a novel algorithm to design a customized helical metal plate for the femur using cylindrical depth images and Boolean operations. We also present the results of 3D printing a metal plate designed using the proposed algorithm, and the shape matching is verified by calculating the minimum distance between the surface of the printed plate and the surface of the femur.

商用直金属板通常用于固定骨折的骨头,但最近出现了对定制和螺旋金属板的需求。定制金属板是根据骨折部位的形状设计的,而骨折部位是一个三维曲面,因此比在二维平面上设计更加困难。与市面上的直金属板相比,螺旋金属板在避免血管损伤方面更具优势,因此被广泛研究。在本文中,我们提出了一种新颖的算法,利用圆柱深度图像和布尔运算为股骨设计定制的螺旋金属板。我们还展示了使用所提算法设计的金属板的三维打印结果,并通过计算打印金属板表面与股骨表面之间的最小距离验证了形状匹配。
{"title":"Cylindrical depth image based customized helical bone plate design","authors":"Udeok Seo ,&nbsp;Yoo-Joo Choi ,&nbsp;Ku-Jin Kim","doi":"10.1016/j.medengphy.2024.104187","DOIUrl":"https://doi.org/10.1016/j.medengphy.2024.104187","url":null,"abstract":"<div><p>Commercial straight metal plates have been generally used to fix fractured bones, but recently, the need for customized and helical metal plates has emerged. Customized metal plates are designed to fit the shape of the fracture area that is a 3D curved surface, making it more difficult than designing on a 2D plane. Helical plates are researched due to their advantage in avoiding blood vessel damage compared to commercially available straight metal plates. In this paper, we propose a novel algorithm to design a customized helical metal plate for the femur using cylindrical depth images and Boolean operations. We also present the results of 3D printing a metal plate designed using the proposed algorithm, and the shape matching is verified by calculating the minimum distance between the surface of the printed plate and the surface of the femur.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141240213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of compressive and tensile forces on glucose concentration and cell viability within the intervertebral disc: A finite element study 压缩力和拉伸力对椎间盘内葡萄糖浓度和细胞活力的影响:有限元研究
IF 2.2 4区 医学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-05-25 DOI: 10.1016/j.medengphy.2024.104189
Liang-dong Zheng , Hao-yang Lv , Yi-ting Yang , Qing Yuan , Yu-ting Cao , Kai Zhang , Rui Zhu

Understanding the role of mechanical force on tissue nutrient transport is essential, as sustained force may affect nutrient levels within the disc and initiate disc degeneration. This study aims to evaluate the time-dependent effects of different compressive force amplitudes as well as tensile force on glucose concentration and cell viability within the disc. Based on the mechano-electrochemical mixture theory, a multiphasic finite element model of the lumbar intervertebral disc was developed. The minimum glucose concentration and minimum cell density in both normal and degenerated discs were predicted for different compressive force amplitudes, tensile force, and corresponding creep time. Under high compressive force, the minimum glucose concentration exhibited an increasing and then decreasing trend with creep time in the normal disc, whereas that of the degenerated disc increased, then decreased, and finally increased again. At steady state, a higher compressive force was accompanied by a lower glucose concentration distribution. In the degenerated disc, the minimum cell density was negatively correlated with creep time, with a greater range of affected tissue under a higher compressive force. For tensile force, the minimum glucose concentration of the degenerated disc raised over time. This study highlighted the importance of creep time, force magnitude, and force type in affecting nutrient concentration and cell viability. Sustained weight-bearing activities could deteriorate the nutrient environment of the degenerated disc, while tensile force might have a nonnegligible role in effectively improving nutrient levels within the degenerated disc.

了解机械力对组织营养输送的作用至关重要,因为持续的力可能会影响椎间盘内的营养水平并引发椎间盘退化。本研究旨在评估不同压缩力振幅和拉伸力对椎间盘内葡萄糖浓度和细胞活力的时间依赖性影响。根据机械电化学混合物理论,建立了腰椎间盘的多相有限元模型。在不同的压缩力振幅、拉力和相应的蠕变时间下,预测了正常椎间盘和退化椎间盘中的最小葡萄糖浓度和最小细胞密度。在高压缩力作用下,正常椎间盘的最低葡萄糖浓度随蠕变时间呈先增大后减小的趋势,而退化椎间盘的最低葡萄糖浓度则是先增大后减小,最后再增大。在稳定状态下,压缩力越大,葡萄糖浓度分布越低。在退化椎间盘中,最小细胞密度与蠕变时间呈负相关,在较高的压缩力下,受影响组织的范围更大。在拉力作用下,退化椎间盘的最小葡萄糖浓度随着时间的推移而升高。这项研究强调了蠕动时间、力的大小和力的类型在影响营养浓度和细胞活力方面的重要性。持续的负重活动可能会使退化椎间盘的营养环境恶化,而拉力则可能在有效改善退化椎间盘内的营养水平方面发挥不可忽视的作用。
{"title":"Effect of compressive and tensile forces on glucose concentration and cell viability within the intervertebral disc: A finite element study","authors":"Liang-dong Zheng ,&nbsp;Hao-yang Lv ,&nbsp;Yi-ting Yang ,&nbsp;Qing Yuan ,&nbsp;Yu-ting Cao ,&nbsp;Kai Zhang ,&nbsp;Rui Zhu","doi":"10.1016/j.medengphy.2024.104189","DOIUrl":"https://doi.org/10.1016/j.medengphy.2024.104189","url":null,"abstract":"<div><p>Understanding the role of mechanical force on tissue nutrient transport is essential, as sustained force may affect nutrient levels within the disc and initiate disc degeneration. This study aims to evaluate the time-dependent effects of different compressive force amplitudes as well as tensile force on glucose concentration and cell viability within the disc. Based on the mechano-electrochemical mixture theory, a multiphasic finite element model of the lumbar intervertebral disc was developed. The minimum glucose concentration and minimum cell density in both normal and degenerated discs were predicted for different compressive force amplitudes, tensile force, and corresponding creep time. Under high compressive force, the minimum glucose concentration exhibited an increasing and then decreasing trend with creep time in the normal disc, whereas that of the degenerated disc increased, then decreased, and finally increased again. At steady state, a higher compressive force was accompanied by a lower glucose concentration distribution. In the degenerated disc, the minimum cell density was negatively correlated with creep time, with a greater range of affected tissue under a higher compressive force. For tensile force, the minimum glucose concentration of the degenerated disc raised over time. This study highlighted the importance of creep time, force magnitude, and force type in affecting nutrient concentration and cell viability. Sustained weight-bearing activities could deteriorate the nutrient environment of the degenerated disc, while tensile force might have a nonnegligible role in effectively improving nutrient levels within the degenerated disc.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of geometrical design variables on implantation configuration and fixation stiffness of titling bone anchors: A parametric finite element study 几何设计变量对 Titling 骨锚植入配置和固定刚度的影响:参数有限元研究
IF 2.2 4区 医学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-05-23 DOI: 10.1016/j.medengphy.2024.104191
Ali Abedi , Farzam Farahmand , Leila Oryadi Zanjani , Mohammad Hossein Nabian

The mechanical interaction of a tilting anchor and cancellous bones of various densities was simulated using finite element modeling. The model enjoyed a sophisticated representation of the bone, as an elasto-plastic material with large deformation capability. The anchor's tilting action during implantation phase, as well as its fixation stiffness during pull-out test, were predicted by the model and a parametric study was performed to investigate the effects of the anchor's distal width and corner fillet radius, on these measures. The model predictions were validated against the results of an experimental test on ovine humerus specimens. The model could reasonably reproduce the tilting action of the anchor during the implantation phase. Comparison of the model predictions with the experimental results revealed similar trends during both the implantation and the pull-out phases, but smaller displacement magnitudes (end points: 1.4 vs. 2.1 mm and 4.6 vs. 5.2 mm, respectively). The results of the parametric study indicated substantial increase in the fixation stiffness with increasing bone density. Reducing the distal width and increasing the fillet radius improved the anchor's implantation configuration and fixation stiffness in low-density bones. For high-density bone applications, however, a larger distal width was favored for improving the fixation stiffness.

使用有限元模型模拟了倾斜锚和不同密度的松质骨之间的机械相互作用。该模型将骨作为一种具有大变形能力的弹塑性材料进行了复杂的表示。该模型预测了锚在植入阶段的倾斜动作,以及在拔出测试中的固定刚度,并进行了参数研究,以探讨锚的远端宽度和角圆角半径对这些指标的影响。模型预测结果与绵羊肱骨标本的实验测试结果进行了验证。模型合理地再现了锚在植入阶段的倾斜动作。将模型预测与实验结果进行比较后发现,植入和拔出阶段的趋势相似,但位移幅度较小(终点分别为 1.4 毫米和 2.1 毫米,以及 4.6 毫米和 5.2 毫米)。参数研究结果表明,随着骨密度的增加,固定刚度也会大幅增加。在低密度骨中,减小远端宽度和增大圆角半径改善了锚的植入配置和固定刚度。然而,在高密度骨骼应用中,较大的远端宽度更有利于提高固定刚度。
{"title":"Effect of geometrical design variables on implantation configuration and fixation stiffness of titling bone anchors: A parametric finite element study","authors":"Ali Abedi ,&nbsp;Farzam Farahmand ,&nbsp;Leila Oryadi Zanjani ,&nbsp;Mohammad Hossein Nabian","doi":"10.1016/j.medengphy.2024.104191","DOIUrl":"10.1016/j.medengphy.2024.104191","url":null,"abstract":"<div><p>The mechanical interaction of a tilting anchor and cancellous bones of various densities was simulated using finite element modeling. The model enjoyed a sophisticated representation of the bone, as an elasto-plastic material with large deformation capability. The anchor's tilting action during implantation phase, as well as its fixation stiffness during pull-out test, were predicted by the model and a parametric study was performed to investigate the effects of the anchor's distal width and corner fillet radius, on these measures. The model predictions were validated against the results of an experimental test on ovine humerus specimens. The model could reasonably reproduce the tilting action of the anchor during the implantation phase. Comparison of the model predictions with the experimental results revealed similar trends during both the implantation and the pull-out phases, but smaller displacement magnitudes (end points: 1.4 vs. 2.1 mm and 4.6 vs. 5.2 mm, respectively). The results of the parametric study indicated substantial increase in the fixation stiffness with increasing bone density. Reducing the distal width and increasing the fillet radius improved the anchor's implantation configuration and fixation stiffness in low-density bones. For high-density bone applications, however, a larger distal width was favored for improving the fixation stiffness.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141135504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-calcified plaque-based coronary stenosis grading in contrast enhanced CT 造影剂增强 CT 中基于非钙化斑块的冠状动脉狭窄分级
IF 2.2 4区 医学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-05-22 DOI: 10.1016/j.medengphy.2024.104182
Muhammad Moazzam Jawaid , Sanam Narejo , Farhan Riaz , Constantino Carlos Reyes-Aldasoro , Greg Slabaugh , James Brown

Background

The high mortality rate associated with coronary heart disease has led to state-of-the-art non-invasive methods for cardiac diagnosis including computed tomography and magnetic resonance imaging. However, stenosis computation and clinical assessment of non-calcified plaques has been very challenging due to their ambiguous intensity response in CT i.e. a significant overlap with surrounding muscle tissues and blood. Accordingly, this research presents an approach for computation of coronary stenosis by investigating cross-sectional lumen behaviour along the length of 3D coronary segments.

Methods

Non-calcified plaques are characterized by comparatively lower-intensity values with respect to the surrounding. Accordingly, segment-wise orthogonal volume was reconstructed in 3D space using the segmented coronary tree. Subsequently, the cross sectional volumetric data was investigated using proposed CNN-based plaque quantification model and subsequent stenosis grading in clinical context was performed. In the last step, plaque-affected orthogonal volume was further investigated by comparing vessel-wall thickness and lumen area obstruction w.r.t. expert-based annotations to validate the stenosis grading performance of model.

Results

The experimental data consists of clinical CT images obtained from the Rotterdam CT repository leading to 600 coronary segments and subsequent 15786 cross-sectional images. According to the results, the proposed method quantified coronary vessel stenosis i.e. severity of the non-calcified plaque with an overall accuracy of 83%. Moreover, for individual grading, the proposed model show promising results with accuracy equal to 86%, 90% and 79% respectively for severe, moderate and mild stenosis. The stenosis grading performance of the proposed model was further validated by performing lumen-area versus wall-thickness analysis as per annotations of manual experts. The statistical results for lumen area analysis precisely correlates with the quantification performance of the model with a mean deviation of 5% only.

Conclusion

The overall results demonstrates capability of the proposed model to grade the vessel stenosis with reasonable accuracy and precision equivalent to human experts.

背景与冠心病相关的高死亡率促使人们采用最先进的无创方法进行心脏诊断,包括计算机断层扫描和磁共振成像。然而,由于非钙化斑块在计算机断层扫描中的强度反应不明确,即与周围肌肉组织和血液有明显的重叠,因此对其进行狭窄计算和临床评估非常具有挑战性。因此,本研究提出了一种通过研究三维冠状动脉分段的横截面管腔行为来计算冠状动脉狭窄的方法。因此,利用分段冠状动脉树在三维空间中重建分段正交容积。随后,使用提出的基于 CNN 的斑块量化模型对横截面容积数据进行研究,并根据临床情况对狭窄程度进行分级。最后,通过比较血管壁厚度和管腔面积阻塞与专家注释,进一步研究了受斑块影响的正交体积,以验证模型的狭窄分级性能。结果显示,所提出的方法量化了冠状动脉血管狭窄程度,即非钙化斑块的严重程度,总体准确率为 83%。此外,在单个分级方面,所提出的模型显示出良好的效果,对重度、中度和轻度狭窄的准确率分别为 86%、90% 和 79%。根据人工专家的注释进行管腔面积与管壁厚度分析,进一步验证了所提模型的狭窄分级性能。管腔面积分析的统计结果与模型的量化性能精确相关,平均偏差仅为 5%。
{"title":"Non-calcified plaque-based coronary stenosis grading in contrast enhanced CT","authors":"Muhammad Moazzam Jawaid ,&nbsp;Sanam Narejo ,&nbsp;Farhan Riaz ,&nbsp;Constantino Carlos Reyes-Aldasoro ,&nbsp;Greg Slabaugh ,&nbsp;James Brown","doi":"10.1016/j.medengphy.2024.104182","DOIUrl":"https://doi.org/10.1016/j.medengphy.2024.104182","url":null,"abstract":"<div><h3>Background</h3><p>The high mortality rate associated with coronary heart disease has led to state-of-the-art non-invasive methods for cardiac diagnosis including computed tomography and magnetic resonance imaging. However, stenosis computation and clinical assessment of non-calcified plaques has been very challenging due to their ambiguous intensity response in CT i.e. a significant overlap with surrounding muscle tissues and blood. Accordingly, this research presents an approach for computation of coronary stenosis by investigating cross-sectional lumen behaviour along the length of 3D coronary segments.</p></div><div><h3>Methods</h3><p>Non-calcified plaques are characterized by comparatively lower-intensity values with respect to the surrounding. Accordingly, segment-wise orthogonal volume was reconstructed in 3D space using the segmented coronary tree. Subsequently, the cross sectional volumetric data was investigated using proposed CNN-based plaque quantification model and subsequent stenosis grading in clinical context was performed. In the last step, plaque-affected orthogonal volume was further investigated by comparing vessel-wall thickness and lumen area obstruction w.r.t. expert-based annotations to validate the stenosis grading performance of model.</p></div><div><h3>Results</h3><p>The experimental data consists of clinical CT images obtained from the Rotterdam CT repository leading to 600 coronary segments and subsequent 15786 cross-sectional images. According to the results, the proposed method quantified coronary vessel stenosis i.e. severity of the non-calcified plaque with an overall accuracy of 83%. Moreover, for individual grading, the proposed model show promising results with accuracy equal to 86%, 90% and 79% respectively for severe, moderate and mild stenosis. The stenosis grading performance of the proposed model was further validated by performing lumen-area versus wall-thickness analysis as per annotations of manual experts. The statistical results for lumen area analysis precisely correlates with the quantification performance of the model with a mean deviation of 5% only.</p></div><div><h3>Conclusion</h3><p>The overall results demonstrates capability of the proposed model to grade the vessel stenosis with reasonable accuracy and precision equivalent to human experts.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350453324000833/pdfft?md5=7c0d5547bb38520c657fc020dc44f7f2&pid=1-s2.0-S1350453324000833-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141084560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Medical Engineering & Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1